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Abstract: Constructing novel van der Waals heterostructures (vdWHs) is one of the effective methods
for expanding the properties and applications of single materials. In this contribution, a blue
phosphorene (Blue P)/MoSi2N4 vertical bilayer vdWH was constructed, and its crystal and electronic
structures as well as optical properties were systematically studied via first principles calculation.
It was found that the Blue P/MoSi2N4 vdWH with good thermal and dynamic stabilities belongs
to the type-II indirect bandgap semiconductor with the bandgap of 1.92 eV, which can efficiently
separate electrons and holes. Additionally, the two band edges straddle the redox potential of water,
and the charge transfer follows the Z-scheme mode, making the Blue P/MoSi2N4 vdWH a promising
catalyst of hydrogen production through splitting water. Meanwhile, the Blue P/MoSi2N4 vdWH
has higher optical absorption than its two component monolayers. Both the external electric field
and vertical strain can easily tailor the bandgap of Blue P/MoSi2N4 vdWH while still preserving
its type-II heterostructure characteristics. Our proposed Blue P/MoSi2N4 vdWH is a promising
photovoltaic two-dimensional material, and our findings provided theoretical support for the related
experimental exploration.

Keywords: Blue P/MoSi2N4 vdWH; electronic properties; type-II; strain; E-field

1. Introduction

Since graphene was discovered, two-dimensional (2D) materials have become the
focus of both theoretical and experimental investigations in light of their distinctive crys-
tal structures and physical characteristics [1]. Various 2D materials, such as hexagonal
boron nitride (h-BN) [2,3], black phosphorene [4–7] and transition-metal dichalcogenides
(TMDCs) [8–10], which can be used as the versatile platforms for the applications of
optoelectronics and electronics, have attracted extensive attention. [11–13].

Recently, the 2D van der Waals (vdW) layered material MoSi2N4 was experimentally
prepared by Hong et al. [14] As a semiconductor, MoSi2N4 monolayer (ML) has an in-
direct bandgap of 2.41 eV, which can be achieved by inserting one MoN2 ML into the
middle of two SiN MLs, arranged in the form of a N–Si–N–Mo–N–Si–N seven-atomic layer.
This unique crystal structure of MoSi2N4 ML determines its many novel features, such as
extraordinary mechanical strength and stability, higher carrier mobility, and excellent elec-
tronic and valleytronic properties [15–18], granting it great potential for applications in
photodetection, photovoltaics, and photocatalysis [19]. Additionally, 2D vertical MoSi2N4-
based vdW heterostructures (vdWHs) can further enrich the properties of MoSi2N4 ML,
broadening its applications [20–24]. Theoretical findings revealed that MoSi2N4 ML con-
tacting with metal exhibits adjustable Schottky barrier height in a wind range and large
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Schottky barrier height slope, superior to most other 2D semiconductors, which is ow-
ing to the two outlying Si-N sublayers protecting the semiconducting electronic states in
the septuple-layer MoSi2N4 ML [21]. The InSe/MoSi2N4 vdWH shows the properties of
a type-II band alignment and a favorable direct bandgap of 1.61 eV, high electron mobility
(104 cm2V−1s−1), obvious optical absorption (105 cm−1) in the visible light range, and ap-
propriate band edge values for overall water splitting [22]. Additionally, the C2N/MoSi2N4
vdWH possesses ideal interface electronic properties, large interlayer charge transfer, and
good visible light response and has great potential application in the field of photocatalytic
water splitting [23]. The valleytronic properties of MoSi2N4 ML can been enhanced via
forming the MoSi2N4/CrCl3 bilayer vdWH [24]. Furthermore, the electronic properties
of MoSi2N4/GaN and MoSi2N4/ZnO vdWHs can be substantially modified by applying
an electric field (E-field) and strain, causing them to undergo transitions from type-I to type-
II band alignment and from direct to indirect bandgap [20]. These findings demonstrate
the potential applications of MoSi2N4-based vdWHs as an adjustable hybrid 2D material
with enormous design flexibility in ultracompact optoelectronics.

Black phosphorene with an orthogonal structure has broad application prospects in
nanoscale optoelectronic devices owing to the appropriate bandgap and excellent optical
properties [25,26]. As an allotrope of black phosphorene, blue phosphorene (Blue P)
has also aroused great research interest due to its unique optoelectronic properties [27,28].
Nonplanar Blue P ML, with a hexagonal crystal structure and semiconductor characteristics,
has an indirect bandgap of 2 eV, possessing high carrier mobility (103 cm2/V·s) [29,30] and
excellent optical absorption. Thus, ML Blue P is a commonly used 2D material for designing
2D vertical heterostructures with excellent properties through combination with other 2D
materials [31,32]. The type-II Blue P/MoSe2 vdWH has improved optical and electronic
properties in contrast with the individual Blue P and MoSe2 MLs [33]. The Blue P/Mg(OH)2
heterobilayer can be used as a promising visible light photocatalyst for water splitting [34].
Through first principles calculations, Chen et al. found that the Blue P/MoSi2N4 vdWH
is a potential photocatalytic candidate because of its direct Z-scheme characteristic and
appropriate band edge values for overall water splitting [32]. However, they did not focus
on the strain and E-field effects on the electronic property of Blue P/MoSi2N4 bilayer vdWH,
which are vitally important for its application in semiconductor devices. Consequently, it is
quite meaningful to investigate the response of its electronic property to E-field and strain
and explore its other possibilities in future nanoelectronic devices.

In this contribution, using first principles calculations based on density functional
theory (DFT), a 2D vertical Blue P/MoSi2N4 bilayer vdWH was designed, and its stacking
configurations, stabilities, and electronic and optical properties were systematically investi-
gated. The strain and E-field modified electronic properties of the Blue P/MoSi2N4 bilayer
were also explored. It was shown that the Blue P/MoSi2N4 vdWH with good stability
has the feature of type-II indirect bandgap vdWH with effectively separated electrons
and holes, in which the two band edges straddle the redox potential of water, making it
promising for hydrogen production through photocatalytic decomposition of water. More-
over, the Blue P/MoSi2N4 vdWH has enhanced optical absorption in contrast with the
two individual MLs. Both the external E-field and vertical strain can easily tailor the
bandgap of Blue P/MoSi2N4 vdWH while still preserving its type-II heterostructure char-
acteristics. Our proposed Blue P/MoSi2N4 vdWH is a promising photovoltaic 2D material,
and our findings offered theoretical support for the related experimental exploration.

2. Computational Details

All of our simulations were carried out on VASP [35] based on DFT developed by
the hafner group at the University of Vienna in Austria, and the exchange–correlation
interaction was described by the generalized gradient approximation (GGA) with the
Perdew–Burke–Ernzerhof (PBE) functional proposed by Burke et al. in New Orleans
of America [36]. A 500 eV energy cut-off was set for the plane wave expansion. The
Grimme’s DFT-D3 correction method [37,38] proposed by Grimme et al. in Münster
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of Germany was adopted to estimate the long-range vdW interlayer interaction in the
Blue P/MoSi2N4 vdWH. The convergence criteria for the total energy and the Hellmann–
Feynman force on each atom were 10−5 eV and 0.01 eV/Å, respectively. The reciprocal
space was sampled with the fine k-point meshes of 11 × 11 × 1 and a 5 × 5 × 1 in
the Brillouin zone for the PBE calculations and the more expensive HSE06, respectively.
The binding energy of the Blue P/MoSi2N4 vdWH was calculated based on the formula
Eb = EBlue P/MoSi2N4 − EBlue P− EMoSi2N4 , where EBlue P/MoSi2N4 , EBlue P, and EMoSi2N4 were
the total energies of the Blue P/MoSi2N4 vdWH and isolated Blue P and MoSi2N4 MLs,
respectively. In addition, the VASPKIT code [39] developed by Wang. in Xi’an of China
was performed to process the calculated results of dielectric constant to obtain the optical
absorption coefficient A(ω).

3. Results and Discussion

Firstly, the crystal and electronic structures of isolated Blue P and MoSi2N4 MLs were
examined. Figure 1a,b showed the top and side views of the two isolated MLs, both
hexagonal structures, and the optimized lattice constants are 3.27 Å and 2.90 Å for the Blue
P and MoSi2N4 MLs (Table 1), respectively. The two corresponding electronic structures
were shown in Figure S1a,b, respectively. The bandgaps estimated by the PBE (HSE) scheme
are 1.95 eV (3.01 eV) for Blue P ML and 1.76 eV (2.41 eV) for MoSi2N4 ML, listed in Table 1,
respectively. Both Blue P and MoSi2N4 MLs are indirect bandgap semiconductors. For Blue
P ML, the conduction band minimum (CBM) is near the M point along the ГM path, and
the valence band maximum (VBM) is between the K and Г points. MoSi2N4 ML has the
CBM at the K point and the VBM at the Г point. The above parameters are consistent with
the previous studies [40–43].
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Figure 1. Top and side views of the crystal structures for (a) Blue P ML, (b) MoSi2N4 ML, and
(c) Blue P/MoSi2N4 vdWH with the T1 configuration. The rhombuses in the top views represent the
unit cells of these 2D materials. The element symbols refer to the corresponding atomic layers in the
Blue P and MoSi2N4 MLs in panels (a,b).

Table 1. Lattice constants, binding energies, interlayer distances, and bandgaps of the Blue
P/MoSi2N4 bilayer with the four configurations together with the Blue P and MoSi2N4 MLs.

Blue P MoSi2N4
Blue P/MoSi2N4

T1 T2 B1 B2

Lattice (Å) 3.27 2.90 5.78 5.78 5.78 5.78
Eb (meV/Å2) / / −14.12 −14.11 −14.10 −14.11

dz (Å) / / 3.46 3.45 3.48 3.47
Eg (eV) 1.95/3.01 1.76/2.41 1.21/1.92 1.21 1.21 1.21

Based on the above calculations, the Blue P/MoSi2N4 bilayer vdWH was established
through stacking the

√
3 ×
√

3 × 1 supercell of Blue P ML on the 2 × 2 × 1 supercell
of MoSi2N4 ML. There is a lattice mismatch of 2.4% between the two component MLs.



Crystals 2022, 12, 1407 4 of 12

The primitive cell of the Blue P/MoSi2N4 bilayer contains 34 atoms: 6 P, 16 N, 8 Si, and
4 Mo atoms, respectively. Four stacking configurations were considered: the two lower
or upper P atoms in the Blue P ML located on the tops of the Mo and Si atoms or on
the middle of the N and Si atoms in the MoSi2N4 ML—named T1 and B1 or T2 and B2
configurations, respectively—presented in Figures 1c and S3. After full relaxation, it was
found that the four stacking configurations have the same lattice constants, 5.78 Å, and
almost identical interlayer distances, 3.46, 3.45, 3.48, and 3.47 Å for T1, T2, B1 and B2
configurations, respectively. The binding energies of Blue P/MoSi2N4 vdWHs were cal-
culated using the same method as those of the MoTe2/PtS2 [44] and MoS2/Ga2O3 [45]
vdWHs. The negative binding energies of the four configurations, which were obtained
from the PBE+D3 functional, are all approximately −14 meV/Å2, indicating their energy
stability. Hybridization should also be included in the actual interlayer interactions of
these vdWHs. If the hybridization were included in the calculations, the binding energy
might be larger, very close to the vdW interaction ~−20 meV/Å2. Thus, the vdW interac-
tion dominates the interlayer interaction of Blue P/MoSi2N4 bilayer. More importantly,
the four configurations have the same electronic properties, and all semiconductors have
an indirect bandgap of 1.21 eV obtained from the PBE scheme. The parameters of the
Blue P/MoSi2N4 vdWH were listed in Table 1. Given the above similarities of these
four configurations, for simplicity, only the Blue P/MoSi2N4 vdWH with T1 configuration
was discussed in the following, shown in Figure 1c.

Next, the phonon spectrum and ab initio molecular dynamics (AIMD) simulations
were studied to analyze the dynamic and thermal stabilities of Blue P/MoSi2N4 vdWH,
as shown in Figure 2. No imaginary frequencies were observed in the phonon spectra
(Figure 2a). The result for the AIMD simulations within 3 ps at 300 K illustrated that the
structure of Blue P/MoSi2N4 bilayer is still preserved, and the average total energy per
atom oscillates over a small range (Figure 2b). The above findings proved the dynamic and
thermal stabilities of the Blue P/MoSi2N4 bilayer.
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Figure 2. (a) Phonon spectra and (b) average total energy per atom vs time for the Blue P/MoSi2N4

vdWH. The left and right insets in panel (b) are the initial and final structures, respectively, of Blue
P/MoSi2N4 vdWH during the AIMD simulations.

In order to facilitate the analysis of the electronic properties of Blue P/MoSi2N4 vdWH,
the band structures were calculated for the

√
3 ×
√

3 × 1 supercell of Blue P ML and the
2 × 2 × 1 supercell of MoSi2N4 ML using the PBE functional presented in Figure 3a,b.
It was found that the supercell has the same bandgap as the primitive cell (Figure S1),
both 1.95 eV for Blue P ML and 1.76 eV for MoSi2N4 ML, respectively. Because of the
band folding, the CBM and VBM transfer to near the K point and near the M point in the√

3×
√

3× 1 supercell, respectively (Figure 3a). For the 2× 2× 1 supercell of MoSi2N4
ML, the CBM and VBM are still located at the K and Г points, respectively (Figure 3b),
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because the K and M points fold to the K and Г points, respectively. Furthermore, due to
the heavy Mo atom in MoSi2N4 ML, the band structures with and without SOC were also
plotted, which demonstrates that SOC only makes the band structure of MoSi2N4 ML split
and does not change the bandgap and band edges (Figure S3). Figure 3c presented the
projected band structure of the Blue P/MoSi2N4 vdWH. It was clearly revealed that the
Blue P/MoSi2N4 vdWH is a semiconductor with the indirect bandgaps of 1.21 and 1.92 eV
by the PBE and HSE schemes, shown in Figure 3a and Figure S4, respectively. Clearly,
the component MoSi2N4 and Blue P MLs still basically keep their own original electronic
features in the Blue P/MoSi2N4 vdWH. The CBM and VBM are located near the K point
and at the Γ point, contributed by the Blue P and MoSi2N4 layers, respectively. This fully
demonstrated that the Blue P/MoSi2N4 bilayer belongs to the typical type-II vdWH.
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3 × 1 supercell of Blue P ML and (b) the 2 × 2 × 1
supercell of MoSi2N4 ML. (c) Projected band structure of Blue P/MoSi2N4 vdWH. Here, the Fermi
levels were set to zero.

The work function and the charge density difference were used to explain the forma-
tion mechanism of the 2D type-II Blue P/MoSi2N4 vdWH (see Figure S5). The calculated
work functions are 5.93 eV for Blue P ML and 5.07 eV for MoSi2N4 ML, respectively, which
are close to previous studies [42,46]. Thus, when the two 2D ML semiconductors contact to
form the Blue P/MoSi2N4 vdWH, the electrons migrate from the MoSi2N4 ML to Blue P ML
until they reach the same Fermi level, also affirmed by the differential charge density and
the planar-averaged charge density difference along the z direction, demonstrated in Fig-
ure 4a,b, respectively. The charge density difference was calculated by the formula [47,48]:
∆ρ = ρBlue P/MoSi2N4 − ρBlue P − ρMoSi2N4 , where ρBlue P/MoSi2N4 , ρBlue P, and ρMoSi2N4 are
the charge density distribution of Blue P/MoSi2N4 vdWH, Blue P, and MoSi2N4 MLs,
respectively. The planar-averaged charge density difference along the z direction was
obtained by integrating the above differential charge density in the 2D surface. Figure 4a
manifested the charge gain and loss for Blue P (yellow) and MoSi2N4 (cyan) layers at the
interface of Blue P/MoSi2N4 vdWH, leading to the positive and negative charges around
the Blue P and MoSi2N4 MLs (Figure 4b), respectively. All the above results meant that
electrons transfer from MoSi2N4 to Blue P ML in the interface of Blue P/MoSi2N4 vdWH,
and the charge transfer amount is 0.0066 e, obtained from Bader charge analysis, signifying
the weak vdW interaction between Blue P and MoSi2N4 MLs. Importantly, this charge
transfer causes a built-in E-field from MoSi2N4 to Blue P ML across the interface of Blue
P/MoSi2N4 vdWH.
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Figure 4c showed the band alignments of MoSi2N4 and Blue P MLs as well as the
redox potential of water with pH = 0, 7, and 14 relative to the vacuum level before and after
contact. The reduction and oxidation potentials of water are affected by pH, which can be
calculated by the following formulas:

Ered
H+/H2O

= −4.44 eV + pH × 0.059 eV,
Eox

O2/H2O = −5.67 eV + pH × 0.059 eV.

Before the two MLs combine together, the CBM and VBM of MoSi2N4 ML are −3.26
and −5.86 eV, respectively, and the CBM and VBM of Blue P are −3.66 and −6.69 eV,
respectively. By comparing the band edges and the redox potentials of water, it was found
that the isolated Blue P and MoSi2N4 MLs can be used as catalysts for hydrogen production
through splitting water from acidic to not-too-strong alkaline conditions and from acidic
to alkaline conditions, respectively. However, as a result of the influence of the interlayer
interaction and lattice mismatch, the bandgaps of the two component monolayers in the
heterostructure are slightly changed, in contrast to those before contact [49,50]. In the Blue
P/MoSi2N4 vdWH, the band edges of the MoSi2N4 ML are higher than those of the Blue P
ML, and the CBM and VBM are −3.37 and −6.51 eV—mainly contributed by the Blue P
and MoSi2N4 layers, respectively—which means that the Blue P/MoSi2N4 vdWH belongs
to the type-II vdWH for hydrogen production through splitting water with pH = 0–7.
Under the irradiation of incident light, the electrons transfer from the VBMs to the CBMs
for the two component Blue P and MoSi2N4 layers, which is the typical charge transfer
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mode of type-II heterostructures, such as 2D III-nitride/ZnO [51] and InX (X = S, Se)/YS2
(Y = Mo, W) [52] vdWHs. Consequently, photogenerated holes and electrons accumulate
in the VBMs and CBMs, respectively. Due to the band offsets, photogenerated electrons
can migrate from the CBM of MoSi2N4 to the CBM of Blue P, while photogenerated holes
follow a reverse migration. A built-in E-field from MoSi2N4 to blue P MLs is induced by
this interlayer charge transfer, which can promote the recombination of the photogenerated
electrons and holes in the CBM and the VBM of Blue P and MoSi2N4 MLs, respectively,
while effectively separating the photogenerated carriers in the CBM and VBM of MoSi2N4
and Blue P MLs, respectively. Compared to the isolated Blue P and MoSi2N4 MLs, this
Z-scheme and type-II Blue P/MoSi2N4 vdWH have significantly enhanced redox capacity
because the hydrogen evolution reaction occurs in the CBM of MoSi2N4 layer with higher
potential and the oxygen evolution reaction is carried out on the VBM of Blue P ML with
lower potential.

The optical absorption property is critical for semiconductor applications in the photo-
voltaic field. The complex dielectric function was calculated to model the optical property,
namely ε(ω) = ε1(ω) + iε(ω), where ω, ε1(ω) and ε2(ω) are the frequency of inci-
dent light and the real and imaginary parts of the dielectric function, respectively. The
usual Kramers–Kronig transformation was performed to calculate the real part ε1(ω), and
the imaginary part ε2(ω) was obtained through calculating the electronic ground state,
a method which has been adopted by many theoretical studies [53,54]. For the 2D materials,
the optical absorption is calculated using the formula A(ω) = ωLε2(ω)

c , where c and L are
the speed of light in vacuum and the slab thickness of the simulated cell, respectively.

The optical absorption in the Blue P/MoSi2N4 vdWH varied with the wavelength
from 200 to 800 nm in Figure 5, and those in the isolated Blue P and MoSi2N4 MLs were also
given as a contrast. Interestingly, the Blue P/MoSi2N4 vdWH has significantly improved
optical absorption relative to the isolated Blue P and MoSi2N4 MLs, particularly from 200
to 450 nm (ultraviolet to violet). Additionally, the absorption peak rose to 33.49% near
246 nm. This greatly enhanced optical absorption nature results from more atoms being
involved in optical absorption and the decreased bandgap due to the interlayer coupling
as well as the lattice mismatch of Blue P and MoSi2N4 MLs in the vdWH. The intriguing
optical absorption can make the type-II Blue P/MoSi2N4 vdWH promising in photovoltaic
devices [54].
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Having tunable electronic properties under E-field and strain is quite important for the
practical applications of 2D materials. In this paper, the vertical E-field- and strain-induced
electronic properties of Blue P/MoSi2N4 vdWH were explored. The positive direction of
E-field was defined from MoSi2N4 to Blue P layer in the heterobilayer. Figure 6 presented
the band alignment, bandgap, and band offset of Blue P/MoSi2N4 vdWH as a function
of E-field. It was clearly revealed that the E-field can significantly regulate the band edge,
bandgap, and band offset of Blue P/MoSi2N4 vdWH. The evolution of the CBM and VBM
of Blue P and MoSi2N4 MLs in the vdWH as a function of E-field was shown in Figure 6a.
Clearly, the CBM and VBM of Blue P ML are reduced almost linearly with the E-field
increasing from −0.6 to 0.6 V/Å. The VBM of MoSi2N4 ML undergoes an increase with the
E-field increasing from−0.6 to−0.45 V/Å, a sudden change with the E-field changing from
−0.45 to−0.4 V/Å, and then a linear increase with the E-field from−0.45 to 0.6 V/Å, while
the CBM of MoSi2N4 ML increased linearly all through the E-field from −0.6 to 0.6 V/Å.
The physics behind the above variation of band edges with the E-field is the variations
of band structures for the Blue P and MoSi2N4 MLs in the vdWH. The negative E-field
can push electrons from MoSi2N4 to Blue P ML, causing the bands of MoSi2N4 and Blue P
MLs to move downwards and upwards, shown in Figure 7a,b, respectively. Additionally,
the positive E-field can produce exactly the opposite results, shown in Figure 7c,d. This
E-field-induced band movement also changes the bandgap and the band offset in the Blue
P/MoSi2N4 vdWH, shown in Figure 6b.
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Without E-field, the CBM and VBM of Blue P/MoSi2N4 vdWH are from Blue P and
MoSi2N4 MLs, respectively. Due to the CBM of Blue P ML and the VBM of MoSi2N4
ML moving face to face, the bandgap decreases from 1.21 to 0.32 eV as the positive E-
field increases from 0.0 to 0.6 V/Å, accompanied by the increase in band offset. When
the negative E-field is applied from 0–−0.35 V/Å, the bandgap monotonically increases
from 1.21 to 1.71 eV since the CBM of Blue P and the VBM of MoSi2N4 shift backwards.
Additionally, it retains 1.71 eV unchanged under the E-field from −0.35 to −0.40 V/Å, in
which the two CBMs as well as the two VBMs meet each other in the two-component MLs.
After this, the CBM and VBM of Blue P ML are both higher than those of MoSi2N4 ML, and
the bandgap of Blue P/MoSi2N4 vdWH is determined by the CBM of MoSi2N4 ML and the
VBM of Blue P ML. Under the E-field from −0.40 to −0.60 V/Å, the bandgap decreases
from 1.71 to 1.41 eV, shown in Figure 6b. This band edge variation with the negative E-field
causes the VBM and CBM band offsets to firstly decrease to zero and then increase, shown
in Figure 6b.

Next, the evolution of the electronic property of Blue P/MoSi2N4 vdWH with the verti-
cal strain was systemically investigated. The vertical strain was defined as

ε =
dz−dz0

dz0
× 100%, here dz and dz0 are the strained and unstrained interlayer distances

between Blue P and MoSi2N4 MLs in the Blue P/MoSi2N4 vdWH, respectively. Namely,
the vertical strain is positive tensile strain when the interlayer distance is larger than the
unstrained one; otherwise, it is negative compressive strain. Here, the interlayer spacing
between the two component MLs ranges from 2.86 to 4.46 Å with a step of 0.20 Å in the Blue
P/MoSi2N4 vdWH, corresponding to the vertical strain from −19.4 to 28.9%. The evolution
of electronic property for the Blue P/MoSi2N4 vdWH was shown in Figures 8 and 9. As
the layer spacing decreases, the interaction between Blue P and MoSi2N4 MLs increases,
and thus more charges are transferred from MoSi2N4 to the Blue P layer, causing their
band structure to move downwards and upwards, presented in Figure 9a,b, respectively.
Meanwhile, due to the induced strong interlayer interaction, the band structure of the
two component MLs varies slightly compared to their isolated structures. The larger inter-
layer distance can decrease the interlayer interaction, reducing the charge transfer from
MoSi2N4 to the Blue P layer, which makes the band structures of Blue P and MoSi2N4 MLs
shift downwards and upwards, shown in Figure 9c,d, respectively. Therefore, it was clearly
observed that when the interlayer spacing spans from 2.86 to 4.46 Å, the band edges of Blue
P and MoSi2N4 MLs decrease and increase gradually in Figure 8a, respectively. Moreover,
the bandgap of the Blue P/MoSi2N4 vdWH decreases from 1.36 to 1.07 eV while the band
offsets are increased.
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Figure 9. Projected band structures of the Blue P/MoSi2N4 vdWH under the vertical interspaces of
(a) 2.86, (b) 3.26, (c) 3.66, and (d) 4.06 Å. In these panels, the Fermi levels were set to zero.

It was worth emphasizing that although the vertical E-field and strain can tailor the
band structure of Blue P/MoSi2N4 vdWH, the type-II nature is robust, not tailored by
E-field and strain. This manifested the broad application prospect of Blue P/MoSi2N4
vdWH in the photovoltaic field.

4. Summary

In conclusion, based on first principles calculations, a Blue P/MoSi2N4 vdWH was
theoretically constructed, and its tunable electronic structure and optical properties were
explored. It was found that the Blue P/MoSi2N4 vdWH is an indirect type-II vdWH with
a bandgap of 1.92 eV and unique optical absorption, which can remarkably promote the
separation of photogenerated carriers. Importantly, the band edges straddle the redox
potentials of water, and the charge transfer is performed in a Z-scheme manner in the Blue
P/MoSi2N4 vdWH, meaning that it is a potential photocatalyst with strong redox ability
for water splitting. Both the vertical E-field and strain can easily tailor the bandgap of the
Blue P/MoSi2N4 vdWH while still preserving its type-II heterostructure characteristics.
Our proposed Blue P/MoSi2N4 vdWH is a promising photovoltaic 2D material, and our
findings provided theoretical support for the related experimental exploration.
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