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Abstract: Solids with dimpled potential-energy surfaces are ubiquitous in nature and, typically,
exhibit structural (elastic or phonon) instabilities. Dimpled potentials are not harmonic; thus, the
conventional quasiharmonic approximation at finite temperatures fails to describe anharmonic
vibrations in such solids. At sufficiently high temperatures, their crystal structure is stabilized
by entropy; in this phase, a diffraction pattern of a periodic crystal is combined with vibrational
properties of a phonon glass. As temperature is lowered, the solid undergoes a symmetry-breaking
transition and transforms into a lower-symmetry phase with lower lattice entropy. Here, we identify
specific features in the potential-energy surface that lead to such polymorphic behavior; we establish
reliable estimates for the relative energies and temperatures associated with the anharmonic vibrations
and the solid–solid symmetry-breaking phase transitions. We show that computational phonon
methods can be applied to address anharmonic vibrations in a polymorphic solid at fixed temperature.
To illustrate the ubiquity of this class of materials, we present a range of examples (elemental metals,
a shape-memory alloy, and a layered charge-density-wave system); we show that our theoretical
predictions compare well with known experimental data.

Keywords: solid–solid symmetry-breaking phase transition; lattice instability; anharmonic phonons

1. Introduction

Is there an intermediate state of matter between harmonic crystals and amorphous
glasses? Below, we describe such state and identify key properties that lead to structural
(elastic or phonon) instabilities and symmetry-breaking phase transition, such as the large
athermal atomic displacements away from high-symmetry crystallographic positions, a
dimpled atomic potential with multiple local minima (MLM), and a time-dependent pattern
in the occupied neighborhoods of the local potential-energy minima (LPEM).

Here, in particular, we identify specific features in the potential-energy (PE) surface
(appropriately defined in Figure 1) that lead a given solid to exhibit polymorphic behavior,
which can be either stationary or dynamic. Next, we discuss computational methods to
address such MLM state. Dimpled potentials are inherently anharmonic and present a
challenge for the conventional theoretical methods. Notably, computational methodolo-
gies (typically assuming harmonic or quasiharmonic behavior) must be used with care
to calculate the anharmonic (temperature-sensitive) vibrational contributions to free en-
ergy found for this class of solids. The underlying mathematical formulation is given
in Appendices A and B. We also provide reliable means to address these anharmonic
states and to estimate the energetics and temperatures associated with the solid–solid
symmetry-breaking phase transition for such polymorphic solids with MLM potentials.

By definition, polymorphism describes the ability of a solid to have several atomic
structures arising from MLM, some of which compete. If a transformation to another structure
has sufficiently high enthalpy barriers, then each polymorph is a stable or metastable stationary
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state, in which atoms thermally vibrate around a local minimum in the PE surface. In contrast,
if the transformation barriers are low compared to the thermal energy of atomic motion in a
solid with a dimpled atomic potential, then multiple neighborhoods of local PE minima are
visited by an ergodic atomic motion in a “dynamically polymorphic” phase. In this phase, a
diffraction pattern of a periodic crystal coexists with vibrational properties of a phonon glass.
Upon cooling, such solid must undergo a symmetry-breaking phase transition, accompanied
by a decrease in lattice entropy.

As such, a harmonic vibration in a parabolic potential, a rattling motion in a locally
flat potential, and a non-harmonic ergodic atomic motion in an MLM neighborhood are
very different—the vibrational lattice entropy of the latter is challenging to calculate. Due
to the structural instability, each MLM solid transforms to a lower-symmetry phase at lower
temperature T; the transition temperature Tc can be estimated [1]. Among the examples of
symmetry-breaking transitions are martensitic transformations from a high-T austenitic to a
low-T martensitic phase. Although common in solids with instabilities [2], dimpled potentials
are not straightforward to handle. A cross section of enthalpy along a transformation path
can be computed via solid-state nudged elastic band (NEB) methods [3–5].
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Figure 1. (color online) Schematic 1D potentials with an average lattice constant a and barriers EB for
(a) harmonic PE (parabolic below EH), (b) dimpled case with 2 local minima per basin (here, El ≡ EL),
where at kT < EL, each atom (filled circle) is displaced (arrow) from the high-symmetry unstable
position (open circle), and (c) glass-like amorphous case.

Typically, the crystallographic high-symmetry atomic position is an enthalpy extremum,
which can be a (meta)stable local minimum (Figure 1a) or an unstable maximum, as in
Figure 1b. More generally, the constituents (atoms, ions, or molecular units) in a solid are
trapped in PE basins (Figure 1), separated by barriers, EB, which are high compared to kT,
where k is the Boltzmann constant. Solids can be crystalline or amorphous. An amorphous
structure lacks atomic long-range order (Figure 1c). By definition, a crystal is a solid with an
ordered Bravais lattice, with atomic potentials in a periodic geometric arrangement with a
definite stable shape, satisfying Born criterion for the structural stability [6].

To help classify various solids, we define PE barriers for traditional and competing
polymorphic states. A conventional quasiharmonic crystal has a locally parabolic atomic
potential with a single minimum per PE basin. Its harmonic phonons can be computed
within the quasiharmonic approximation (QHA) [7]. The high-symmetry atomic position
at the center of a PE basin is at a local energy minimum. In contrast, MLM solids have
multiple stable structures associated with several LPEM, separated by the associated local
barriers, El , that are low compared to the thermal energy kT of the atomic motion. To
classify these, let NL ≥ 1 be the number of LPEM per basin; each LPEM is a stable or
metastable arrangement of atoms. In an MLM solid with NL > 1, the high-symmetry
atomic position at the geometric center of a PE basin can occur at a local PE maximum
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or a saddle point, with several LPEM surrounding it, as in Figures 1b, 2, 3, and 4b. This
can be compared to the instability of the B2 structure in Figure 5 or instabilities of the
body-centered cubic (bcc) phases in Figure 8.
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Figure 2. (color online) Schematic of 2D sombrero PE basins arranged in a square lattice. Energy
cross section (b) along the horizontal dashed red line in panel (a) is identical to Figure 1b. See also
corrugated sombrero potentials in Figure 3.
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Figure 3. (color online) (a,b) Corrugated sombrero potentials with 4 (a) and 8 (b) equidistant LPEMs,
given by Gaussians. (c–f) Networks of symmetry-equivalent displacements (black spheres) relative
to x = 0 (red dot). Two-dimensional basin with (c) hexagonal 3-fold rotational symmetry (shaded is
its inversion) and (d) square 4-fold rotational symmetry. (e) The [111] projection, with shading below
[111] plane through 3 corners of the cube, and (f) a view of the central part of a basin with 48 dimples,
forming a 3D cubic lattice. LPEMs (black spheres) are displacements from a local maximum at the
center (red dot). MEPs between pairs of LPEMs are represented by lines (light blue) that are not
necessarily straight.
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Figure 4. (color online) Potential energy E and force F=dE/dx versus displacement x (in arbitrary
units) for a 1D crystal, which is either (a) harmonic for E<EH with NL = 1 (as in Figure 1a) or (b)
anharmonic with NL = 2 (as in Figure 1b). For anharmonic case, forces at −xL < x < xL (shaded)
push an atom away from the unstable equilibrium at x= 0, as F/x < 0. For kT > EL, the average
atomic position is 〈x〉 = 0, and the effective linear force and harmonic potential at x0 (filled circle) are
shown (orange dashed lines).
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Figure 5. (color online). NiTi potential energy vs. collective atomic displacement (which changes
linearly from x = 0 at unstable B2 (CsCl) to ±xL at a LPEM) for a MEP from B2 to a representative
austenitic structure (LPEM, E=0), from B2 to BCO (base-centered orthorhombic B33) ground state.
The B2-to-BCO (B33) transition occurs via B19′ or R′ structures (thin dashed lines), see Figure 6 (or
also Figure 4 in [8]). Additionally, there is a pathway for a (lower-barrier) transformation between two
orientations of B19’ (deformed BCO B33) martensite via B19 (thick green dashed line), see Figure 6f,g
or also Figure 1b,e,f,i in [8] and Figure 3 in [8] or Figure 3 in [5]. There are low-enthalpy barriers
around each austenitic LPEM (thin solid black line near x=0, E=0), see also Figure 4 in [5].
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To set relative energy scales, we set E = 0 to be the enthalpy of the lowest LPEM,
relative to which EL ≥ 0 is the enthalpy at the high-symmetry point at the center of a PE
basin. El is a low local barrier between the nearby LPEM in the same PE basin, and EB is a
high barrier between basins. These enthalpies satisfy the inequality

0≤El≤EL�EB. (1)

As the PE surface depends on atomic positions and electronic structure, enthalpy is
a multivariable functional of many positions. Consequently, the minimal-enthalpy path
(MEP) from one LPEM to another refers to a collective atomic motion.

Each LPEM corresponds to a stable or metastable polymorph. If the barriers El
between polymorphs are high relative to kT, then each polymorph is stationary [9]. Yet, if
El ≤ kT, then ergodic thermal atomic motion covers several polymorphic states. Under
certain conditions, such solids exhibit “buckled” [10] or “rattling” [11] modes of atomic
motion. The MLM solids constitute a very interesting class of materials which differ from
both harmonic crystals and amorphous glasses.

Existence of an intermediate class of solids between quasiharmonic crystals and glasses
is the focus of our present consideration. We analyze properties of such solids and consider
computational methods for dealing with them. In Section 2, we consider model potentials
with NL > 1 and investigate atomic motion in MLM solids. In Section 3, we provide
examples of unstable crystals with dimpled MLM atomic potentials. Computational details
are given in Appendix A. In Appendix B, we consider methods for predicting vibrational
spectra at various atomic displacements, related to temperature.

2. Models with Dimpled Potentials

As a model, and to set the stage, we consider a periodic potential with deep PE
basins; a single atom occupies each basin (we are assuming that a strong interatomic
repulsion at short distances makes presence of another atom in the same basin energetically
unfavorable). For simplicity, we assume that enthalpies of all LPEM are the same and the
barriers have the same height—although, by indexing the individual enthalpies, one can
generalize to a less-symmetric case.

2.1. Networks of LPEM in MLM Solids

In a single basin, a set of LPEM connected by MEP forms a network: examples include
Figures 1b, 2 and 3. The local enthalpy barriers El (≤ EL) are either the saddle points or
local maxima on MEP, see Inequality (1).

For a harmonic potential, NL = 1 and El = EL = 0, as in Figure 1a. A one-dimensional
double-well potential with NL = 2 is shown in Figure 1b, where the path from one LPEM
at −xL to another at +xL unavoidably goes through the local PE maximum at x=0; here
El ≡ EL > 0. In higher dimensions (D > 1), a MEP can bypass the local maximum at
EL, as in Figure 2. Figure 3 shows the 2D and 3D corrugated sombrero potentials with
NL > 1, where the saddle points El are lower than the local enthalpy maximum EL, hence
0 < El < EL � EB. Inequality (1) is satisfied in all these examples.

2.2. Symmetry-Breaking Phase Transition

At a high enough temperature T, an atom can overcome the barriers El and move
from one LPEM to another in the same PE basin; its ergodic motion covers multiple LPEMs,
while its time-averaged position is the high-symmetry point 〈x〉=0. At a low T, each atom
is trapped in the vicinity of a single LPEM at |x|= xL, see Figure 4b. A symmetry-breaking
phase transition occurs near the transition start temperature:

Tc = IcEl/k. (2)
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Here, Ic ∼ 1 is a dimensionless geometric constant [1]. Its value depends on the
topology of the system. For example, Ic =1 for the classical 1D motion of a single particle
with the total energy E = kT in a fixed dimpled MLM potential, see Figures 1b and 4b.

In general, an effective potential for each atom depends on positions of the other atoms
and on the instant electronic structure. The mean-field approximation allows to reduce
complexity of an intractable many-body problem to consideration of a single particle in
an effective potential. Within this approximation, a complicated many-body system with
quantum effects is substituted by a simple classical model containing a single atom moving
in a fixed effective potential, and, for such an oversimplified model, the Tc in Equation (2)
can be precise; however, the model itself is an approximation.

Two phases coexisting in thermodynamic equilibrium at Te have the same Gibbs free
energies G = H − TS, where H is enthalpy and S is entropy; hence, ∆G(Te) ≡ ∆H(Te)
−Te∆S(Te) = 0; and consequently,

Te = ∆H(Te)/∆S(Te). (3)

Equation (3) is exact. However, both ∆H(Te) and ∆S(Te) are difficult to determine [12],
and both are functionals of specific heat at constant pressure, cp(T).

The barrier El is relevant to kinetics, and Tc in Equation (2) approximates the temper-
ature at which the phase transformation starts. In contrast, Gibbs free energy describes
thermodynamics, and Te in Equation (3) denotes the temperature of phase coexistence
at a thermodynamic equilibrium. In general, a first-order phase transition is accompa-
nied by a hysteresis, usually described by four temperatures at which direct and reverse
transformations start and end, see inequalities (5). Those temperatures are affected by
inhomogeneities, lattice mismatch, and nucleation barriers, neglected in both equations for
kinetics (2) and thermodynamics (3).

2.3. Expected Thermal Atomic Motion

Atomic motion in a solid with NL > 1 can cover the vicinity of one or several LPEM.
We distinguish several types of T-dependent atomic motion.

• kT ≤ Eh � El : harmonic vibration around a single LPEM. The small-displacement
method can provide phonons at a LPEM (see Appendix B).

• Eh < kT < El : anharmonic vibration around a single LPEM.
• kT ∼ El : a transition occurs, see Equations (2) and (3) and inequalities (5).
• El ≤ kT < EL: motion covers several LPEMs in the same basin. If such LPEMs are

distributed symmetrically around x = 0, then the time-averaged atomic position is
〈x〉 = 0.

• EL ≤ kT < EB: motion covers a significant part of the PE basin, including neighbor-
hoods of x = 0 and multiple LPEMs. If the PE surface has a negligible roughness
(EL � kT) at the bottom of a nearly harmonic potential, then a finite atomic displace-
ment method can be used to calculate phonons around x = 0, see Appendix B.

• kT ≥ EB: atomic motion is no longer restricted by a PE basin; the solid has melted
or sublimated.

A dynamically polymorphic solid phase exists if an ergodic atomic motion overcomes
the barriers El between LPEM at IcEl < kT < EB. Upon cooling, it transforms to a lower-
symmetry phase at kT < IcEl (Equation (2)); the symmetry-breaking phase transition is
expected to be of the first order, as it is accompanied by a discontinuous change of the
lattice entropy SL. Indeed, entropy increases as the logarithm of the number of states, and
an ergodic atomic motion covering several LPEMs involves more states than a vibration
around a single LPEM. Under certain conditions, a change of the total entropy is responsible
for the caloric effect [13,14]. In the “caloric” materials, such as NiTi [8] or FeRh [15], this
effect can be quite large and was accurately predicted [16].
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2.4. Atomic Forces in MLM Solids

Harmonic vibrations or phonons (Figure 4a) are described in the literature [17,18].
Here, we focus on a less-trivial case of an anharmonic motion in a dimpled double-well
potential, shown in Figure 4b. It has a crystallographic high-symmetry point at x = 0,
but E(0) = EL is a local energy maximum, with two minima nearby at E(±xL) = 0. At
x = 0, the energy barrier El = EL is between those two LPEMs. At kT � El ≤ EL, the
small-displacement (or linear-response) method can be applied to a representative stable
structure to find the relevant phonons.

Alternatively, at EL � kT ≤ EH < EB, if multiple LPEMs are considered as a negligibly
small roughness at the bottom of an otherwise nearly harmonic potential, then the finite-
displacement method will approximate phonons at the average atomic position 〈x〉= 0
(unstable at low T), see Appendix B.

For the double-well potential in Figure 4b, the “effective” spring stiffness Ke = F(x)/x
depends on displacement x. A negative Ke for a small displacement |u| ≡ |x − 0| < xL
results in imaginary frequency ωe =

√
Ke/M, characterizing an unstable phonon mode.

The displacement xL with F(xL) = 0 gives Ke = 0 and a soft phonon mode with ωe = 0. A
large displacement |u| > xL leads to a positive Ke and a stable effective phonon frequency
ωe > 0, which depends on displacement u (Figure 4b, given by dashed orange line).

In other words, the frequency ωe of vibrations around an unstable equilibrium at
〈x〉 = 0 is not well-defined. However, a choice of a finite xT ≥ x0 is related to thermal
motion of atoms at temperature T, such that

E(xT)− E(〈x〉) = 1
2

kT, (4)

results in a phonon spectrum that is stable and compares well with experiment at the
same T [19]. It reflects the PE surface explored by large amplitudes of displacements, but
approximates the actual PE by parabolic (Figure 4b, dashed orange line), neglecting the
LPEM. This method is accurate at EL � kT ≤ EH < EB. Alternatively, one can use forces
from the steps of molecular dynamics (MD) to obtain phonons at a fixed T.

Phonon computational methods are compared in Appendix B. For deep dimples,
phonons computed for a stable representative structure at a LPEM match the experimental
measurement (see example in Section 3.1). For shallow dimples, one can use the finite
displacements from the high-symmetry position; the finite-displacement method with u’s
fixed by Equation (4) matches the results based on MD simulations at the same T.

2.5. Examples for Corrugated-Sombrero Potentials

To visualize a dimpled PE surface with a network of MEP connecting multiple LPEM
in real crystalline materials, we exemplify appearance of corrugated potentials with the
associated symmetries. A cubic austenite system with an unstable high-symmetry atomic
position, such as that found in B2-type NiTi austenite [20] and many other systems, can have
up to 48 symmetry-equivalent stable collective atomic displacements (LPEMs). In Figure 3,
MEPs (lines) between LPEMs (dots) form networks in 2D and 3D. The similarity between
the muffin-tin and corrugated sombreros increases with increasing number of LPEMs, see
Figure 3a,b. The model sombrero potentials (Figure 2) and a qualitative distribution of
LPEMs linked by networks of MEPs in Figure 3 help to understand atomic motion with
large athermal displacements in real materials, such as NiTi. Many solids with lattice
instabilities have atomic potentials that are reminiscent of a corrugated sombrero [21].
Examples include the austenitic phase of shape-memory NiTi and the bcc phases of Ti, Zr,
Hf [22,23], and Li metals [24].

2.6. Diffraction from MLM Solids

In a solid in which atoms are arranged in a definite pattern (and whose surface
regularity reflects its internal symmetry [25]), the crystalline arrangement of atoms [26] is
manifested by diffraction of electrons, X-rays, or neutrons. Comparing an experimental
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diffraction pattern with that predicted for a Bravais lattice, crystallographers suggest a
crystal structure [27]. Nevertheless, a correspondence between crystal structures and
a diffraction pattern is many-to-one: various fully or partially ordered crystals might
produce similar patterns. In some crystals, the ideal atomic positions on a Bravais lattice
are unstable [2]. Figure 2 shows a 2D model, which produces a diffraction pattern of a
square lattice, while each high-symmetry position at the center of a sombrero potential
basin is unstable (and avoided by atomic motion at kT � EL). Examples of corrugated
sombrero potential basins are shown in Figure 3. Austenite NiTi has the assumed unstable
B2 structure and multiple stable representative structures [20]. Lattice instabilities were
found in the antiferromagnetic (AFM) phase of B2 FeRh [15] and in bcc phases of Ti, Zr, Hf,
and Li [2,28,29]. In MLM solids, athermal atomic displacements from the high-symmetry
crystallographic positions are a common feature.

3. Example Applications
3.1. NiTi Austenite

NiTi is the most-used shape-memory alloy. It undergoes a first-order structural phase tran-
sition from the low-T martensitic to the high-T austenitic phase near Te ≈ 313− 341 K [30,31],
i.e., near room temperature.

The NiTi austenite at T → Te exhibits anomalies of several physical properties, in-
cluding instability of the ideal NiTi B2 structure (see Figure 5), softening of the phonon
modes [32] and of the elastic shear constants [33–35], decreasing sound velocity [36], increas-
ing internal friction [37], negative temperature coefficient of the electrical resistivity [38],
positron lifetime increase during positron spectroscopy [39], and appearance of the su-
perlattice reflections at 1/3 · (110) and 1/3 · (111) positions in experimental diffraction
patterns [40–42].

We found that the energy basin of the NiTi austenite contains a local energy maximum
at the unstable B2 structure, surrounded by multiple LPEMs [5,8], which are separated
by low-energy barriers (one to a few meV/atom, small compared to kTe), see Figure 5.
Although each LPEM is a stable structure, the barrier on the transformation path from a
LPEM to the groundstate is very low (∼1 meV/atom, see Figure 4 in [5]). While the highly
symmetric cubic B2 structure is unstable [8,43], one may use one of the stable representative
structures for an approximate description of NiTi austenite [20].

To obtain a representative structure, we tried several supercells of B2 of various shapes
and sizes (Figure 6). Each supercell was heated to 800 K for 100 fs, cooled to 0 K in 800 fs
via ab initio MD, and then fully relaxed to the nearest LPEM via the conjugate-gradient
algorithm. From the candidate structures, we selected the one with the lowest energy; the
smallest one had a 54-atom unit cell (a distorted supercell of both 2-atom B2 and 18-atom R
structure). We checked that repeating the whole procedure with a twice-larger (doubled
along one of the lattice constants) 108-atom supercell resulted in a different structure with
approximately the same energy per atom (within the DFT error), see Figure 6d. We verified
that a 54-atom structure is indeed a LPEM with a stable phonon spectrum (Figure 2b in [20]),
and we found that its phonon DOS compares well to that obtained from neutron-scattering
experiment [44], see Figure 7.
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B33

Figure 6. (color online). (a) Ideal B2 (or CsCl) structure and (b) its [111] projection, with Ni (yellow)
and Ti (blue) atoms; length of NN (Ni–Ti) bonds is 2.6 Å, NNN (Ni–Ni or Ti–Ti) bonds are 3.0 Å. Stable
atomic positions in cubic B2 [111] projection are shown in representative supercells (bounded by thin
black line), containing (c) 54 atoms and (d) 108 atoms; for view of projections in 54-atom supercell,
see Figure 1 in [20]. The NNN Ni–Ni and Ti–Ti bonds shorter than 2.75 Å (or 2.7 Å in B19) are shown.
(e) The kinetically limited unstable intermediate R structure (suggested from experiment [45]) is
shown in cubic [111] (or hex [001]) projection (left) and cubic [100] (or hex [111]) projection (right).
Shown in [001] (left) and [100] (right) projections are (f) the unstable B19 and (g) the BCO B33 ground
state. The orthorhombic B19 and B33 structures can be viewed as monoclinic B19’ with a shear angle
θ of 90◦ and ≈107◦, respectively.
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Figure 7. (color online). Phonon density of states assessed from neutron diffraction [44] (black,
shaded) and computed for NiTi austenite using several methods: small displacements from the stable
LPEM austenitic representative structure [20] at 0 K (thick blue) and unstable B2 at 0 K (dashed red);
large displacements from B2 in MD at 1586 K using ThermoPhonon [46] (thin green line).

Interatomic interactions affect energy and equilibrium atomic positions, shown in
Figure 6c,d. The largest distortion of the equilibrium nearest neighbor (NN) distance
is 0.66 Å, 25% of NN in B2 and 22% of the B2 lattice constant (3 Å), both are above the
Lindemann criterion for melting [47]. Atomic radius of Ni (1.24 Å) is smaller than that of
titanium (1.47 Å), while an average displacement of Ni from B2 is larger than that of Ti
(Figure 6 in [20]). The athermal NN pair distribution function (Figure 5 in [20]) is skewed
and has a substantial width (2.42 to 2.88 Å, and 2.48 to 2.65 Å at half-maximum), in contrast
to the 2.60 Å for an ideal B2 single crystal. There are more short Ni–Ni bonds than short
Ti–Ti bonds, see Figure 6c,d. The shortest next-nearest neighbor (NNN) distances for both
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Ni–Ni and Ti–Ti in the austenite are shorter than the Ni–Ti NN distance in an ideal B2
crystal of the same density. The short NNN bonds form chains, which are approximately
linear for Ti–Ti and branching for Ni–Ni, see Figure 6c,d. A representative LPEM has a
smaller energy than B2 due to optimization of bond distances and angles. NiTi austenite is
a dynamic network with large athermal instant atomic displacements from the ideal B2
positions, while the time-averaged atomic positions approximately coincide with those
in B2.

A cross section of potential energy E vs. collective displacement x from B2 at x = 0
(Figure 6a,b) to a representative LPEM at x = ±xL (Figure 6c) and beyond is a double-well
curve (Figure 5), reminiscent of Figure 4b. In addition, B2 transforms without a barrier
to the base-centered orthorhombic (BCO) ground-state B33 structure [8,48], a variant of
monoclinic B19’. Figure 5 shows two different transformation paths from B2 to BCO: the
red line on the right is a transformation in a monoclinic B19’ unit cell, the blue line on
the left (marked R’) is a transformation in the orthorhombic unit cell, shown in Figure 1
in [8]; both paths are barrierless. For the BCO-to-BCO transformation, the barrier (B19 is
the maximum on the dashed green line in Figure 5) is well below B2. There are low barriers
(El ∼ 1 meV/atom) for a transition from one LPEM to another, and similar ∼ 1 meV/atom
barriers from a LPEM to BCO, see Figure 4 in [5]. The complexity of the PE landscape in
NiTi is illustrated in Figure 5, with multiple instabilities of the cubic B2 structure.

A cubic structure has 48 isometries, forming Oh symmetry group, isomorphic to
S4 × C2. If atoms are displaced from B2 to LPEM along generic directions, there can be
48 symmetry-equivalent LPEMs (as in Figure 3f) around a local PE maximum at an ideal
B2. For stoichiometric NiTi, each austenitic LPEM is ∼ 20 meV/atom below the unstable
B2 and 29.5 meV/atom above the martensitic B19’ (BCO) ground state; hence, Equation (2)
provides Tc = 343 K [8], in agreement with the experimental Ms = 341 K [30].

Experimentally, one typically observes a kinetic process, during which assessment is
made by extrapolation of the austenitic start As and finish A f temperatures upon heating
and martensitic start Ms and finish M f temperatures upon cooling, while theorists typically
consider a thermodynamic equilibrium at Te. In addition, temperatures A1/2 and M1/2
at half-transition (at which the material is 50% transformed) are often assumed to be
approximately equal to the differential scanning calorimetry (DSC) peak temperatures Ap
and Mp for heating and cooling, respectively. These temperatures satisfy the inequalities

M f < Mp < Ms;

As < Ap < A f ; (5)

Mp ≤ Te ≤ Ap,

as well as M f < M1/2 < Ms and As < A1/2 < A f . For any sample M1/2 ≤ Te ≤ A1/2. For
a homogeneous sample, one expects Ms ≤ Te ≤ As, and consequently,

M f < Mp < Ms ≤ Te ≤ As < Ap < A f . (6)

Each value in this inequality is affected by the atomic ordering (including long-range
order, short-range order, and antisite disorder), which depends on both composition and
thermomechanical history of the sample [49,50]. Due to nucleation barriers, the kinetic
start temperatures Ms and As differ from Te for the phase coexistence in thermodynamic
equilibrium. The spread from M f to A f is the total width of the phase transition. The dif-
ference (A1/2 −M1/2) is the temperature hysteresis. Hysteresis is increased by nucleation
barriers, activation energy, and strain due to a lattice misfit [14].

Chemical inhomogeneity of a sample broadens both direct and reverse transitions.
For an inhomogeneous sample, Te (see Equation (6)) is not well defined, and the inequality
between Ms and As is ambiguous. Defects that serve as nucleation centers typically
decrease the nucleation barriers, leading to a narrower hysteresis.

Atoms in NiTi austenite move from one LPEM to another, forming a dynamically chang-
ing pattern. In spite of the atomic motion across multiple LPEMs, the small-displacement
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method applied to a stable representative austenitic NiTi structure [20] yields a phonon
density of states resembling the experimental one [44], see Figure 7. As expected, the small-
displacement method applied to unstable B2 structure returns unstable phonon modes, while
increasingly large atomic displacements from B2 suppress the relative weight of unstable
phonons. From Figure 5, we expect that in NiTi austenite near room T atomistic motion covers
mostly the vicinities of multiple LPEMs (illustrated as a network in Figure 3f), but rarely
visits the energetically unfavorable B2 configuration. Figure 7 compares the results of several
phonon methods with the assessed phonon DOS from the neutron diffraction experiment [44],
for which phonons computed at a representative LPEM provide a reasonable match.

3.2. Group 4 Metals: Ti, Zr, and Hf

As noted, solids with lattice instability are quite common. In particular, the bcc
structures of Ti, Zr, and Hf are unstable [2,19,51]. These metals transform from bcc β-
phase to hexagonal close-packed (hcp) α-phase upon cooling, and to the ω-phase under
pressure [52,53]. Using the modified solid-state NEB method [5], we find that the β–α
transformations are barrierless for all three metals (Figure 8), in agreement with previous
results [51]. For these metals, the ideal bcc structure is a local energy maximum. Its
computed energy EL ≡ ∆E(bcc−hcp) is 131, 118, and 182 meV/atom for Ti, Zr, and Hf,
respectively. As expected from Inequality (1), EL/kB is an overestimate of Tc, as EL ≥ El
and El is used in the estimate in Equation (2). Indeed, the computed EL/kB = 1522, 1365,
and 2112 K are larger than measured [54] Tc = 1155, 1136, and 2016 K by the factors of 1.3,
1.2, and 1.05 for Ti, Zr, and Hf, respectively.

bcc                              Path                              hcp
0

50

100

150

E 
 (m

eV
 a

to
m

−1
)

Ti
Zr
Hf

Figure 8. (color online) Minimal-enthalpy path from bcc to hcp has no barrier in Ti, Zr, and Hf metals.

In contrast, the finite-displacement method yields stable phonons in bcc Ti, Zr [55],
and Hf [56]; similar results were obtained using a self-consistent method with large dis-
placements at elevated T (see Figure 1 in [19], reproduced in [2,57]). From MD results at
1300 K in a 128-atom (4× 4× 4) cubic supercell (incommensurate with the ω-phase), a
stable phonon dispersion for bcc Zr was constructed [58]. The high-T bcc phases of Ti, Zr,
and Hf with dimpled atomic potentials are dynamically stabilized by entropy.

3.3. 1T-TaS2 Layered Crystal

The charge-density wave (CDW) in the 1T-TaS2 layered crystal creates a dimple in
the atomic potential and causes a collective atomic displacement resulting in a grouping
of 13-atom Ta clusters (inset of Figure 9). As T is lowered, the crystal transforms from
the high-symmetry hP3 to the lower-symmetry 1T-TaS2 phase, as observed in bulk and
quasi-2D samples [59,60].

Using the generalized solid-state NEB method [4,5,61], we assess the minimal enthalpy
path for the enthalpically favorable correlated atomic displacement, see Figure 9. Within
each Ta layer, the 1st, 2nd, and 3rd nearest-neighbor (NN) Ta–Ta distances in an ideal
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hexagonal hP3 structure with fixed lattice constants (a = 3.393 Å, c = 5.892 Å) are 3.3928,
5.8765, and 6.7856 Å, while they change in the 1T cluster to 3.2001, 5.6425, and 7.0137 Å,
respectively, as counted from the Ta atom at the center of 3-fold rotational symmetry around
(001). Within the cluster, the distances between the central Ta atom and each of its 6 NN
Ta are 3.2001 Å, and the distances between the Ta NN themselves are the same. While the
2D cluster has the center of symmetry, it does not have a mirror symmetry, as its tips are
distorted, and distances between the 1st and 2nd NN Ta are alternating 3.2746 (shown) and
3.2992 Å (not shown as bonding lines in Figure 9). The distances from the tip Ta atom (with
a single bond in Figure 9 inset) to its 6 Ta neighbors (counterclockwise, starting from the
shortest) are 3.275, 3.299, 3.523, 3.814, 3.543, and 3.543 Å; the last two are the same due
to the 3-fold (001) rotational symmetry around the S atom with 3 NN S–Ta distances of
2.5113 Å.

0 1
Collective atomic displacement

0

10

20

30

40

50

E 
(m

eV
/T

aS
2)

hP3

1T

Figure 9. (color online) Enthalpy versus collective atomic displacement in TaS2 for the linear path
between high-symmetry hP3 (at 0) and lower-symmetry 1T (at 1) phases and its continuation. Insets:
Relaxed bulk 1T-TaS2 in 110 (upper) and 001 (lower) projections. S (blue and yellow) is above and below
the Ta (black) layer. Bonds shown are Ta–Ta (Ta–S) shorter than 3.28 Å (2.50 Å). The 13(TaS2) hexagonal
supercell (thin red lines) with fixed a = 12.233 Å and c = 5.892 Å is composed of 13 hP3 primitive cells
(a = 3.393 Å, c = 5.892 Å); internal atomic relaxation was at fixed supercell lattice constants.

Formation of a CDW is a result of an electronic instability in a higher-symmetry crystal
structure. In general, electronic instabilities can result in dimples in the effective atomic
potentials, and TaS2 was but one example.

3.4. Ubiquity

In general, a dynamically polymorphic solid has a higher lattice entropy than a
conventional crystal. As entropy is proportional to the logarithm of the number of states, an
atomic vibration around a single LPEM has a lower entropy than an atomic motion across
multiple LPEMs on a fixed PE surface. Examples of dimpled PE surfaces are characterized
in Figures 1b, 2b and 4b; and a multidimensional case was exemplified in Figure 3. For real
materials, selected cross sections of PE surfaces are shown in Figures 5, 8 and 9. At a finite
T, many solids are stabilized by entropy, and dynamic polymorphism is very common
among those high-T solid phases.

Examples of dynamically polymorphic solids include the stabilized-by-entropy high-T
phases of bcc Li, Ti, Zr, Hf, B2 AFM FeRh, and B2 NiTi austenite, crystals with a mobile
interstitial dopant (including several metal hydrides and boron steels), or polymers and
organic molecules with rotating molecular units [62].
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4. Summary

Solids with dimpled atomistic potentials are ubiquitous among natural and technolog-
ical materials. Some have multiple local minima (MLM) on the atomic potential-energy
surface. A solid phase with a lattice instability can be stabilized by entropy at sufficiently
high temperature. Examples of MLM solids include many anharmonic crystals with lattice
instabilities, such as bcc Ti, Zr, Hf, and Li elemental solids [2], B2-type antiferromagnetic
FeRh [15], and austenitic NiTi [8,20].

To provide a better understanding of the properties of MLM solids, we considered sim-
plified models and classified the types of atomic motion. MLM solid must have a symmetry-
breaking, first-order phase transition; we considered methods to make reliable estimates of the
transition temperature (Equations (2) and (3)) and compared Te, describing phase coexistence
in thermodynamic equilibrium with the measured hysteresis (Inequality 6).

The high-temperature dynamically polymorphic phase of an MLM solid can be con-
sidered an intermediate state of matter between harmonic crystals and amorphous glasses:
(1) Its diffraction pattern has the regularity of a crystal, although with broadened Bragg
peaks due to large athermal atomic displacements (and sometimes with additional weak
spots indicating presence of a more stable superlattice); and (2) Its vibrational spectrum
with anharmonic phonons is reminiscent of that of a phonon glass (also, due to atomic
motion across multiple LPEMs, its lattice entropy is higher than that of a conventional har-
monic crystal). The proper description of vibrations in this phase leads to agreement with
neutron-scattering measurements of phonon density of states (for example, see Figure 7),
in contrast to the phonons computed for the ideal crystalline state (e.g., B2 NiTi).

Using generalized solid-state nudged elastic-band methods, we computed the minimal-
enthalpy paths for symmetry-breaking phase transitions in several MLM solids. We found
no barriers for bcc-to-hcp transitions in Ti, Zr, and Hf, nor for hP3-to-1T transition in TaS2
(leading to the observed CDW). Similarly, we found no barriers on the transition pathways
from ideal B2 (CsCl-type) to either a global (BCO B33 ground state) or a local energy
minimum in NiTi, a well-known shape-memory alloy. For completeness, we discussed
vibrations in a dimpled potential and we reviewed the applicability of phonon methods,
which can address anharmonic vibrations at a fixed finite temperature (see Equation (4)
and Appendix B), if those vibrations behave effectively as “harmonic” at sufficiently high
temperatures. Our findings suggest that a possible MLM behavior should be checked as a
part of the analysis in any polymorphic solid with competing structures.
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Abbreviations
The following abbreviations are used in this manuscript:

NASA National Aeronautics and Space Administration
DOE U.S. Department of Energy
USA United States of America
BCO base-centered orthorhombic
bcc body-centered cubic
hcp hexagonal close-packed
CDW charge-density wave
DOS density of states
LPEM local potential-energy minimum
MLM multiple local minima
MD molecular dynamics
MEP minimal-enthalpy path
NEB nudged elastic band
PE potential energy
QHA quasiharmonic approximation
T temperature

Appendix A. Computational Details

Calculations using density functional theory (DFT) were performed with the plane-
wave pseudo-potential-based VASP code [63,64] using a projected augmented wave (PAW)
basis [65]. We used the generalized gradient approximation (GGA) [66]. Charge self-
consistency convergence was accelerated using a modified Broyden’s method [67]. For the
selected structures [68], the total energies and forces were calculated using k-meshes with
at least 50 k-points per Å−1. We used the plane-wave energy (augmentation charge) cutoff
of 223.0 (328.9) eV for Ti, 193.3 (243.2) eV for Zr, 275.5 (335.1) eV for Hf, and 337 (544.6) eV
for NiTi [8,20].

The group 4 metals (Ti, Zr, Hf) were addressed using DFT + U [69] with (U− J) =
2.2 eV [70]. The endpoint bcc and hcp structures were fully relaxed.

The solid-state nudged elastic band method [4] with up to two climbing images [5]
was combined with DFT [63,64] to address transformations. To obtain B2 to LPEM path in
Figure 5, we linearly extrapolated atomic coordinates from an ideal B2 to a representative
austenitic structure [20] in the 54-atom supercell, shown in Figure 6c. A linear extrapolation
is not necessarily the MEP; thus, there could be a fictitious barrier in Figure 5 if the MEP
was twisted [5].

Phonons at finite T were addressed by combining VASP [63,64], ThermoPhonon [46],
and Phonopy [71] codes.

Appendix B. Phonon Calculations

Appendix B.1. Small-Displacement Method

Solids easily represented by the quasiharmonic approximation (QHA) can have their local
potential energy E expanded by Taylor’s series to the second order in displacements u from
the reference crystal structure, where atoms are assumed to be at a stable equilibrium at 0 K (i.e.,
all atomic forces are zero and the first-derivative terms vanish, while the second derivatives
are positive). The QHA is often used to calculate phonons in conventional crystals [18]. The
potential energy E is then quantified in terms of the force-constant matrix, Dαβ

ij :

E = E0 +
1
2 ∑

ij,αβ

uα(ri)Dαβ
ij uβ(rj) + O(u3); (A1)

Dαβ
ij =

∂2E
∂uα(ri)∂uβ(rj)

. (A2)
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Terms beyond second-order can be neglected if the amplitudes of all u’s are small:
|u| ≤ uh, where uh is the harmonic limit (e.g., |x|≤ xH in Figure 4a). The linear response
theory [72] provides the matrix (A2) in the limit of infinitesimal u → 0. For slightly
anharmonic potentials, the cubic terms are responsible for the thermal expansion [18,73].
The instantaneous atomic forces for the near-equilibrium atomic configuration τn are

Fα
i (τn) = ∑

β,j
Dαβ

ij uj
β(τn). (A3)

Here, uα(ri) ≡ ui
α is the component α of an atomic displacement from the original

position ri; Fα(ri) ≡ Fα
i is the component α of the force acting on an atom at ri due to

displacements uj
β of the other atoms from the stable equilibrium. At equilibrium, all atomic

forces are zero.
Given a sufficient number N of independent atomic configurations τn (n = 1 . . . N)

with known atomic displacements uj
β and forces Fα

i , one can solve the system of linear
Equation (A3), find the matrix elements Dij, and use them to find the phonon spectrum
and density of states (DOS). The minimal number N of independent configurations (and
independent Equation (A3)) must equal the number ND of independent components of Dij.
The system (A3) might be overdetermined if N > ND. For either well- or over-determined
cases (A3), the effective force-constant matrix D(e)

ij is found by minimizing the sum of the
differences between the actual and predicted forces, as done in the ThermoPhonon code [46]:

∆F ≡∑
n,i
|Fi(τn)−∑

j
D(e)

ij uj(τn)| → min . (A4)

In the small-displacement method, the expansion around a LPEM is assumed to be har-
monic. Within the harmonic limit (for example, at |x| ≤ xH in Figure 4a), any displacement
u (including infinitesimal) provides the same vibrational frequency.

Interestingly, derivatives (A2) are the same everywhere within a harmonic region,
and one finds the same phonon spectrum even if the expansion (A1) is not around the
energy minimum and contains a nonzero linear term, which does not affect the second
derivatives (A2). Thus, Equation (A3) can be generalized to

Fα
i (τn)− Fα

i (τr) = ∑
β,j

Dαβ
ij

(
uj

β(τn)− uj
β(τr)

)
. (A5)

Here, τr is the reference atomic configuration, which may or may not be an exact
equilibrium, but must be within the harmonic limit. Equation (A5) allows to consider
atomic structures, which are not fully relaxed.

The QHA is straightforward to apply to a crystal with a single LPEM per basin (as in
Figure 4a). For a dimpled MLM potential, one can construct expansion (A1) around a LPEM
(e.g., at xL in Figure 4b) and use small displacements u ≡ x− xL to find phonons. The result
of the QHA is meaningful, if each displacement from a stable equilibrium at xL is indeed
within the harmonic limit at |u| ≤ uh, and the potential energy E(u) is approximately
quadratic at E ≤ Eh ≡ E(xL ± uh).

Each LPEM in a dimpled MLM potential typically has a lower crystal symmetry
than the local PE maximum at the center of a basin (e.g., at x = 0 in Figure 4b). As the
computational complexity of finding the matrix (A2) is lower at a higher symmetry, it
is tempting to consider expansion (A1) around a high-symmetry point. However, the
small-displacement method returns unstable phonon modes at an unstable equilibrium
(such as the local PE maximum at x=0 in Figure 4b), while sufficiently large displacements
u > xL overlook the phonon instability. In Appendixes B.3 and B.2, we consider finite
atomic displacements and relate them to temperature T.
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Appendix B.2. Finite-Displacement Method

A relatively fast, albeit approximate, method is an application of the QHA with a
finite single-atom displacement u scaled to a “thermal” potential energy E(u) = 1

2 kT
in an ideal structure, see Equation (4). Notably, we have used this to assess quantita-
tively caloric response in systems such as FeRh, which exhibits a caloric (ferromagnetic-
to-antiferromagnetic) transition at Tc = 353 K [16] and has a lattice instability [15]. Lattice
instabilities are quite ubiquitous in cubic B2 and bcc systems, e.g., [2,19,51].

If one examines Figure 4, the harmonic potential (top) can be considered as a limit of
the double-well potential (bottom) with xL → 0, so that x0 = xL = 0 and E(xL) = E(0) = 0.
If multiple LPEMs can be interpreted as a negligibly small roughness at the bottom of a
nearly harmonic potential (roughly parabolic at −xH < x < xH in Figure 4a, with xL → 0
in Figure 4b, i.e., xL � xH and EL � EH), then one can estimate phonons using the
finite-displacement method, which avoids unstable phonons, if F(x)/x > 0. This happens
when atomic displacements u ≡ (x− 0) are larger than the distance between unstable (at
x = 0) and stable (at xL) atomic positions, see Figure 4b.

For finite displacements, expansion (A1) can be made around the high-symmetry
crystallographic position, which might or might not be a LPEM. If the displacements are
sufficiently large (i.e., |u| ≡ |x − 0| > xL in Figure 4b), then there are no imaginary fre-
quencies in the calculated phonon spectrum. In contrast, at −xL < x < xL, a destabilizing
force pushes an atom away from the unstable equilibrium at x = 0 in Figure 4b, result-
ing in imaginary phonon modes. Because the finite-displacement method with |u| = xT
from Equation (4) deliberately avoids the region −xL < x < xL, unstable phonons are
“overlooked” [19].

Appendix B.3. Phonons at Fixed Temperature

To calculate phonons at a given T, one could use thermal atomic displacements and
forces from ab initio molecular dynamics (MD) simulations to generate directly atomic
configurations τ(t). The snapshots of thermal atomic motion in MD at finite T are collective
atomic displacements. MD sampling gives a set of atomic positions uj(tn) and forces Fi(tn)
for a large number N of time steps tn. ThermoPhonon code [46] solves the overdetermined
set of Equations (A3) or (A5), and for the chosen reference configuration τr finds the effective
force-constant matrix D(e)

ij (A4), which is used by the Phonopy [71] code to construct the
phonon spectra.

This method is computationally expensive. It works reasonably well at sufficiently
high T (if EL � kT � EB and the reference τr is the high-symmetry equilibrium), although
its result depends on the size of the MD simulation box (e.g., see Figure 3 in [74]). For
harmonic vibrations around a single LPEM at low T (at kT < Eh � El), its result is similar
to that from the small-displacement method. For anharmonic vibrations, displacements
from Equation (4) in section 2.4 lead to a similar phonon prediction.
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