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Abstract: Using first-principles molecular dynamics (FPMD) simulations at atmospheric pressure
and 300 K, we investigated the adsorption of the molecules CO and CO2 on each of the surfaces of the
2D materials MoP2 and NbP2. We found that both surfaces adsorbed the carbon monoxide molecule
but not the carbon dioxide. The adsorption energy on the MoP2 surface was −0.9398 eV, and on the
NbP2 surface, −0.9017 eV. Furthermore, we obtained substantial changes in the optical properties
of each 2D material after the CO adsorption. For the two materials, the optical absorption shows
significant changes in the ultraviolet region. Furthermore, the two surfaces present essential changes
in the ultraviolet range in the case of reflectivity.

Keywords: CO2 adsorption; CO adsorption; first-principles molecular dynamics; DFT calculations;
2D materials

1. Introduction

Layered compounds, i.e., materials that show strong bonding in a plane and weak
interaction between layers, are excellent candidates to produce 2D materials. Graphite is a
perfect example of this kind of material. Graphene was the first one-atom-thick 2D material
obtained. However, we have many examples of materials with weak interaction between
layers that are not one-atom-thick, such as halides, chalcogenides, nitrides, carbides, hy-
drides, etc. Among them, we can find insulators, metals, semimetals, superconductors, and
semiconductors. We should mention that the one-layer obtained from these materials is
three-dimensional [1,2]. The name “ultra-thin 2D materials” is frequently used for them.
They show a rhombohedral or hexagonal symmetry [3–5]. Among these materials, the
transition metal dichalcogenides have attracted much attention in the last few years.

In particular, among the known properties of 2D MoP2, it is frequently used in
electrocatalytic hydrogen evolution [6]. It is a super-hard material used as an abrasive
and possible catalyst in crude oil hydroprocessing [7]. As far as we know, there are no
experimental reports on the 2D NbP2. Thus, we do not know its properties. However, we
found empirical work on the structure of bulk NbP2 written slightly more than fifty-seven
years ago [8] that detailed the calculation of its electronic properties [9]. We reported in
previous work the energy band structure and optical properties of pristine 2D MoP2 and
2D NbP2 [10].

Carbon dioxide and carbon monoxide are dangerous pollutant gases. CO2 is one of the
main contributors to the greenhouse effect leading to climate change. The combustion of
fossil fuels, fermentation, and the respiration of animals produce this pollutant. It is crucial
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to capture CO2 molecules from the atmosphere. On the other hand, carbon monoxide is
produced mainly from the combustion of organic compounds, and often, CO intoxication
is overlooked. It is colorless, tasteless, odorless, and very toxic.

We are interested in exploring new materials to adsorb pollutant molecules in this
work. Thus, we explore the possibility of adsorbing carbon monoxide and carbon dioxide
on the surface of 2D ultrathin materials such as MoP2 and NbP2 at atmospheric pressure
and 300 K, using first-principles molecular dynamics (FPMD).

2. Materials and Methods

We performed our FPMD simulations using DFT with the Quantum ESPRESSO
code [11,12]. For visualization, we utilized XCrySDen [13]. We used the norm-conserving
Troullier–Martins [14] pseudopotentials with the Kleinman–Bylander form [15] and the
generalized gradient approximation (GGA) with the PBE approach [16]. The cut-off in
energy was 1300 eV. The threshold energy was 10−7 eV, and we used the Monkhorst–Pack
scheme [17], with 40 k points. We considered atmospheric pressure and 300 K and used the
velocity rescaling approach for temperature control.

In Figure 1a, we describe the systems we studied. We considered periodic boundary
conditions, with the hexagonal unit cells shown in Figure 1b. The unit cell contains three
atoms plus the carbon monoxide or the carbon dioxide molecule. The size of the unit cell
along the z-direction is c = 20 Å, large enough to avoid spurious interactions among cells.
The other dimensions are a = b = 3.19 Å. The angle between a and b is 120◦, and a and b
are orthogonal to c.
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Figure 1. The characteristics of the 2D materials we studied after optimization (a). In (b), we show
the unit cells we considered before our FPMD simulations.

For the adsorption energies, we used the following expression:

Eads = E(surface + moleceule)− [E(surface) + E(molecule)] (1)

In Equation (1), Eads is the adsorption energy, E(surface + molecule) is the energy
of the final configuration, E(surface) is the energy of the 2D material surface alone, and
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E(molecule) is the energy of the molecule alone. We calculated all these terms with our
FPMD simulations.

We integrated the first Brillouin zone using the modified Bloch tetrahedron [18] and
calculated the energy band structure. Afterward, we obtained the dielectric tensor, and
then we obtained the optical absorption and reflectivity.

Using the random phase approximation (RPA) [19], in the limit of the linear optics,
the imaginary part of the dielectric tensor is:

Imεαβ(ω) =
4n2

m2ω2 ∑
c,υ

∫
d3k〈ck|pα|υk〉〈υk|pβ|ck〉δ(εck − ευk −ω) fc(1− fυ) (2)

In Equation (2), Imεεβ refers to the imaginary part of the dielectric tensor. The Cartesian
components of p that define the incident electric field’s polarization are α and β; ω is the
frequency of the incident electromagnetic wave, m is the effective mass, and n is the electron
density. The symbols ck and νk refer to wave functions corresponding to the conduction
band and the valence band states, with crystal wave vector k. The Fermi distribution
function for the state c is fc. Finally, we performed the sum of the transitions from occupied
to unoccupied states over the first Brillouin zone, and we weighed the probability of
a change.

Using Equation (2) and the Kramers–Kronig relations [20], we obtained:

Reεαβ(ω) = δ
αβ
+

2
n

P
∞∫

0

ω′
∫

Imε
αβ
(ω)

ω′2 −ω2
dω′ (3)

In Equation (3), Reεεβ is the real part of the dielectric tensor; the symbol P refers to
taking the principal value of the integral. We considered the incidence of the electromag-
netic wave perpendicular to the surface. In this manner, we obtained the reflectivity Rii
and absorption Aii as follows:

Rii(ω) =
(n− 1)2 + k2

(n + 1)2 + k2
(4)

Notice that n and k are the refractive index and extinction coefficient, respectively.

Aii(ω) =
2ωk(ω)

c
(5)

and

nii =

√
|εii(ω)|+ Reεii(ω)

2
(6)

kii(ω) =

√
|εii(ω)| − Reεii(ω)

2
(7)

3. Results

We validated our selected pseudopotentials, calculating the bond lengths from the
optimized systems. Thus, in the case of the pseudopotential for carbon and oxygen, we
calculated an O-C-O angle of 179.9992◦ and a C-O bond length of 1.1708 Å in agreement with
the experimental values of 1.1630 Å and 180◦, respectively [21]. For the pseudopotentials
of Mo and P, we optimized the 2D MoP2 and obtained 2.4835 Å for the bond length
Mo-P. Given that there are no experimental reports of the 2D NbP2, we validated the
pseudopotential for Nb, calculating the Nb-S bond length for NbS2; we obtained 2.4473 Å
that agrees well with the experimental value of 2.4732 Å [22].

We present the optimization results of MoP2 and NbP2 in Figure 1a. Figure 2a shows
the projected density of states (PDOS) and the total density of states (DOS) for MoP2. We
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can see the hybridization of states s and p of Mo and P, typical in graphene and other
2D materials.

Figure 2b shows the PDOS for NbP2, where we notice the hybridization of states s and
p of Nb and P, again, as we have in MoP2, graphene, and many other 2D materials.
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present the orbitals d from Mo; (b) PDOS for NbP2. We can notice the hybridization of states s and p
of Nb and P. We also show the orbitals d from Nb.

3.1. Interaction of CO and CO2 at 300 K

We performed FPMD simulations at atmospheric pressure and 300 K to cause the
interaction of carbon monoxide and carbon dioxide with MoP2 and NbP2. We started with
the unit cells shown in Figure 1b; in each case, the initial distance of the oxygen atom to
the phosphorus atom on the upper plane was 2.7800 Å. We showed that neither MoP2 nor
NbP2 adsorbed the carbon dioxide molecule. In contrast, the carbon monoxide molecule
was adsorbed by NbP2 and MoP2.

3.1.1. Carbon Monoxide Absorption on MoP2

We should mention that the total time we took in our calculation was 4.5 ps. After
2.0 ps, the tendency of the energy evolution remained practically the same. Thus, the
process reached statistical equilibrium before 2.2 ps. In Figure 3a, we show the result
of the FPMD calculation for the time evolution of the system’s energy for 4500 fs. We
showed that the surface adsorbed the molecule with an adsorption energy of −0.9398 eV.
The final distance from the carbon atom to the phosphorous atom of the upper plane is
1.3622 Å. We performed a Löwdin charge analysis and showed that the molecule transfers
0.0993 electrons to the surface. The magnitude of the adsorption energy and the electron
transfer reveals strong interaction but with no strong reaction with the atoms on the surface.

Figure 3b shows the PDOS for the carbon monoxide molecule adsorbed on the 2D
MoP2 surface. Notice the hybridization above the Fermi energy of the orbital p from carbon
and the orbital s from P; the same hybridization occurs (in a weaker manner) around and
below the Fermi energy. The hybridizations of these orbitals reflect the adsorption of the
carbon atoms with the phosphorus atoms on the surface.
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Figure 3. (a) Time evolution of the energy in the adsorption of the carbon monoxide molecule on
the 2D MoP2 surface at atmospheric pressure and 300 K. The adsorption energy is −0.9398 eV, and
the final distance from the carbon atom to the plane is 1.3622 Å. (b) PDOS for the carbon monoxide
molecule adsorbed on the 2D MoP2 surface.

3.1.2. Carbon Monoxide Adsorption on NbP2

Figure 4a displays the evolution of the system’s energy from our FPMD simulation for
4500 fs. Similar to the carbon monoxide adsorption on MoP2, after 2.0 ps, the tendency of
the energy evolution remained the same. Thus, the process reached statistical equilibrium
before 2.0 ps. We showed that the final distance from the carbon atom to the phosphorus
atom of the upper plane is 1.3277 Å. The 2D material adsorbed the CO molecule with
adsorption energy of –0.9017 eV. The molecule transfers 0.1337 electrons to the surface.
Again, the magnitude of the adsorption energy and the electron transfer reveals strong
interaction but no strong reaction of the carbon monoxide with the atoms on the surface.

Figure 4b displays the PDOS for the adsorption of the carbon monoxide molecule on
the 2D NbP2 surface. Notice the hybridization around the Fermi energy of the orbital p from
oxygen and the orbital s from P; between−5.5 eV and−3 eV, we notice the hybridization of
orbitals s and p from carbon with orbitals s and p from P. The carbon monoxide adsorption
on the surface is reflected in these hybridizations.
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Figure 4. (a) The time evolution of the system’s energy from our FPMD simulation at atmospheric
pressure and 300 K for the CO adsorption on the 2D NbP2 surface. The adsorption energy is
−0.9017 eV. The final distance from the carbon atom to the plane is 1.3277 Å; (b) PDOS for the carbon
monoxide molecule adsorbed on the 2D NbP2 surface.
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3.2. Energy Bands
3.2.1. Energy Bands for MoP2-CO

Figure 5a presents our results for the energy band structure for the system MoP2-CO.
The band structure of pristine 2D MoP2 reveals a metallic material [10]. With the adsorption
of the carbon-monoxide molecule, there were changes in the energy band structure. Note
that only one band barely touches the Fermi level from below at a few places. The material
almost becomes a semiconductor, but it remains a metal.
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demonstrate the first peak’s presence in the infrared absorption of the combined system MoP2-CO.
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3.2.2. Energy Bands for NbP2-CO

Figure 5b presents our results for the energy band structure for the system NbP2-CO.
We know pristine 2D NbP2 should be a metallic material [10]. With the adsorption of the
carbon monoxide molecule, the system remains a metal, as we can see from the energy band
structure calculation. Notice that a band crosses the Fermi level four times, and another
strikes it twice.

3.3. Optical Properties
3.3.1. Optical Absorption for MoP2-CO

We present the optical absorption for three different ranges of incident radiation:
infrared, visible, and ultraviolet. Figure 6a displays the optical absorption for MoP2 and
MoP2-CO in the infrared range. We notice that the most significant change is for the lowest
frequencies of incident radiation, from zero to around 0.5 eV; in this range of frequencies,
the absorption decreases strongly after the CO adsorption. From the energy band structure
calculation in Figure 5a, we can see many possible transitions, in dark red, that explain the
first peak’s presence in the infrared absorption of the combined system MoP2-CO. This first
maximum is located at 0.69 eV. The red arrows in Figure 5a show the possible transitions
for the most prominent peak (at 1.4 eV) in the infrared.

Figure 6b shows the optical absorption for the visible region. Notice a 30% increase in
the central absorption peak. We can see in Figure 5a the possible transitions (in green) to
explain the main height (at 2.63 eV) for the absorption in the visible range. In Figure 6c,
we show the absorption for the ultraviolet region. Here, we obtained the most significant
changes. There was a peak, about 8.60 eV, and now there is a valley. Furthermore, there
was a valley around 10 eV, and now we have a maximum at around 9.35 eV. From Figure 5a,
we can see the possible transitions (in blue) giving origin to this maximum.
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3.3.2. Optical Absorption for NbP2-CO

Figure 7a displays the optical absorption for NbP2 and NbP2-CO in the infrared region.
We notice only minor changes in the optical absorption after carbon monoxide adsorption
on the surface. The energy band structure (Figure 5b) shows the possible transitions (in red)
that explain the origin of this maximum located at around 1.0 eV.
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In Figure 7b, we present the optical absorption for the visible range. Again, we notice
only slight changes in the absorption. The central peak increases around 20%. From the
energy band structure calculation given in Figure 5b, we can see the possible transitions
(in green) explaining the presence of this maximum located at around 2.66 eV. Figure 7c
displays the optical absorption for the ultraviolet range. The most substantial change in the
optical absorption occurs here. The original peak at about 7.3 eV becomes a valley with a
minimum at 8.3 eV, and the initial maximum around 10.4 eV increases vastly. Again, from
Figure 5b, we can see the possible transitions (in blue) for this maximum optical absorption
located at around 10 eV.

3.3.3. Reflectivity for MoP2-CO

We present in Figure 8a the reflectivity for pristine MoP2 and MoP2-CO. The substantial
change is the appearance of a minimum at around 8.7 eV, replacing the maximum at an
equal location after carbon monoxide adsorption.
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Figure 8. Reflectivity: (a) for pristine MoP2 and MoP2-CO; (b) for pristine NbP2 and NbP2-CO.

Figure 8b displays the reflectivity for pristine NbP2 and NbP2-CO. The most significant
change is the minimum located at about 8.5 eV that appears instead of the original peak
at 8.6 eV.

4. Discussion

We performed FPMD simulations at atmospheric pressure and 300 K to study the
interaction of the carbon monoxide and carbon dioxide molecules with each surface of the
2D materials MoP2 and NbP2. We showed that the 2D materials did not adsorb the CO2
molecule and that both surfaces adsorbed the carbon monoxide molecule. The adsorption
energy on MoP2 was −0.9398 eV, and on NbP2, it was −0.9017 eV. For the two cases, the
magnitude of the adsorption energy and the electron transfer reveals strong interaction but
no strong reaction of the carbon monoxide with the atoms on the surface.

We revealed substantial changes in the optical properties of each 2D material after the
CO adsorption. In the case of MoP2, the most significant change in the optical absorption in
the infrared range is for the lowest frequencies of incident radiation, from zero to around
0.5 eV; in this range of frequencies, the absorption decreases strongly. In the visible region,
there is a 30% increase in the central absorption peak. For the ultraviolet range, we obtained
the most significant changes. There was a peak, about 8.60 eV, and now there is a valley.
Furthermore, there was a valley around 10 eV, and now we have a maximum at around
9.35 eV. For the reflectivity, the substantial change is the appearance of a minimum at about
8.7 eV, replacing the peak at an equal location after carbon monoxide adsorption.

In the case of NbP2, there are only minor changes in the optical absorption in the
infrared region; for the visible range, we noticed only slight differences in the absorption.
The central peak increases around 20%. The most substantial change in optical absorption
occurs in the ultraviolet range. The original peak at about 7.3 eV becomes a valley with
a minimum at 8.3 eV, and the initial maximum around 10.4 eV increases vastly. For the
reflectivity, the most significant change is the minimum located at about 8.5 eV that appears
instead of the original peak at 8.6 eV.
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