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Abstract: The discovery of iron-based superconductors (FBS) and their superconducting properties
has generated huge research interest and provided a very rich physics high Tc family for fundamental
and experimental studies. The 1111 (REFeAsO, RE = Rare earth) and 1144 (AEAFe4As4, AE = Ca,
Eu; A = K, Rb) families are the two most important families of FBS, which offer the high Tc of 58 K
and 36 K with doping and without doping, respectively. Furthermore, the crystal growth of these
families is not an easy process, and a lot of efforts have been reported in this direction. However, the
preparation of high-quality and suitable-sized samples is still challenging. In this short review, we
will summarize the growth of materials with their superconducting properties, especially polycrystals
and single crystals, for the 1111 and 1144 families, and make a short comparison between them to
understand the developmental issues.

Keywords: high Tc superconductors; transition temperature; synthesis and crystal growth; polycrys-
talline and single crystal; iron-based superconductors

1. Introduction

In 1911, superconductivity was first discovered in mercury metal by electrical con-
ductivity measurement [1]. Subsequently, many compounds have been exposed as su-
perconductors with an increasing high transition temperature (Tc) during some intervals
of time [2]. However, the real mechanism of this fascinating quantum phenomenon is
still not understood [2]. The new iron-based superconductor (FBS) has generated enor-
mous interest in this direction, and many research activities are currently going on with
various kinds of FBS [3–5]. FBS was discovered in 2008 through F doped LaFeAsO,
which crystallizes with a tetragonal layered ZrCuSiAs structure, and after that, many
compounds have been discovered [6], most of which display superconductivity through
suitable doping. FBS became the second high-Tc-superconducting family after cuprate
superconductors and has been the subject of extensive research into their physical na-
ture and application potential [3,4,7,8]. On the basis of the crystal structures of the par-
ent compounds [3,7], FBS can be categorized into several families and abbreviated as:
1111 (REFeAsO, RE = Rare earth) [6], 122 as AeFe2As2 (Ae = Ca, Sr, Ba), or AFe2As2
(A = K, Rb, Cs) or REFe2As2 (RE = Eu) [5,7,9,10], 11 representing FeX (X = chalco-
genide) [5], 111 being AFeAs (A = Li, Na) [5,11] and 1144 (AEAFe4As4, AE = Ca, Eu;
A = K, Rb) [12]. Another group of FBS with thick perovskite-type oxide blocking layers
includes Sr3Sc2O5Fe2As2 (32522) [13], Sr4Sc2O6Fe2P2 (42622) [14], Sr4V2O6Fe2As2 (42622),
(Ca4(Mg0.25Ti0.75)3O8)(Fe2As2) (43822) [15], and (Ca5(Sc0.5Ti0.5)4O11(Fe2As2) (541122) [16].
More details about the crystal structures of FBS families and their abbreviations are depicted
in Figure 1.

FBS has a very high upper critical field (Hc2) (above 100 T), a small electromagnetic
anisotropy (γ = 1.5–2 for the 122 and 1144 families near their Tc), a relatively high Tc
of up to 58 K, and a large critical current density (Jc) of 107–108 A/cm2 at low tempera-
tures [3,7,17,18]. The effectiveness of various modes of doping is one of the outstanding
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characteristics of FBS, which results in a rich variety of superconducting materials. In
particular, the 122, 11, and 1144 families have almost isotropic properties at low temper-
atures [4,7,8], implying high irreversibility fields Hirr close to Hc2 values and a strong
potential comparable to cuprate superconductors [8]. These properties are fairly favorable
for the design and operation of high-field magnets. At 4.2 K (liquid He temperature),
the Hc2 values of the 1111, 122, and 1144 families are much higher than that (below 25 T)
of MgB2 superconductor [19] and the conventional superconductors NbTi, Nb3Sn [8,17].
Interestingly, the high field behavior of FBS may enable the development of cryogen-free in-
struments such as superconducting magnets that operate at liquid hydrogen temperatures
(~20 K) [3,4,8,20].
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abbreviations according to their stoichiometry.

Generally, the parent compound of iron pnictides is usually a bad metal with struc-
tural and antiferromagnetic transitions at low temperatures [5]. Superconductivity emerges
from an antiferromagnetic spin-density-wave (SDW) phase in most FBS families by ap-
plying pressure or changing the electronic structure via iso- or hetero-valent substitution
(commonly referred to as electron- or hole-doping) [5]. The SDW transition is usually asso-
ciated with a structural transition from high-temperature tetragonal to low-temperature
orthorhombic symmetry at the same or slightly higher temperature [5]. In summary, three
types of long-range order often manifest in the low-temperature phase of FBS: (i) orbital
ordering, (ii) orthorhombic distortion, and (iii) the antiferromagnetic SDW order. All of
these are intimately linked to each other, and all of them break C4-symmetry [21,22]. Before
these long-range ordered states, a phase with lower rotational point group symmetry but
with time-reversal symmetry being preserved occurs and is referred to as “nematic” [21–24].
Hence, the formation of the nematic phase represents a chicken-egg scenario where it is
unclear which phase drives which and how this is linked to the occurrence of superconduc-
tivity. Until now, the nematic phase has been widely studied in 122 and 11 families [23,24],
while nematicity in the 1111 family is almost unexplored [22]. Addressing this complex
state of matter requires single crystals of appropriate size and quality with different types
of substitution (iso-and hetero-valent, in-and out-of-plane, non-magnetic, or magnetic
elements) and well-defined concentrations.

Most compounds show superconductivity by suitable doping or applied external
pressure [5], whereas the 11, 111 and 1144 families are stoichiometric superconductors with
Tc of ~8 K, 18 K and 37 K, respectively [7,12,17] at ambient pressure. In the case of the
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122 family, the hole-doped BaFe2As2 such as ((Ba,K)Fe2As2) exhibits the highest Tc up to
38 K [10], whereas the electron-doped 122 such as (Ba(Fe1-xCox)2As2) shows the Tc up to
22 K [9] and the rare earth doped 122 (Ca1–xRExFe2As2 superconductors (RE = rare earth
elements)) system shows the enhancement of the Tc up to 49 K in Ca1–xPrxFe2As2 [3,5]. In
the 111 family, the highest Tc of up to 18 K is observed in LiFeAs, and in the case of NaFeAs,
the highest Tc can reach up to 31 K under the applied external pressure (~3 GPa) [25]. The
simplest 11 family, i.e., the parent FeSe depicts the Tc of 8 K which has been enhanced up
to 37 K under high-pressure studies [26]. This transition temperature has been enhanced
up to 40 K by intercalation of alkali metal into the FeSe layer at the ambient pressure
and up to 48 K by high-pressure studies in the composition K0.8Fe1.7Se2 [27]. Surpris-
ingly, the highest Tc for the 11 family is reported at up to 100 K in the monolayer FeSe
thin films [28]. Aside from these families, many other FBS with lower transition tem-
peratures have been reported, including Ca10(Pt3As8)(Fe2As2)5, LaFeSiH, Sr4Sc2O6Fe2P2,
Sr2VO3FeAs, Ca3Al2O5–yFe2Pn2 (Pn = As and P), and others [5,27]. The highest Tc reported
for FBS is around 58 K in fluorine-doped SmFeAsO (Sm1111) [29]. These FBS have unique
physics of pairing mechanisms and have a high potential for practical applications due
to their high superconducting properties. More than 100 compounds are available under
this new FBS, with family 122 (AeFe2As2, Ae = Ba, Sr) having an easier synthesis process
to grow high-quality samples than other families, and as a result, this family has received
a lot of attention [3,4]. However, it is still challenging to control the exact content of the
doping level. For example, the highest superconducting properties have been reported
through K-doping, where the control of exact doping content is also a difficult task [3,4,17].

Furthermore, various studies have shown that this new high Tc FBS family has a
weak-link effect of high angle grain boundaries similar to high Tc cuprates [11,16,30–33].
Earlier reported FBS samples contained many impurity phases at the grain boundaries
or inside grains [31]. However, the quality of FBS samples has been improved with more
studies [29,34]. These studies show that the pure phase samples have very weak grain con-
nections and also have many pores, which generally reduce the transport properties [31,32].
In the case of rare-earth barium copper oxide REBCO (RE = Sm, Gd, Eu), when the grain
boundary angle is larger than 3 to 5 degrees, the intergrain Jc reduces exponentially with an
increasing grain boundary (GB) angle [35]. Based on studies for Ba(Fe, Co)2As2 (122) films,
this critical angle has been reported to be up to 9 degrees for the FBS [33,36]. These studies
suggest that FBS has lower weak link effects than that of REBCO superconductors, so one
can expect high transport Jc for the FBS wires and tapes using the simple and conventional
method, rather than the complex coated conductor techniques as used for cuprate super-
conductors [4]. The above-mentioned properties of FBS make them a strong contender for
high magnetic field applications well beyond the capabilities of other superconductors,
such as conventional superconductors [3,8,17].

For high magnetic field applications, long length conductors are needed with high
values of superconducting parameters, such as irreversibility field (Hirr), upper critical field
(Hc2), transport critical current density (Jc), and engineering current density (Je), for cable
fabrication and coil winding [8]. For this purpose, we need both high-quality and a large
amount of powder samples [4]. The transport Jc is estimated by dividing the critical current
(Ic) by the cross-section area of the superconducting core in wires and tapes. Connections
between grains, the material density, and the pinning strength are the critical factors in
determining the critical current behavior of the type II superconductors [3,17]. On the other
hand, the grain connectivity is generally suppressed by the presence of voids, an insulating
oxide phase, and imperfect connections between grains [16,32,37].

To understand the precise properties of these families, high-quality crystalline samples
with a series of doping contents are needed. However, the preparation of high-quality
and suitable-sized single crystals is crucial for studying the anisotropic and intrinsic prop-
erties, but in some materials, especially those containing many elements, single crystal
preparation is very difficult. It may be possible to grow the crystal in a pristine form, but
small deviations from the composition may exist with impurity phases and in the form
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of small imperfections. These defects will affect the structure, intrinsic bulk transport,
and magnetic properties of the crystal. Some of the FBS families, such as 122, 11, and
111, have a very straight-forward single crystal growth process using either a self-flux
technique with a flux such as FeAs, KAs, or NaAs [9,38–40] or another metal like Sn as a
solvent [41,42]. As a result, the crystals were available just after their first report [10,42–48].
Generally, the self-flux method is a very common method of crystal growth for FBS be-
cause this method avoids the incorporation of foreign elements/atoms that can work as
dopants [41]. Other state-of-the-art growth approaches, such as growth from the melt using
directional solidification (e.g., by the Bridgman technique), are unfavourable due to the
incongruent melting behaviour in combination with rather high melting temperatures as
for BaFe2As2 [49]. The method of choice for such incongruently melting materials would be
the floating zone technique, but the high volatility of arsenic (As) prohibits the formation
of a stable zone (composition) and therefore prevents the growth of FBS using the floating
zone technique [49]. In the case of polycrystalline samples solid-state reaction methods are
used, which generally show the combined effect of grains. High-quality precursors and the
particle size of the initial powder play an important role in preparing highly dense samples
with well-connected grains. From a practical point of view, high-quality powder samples
are generally used for the fabrication of superconducting tapes and wires, and bulks [4].

Since the 1111 and 1144 families are strong contenders for the practical applications,
they also provide an opportunity to understand the superconducting properties of doped
and undoped families [4,17,18]. However, the preparation of high-quality and suitable-
sized samples is more challenging for these families, and due to it, there are many contradic-
tions with their properties. For example, the reported Tcs are still limited due to difficulties
in doping contents, high synthesis temperatures, and vaporization of arsenic and other
lighter elements such as fluorine, potassium [5,50]. Furthermore, among the complex
vortex phenomena, the second magnetization peak (SMP, also known as the fishtail effect)
in the field-dependent magnetization (MHL) measurements is widely observed in various
kinds of FBS [18]. In FBS, SMP has been observed in all of the five main families 11 [51],
111 [52], 122 [53], 1144 [18], 1111 [54] (Figure 1). However, similar to cuprates, different
explanations are proposed [18,52,54]. In addition, SMP is observed in some crystals but
absent in others, and the reasons are still unknown. Reports based on CaKFe4As4 (1144)
show some abnormal vortex dynamics behaviours, such as the huge differences from 105

to 107 A/cm2 in Jc along H//c, and another exception is that the fishtail effect is observed
in some 1144 crystals but absent in others [17,55,56], and the reasons are still unclear. So,
the debate on their properties is still open, and no clear understanding has been reached
yet. The basic reason for these problems could be the lack of a robust synthesis process
and high-quality samples, which are the main motivation for this paper. In this short
review, we will mainly focus on the progress of the superconducting properties of the 1111
and 1144 families of FBS concerning their reported single crystal growth and polycrystal
synthesis processes.

2. Family 1111

In the FBS families, the 1111-type superconductors have been holding the record
for Tc in bulk materials with several reports [29,57,58]. This family is represented by
the general formula REFeAsO1-xFx (RE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy) [5], which is
abbreviated as RE1111 or 1111, as shown in Figure 1. These compounds crystalize in the
tetragonal space group P4/nmm, with ZrCuSiAs -type structure [6] with insulating layers
REO and conducting blocks FeAs. The structure consists of alternating REO and FeAs
layers, which are electrically charged and represented as (REO)+α(FeAs)−α. It has been
confirmed the strong covalent character in the FeAs layer and the strong ionic character in
the REO layer [5]. Electron carriers can be introduced by substituting F for O or by oxygen
deficiency. By substituting Sr2+ for La3+ in La1111, holes are introduced [59].

The 1111-type bulk superconductors have been widely studied to achieve a record
Tc by various doping methods, external pressure, or synthesizing techniques [29,57,58].
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Following the first report of LaFeAsO1–xFx with Tc around 26 K [6], a high-pressure
synthesis method quickly observed an increase in Tc up to 55 K in SmFeAsO1–xFx and
SmFeAsO1–δ [60]. Usually, the electron doping in 1111 such as F doping in the LaO layer
of La1111 [61], Th doping in the LaO layer of La1111 [62], and even H doping in the LaO
layer [3] results in almost similar Tc, whereas the chemical doping in superconducting
FeAs layers [63–67] generally leads to a lowering of Tc such as Co, Mn, Ni, P doped
FeAs layer [65–67] as mentioned in Table 1. The effects of applied external pressure on
the transition temperature have also been studied for this 1111 family [27]. Interestingly,
the applied pressure improved the superconducting transition Tc from 26 K to 43 K for
LaFeAsO0.89F0.11 (La1111), nevertheless, it reduced the Tc for CeFeAsO0.88F0.12 (Ce1111)
and REFeAsO0.85 (RE1111) (RE = Sm and Nd) [27]. Moreover, superconductivity at 57.8 K
was found in SmFeAsO1-xFx film grown by molecular beam epitaxy [36]. Recently, several
groups found that low-temperature sintering and slow-cooling techniques could introduce
high F-doping levels with Tc enhanced up to 58 K in SmFeAsO1–xFx [29,57]. Furthermore,
the Th and F co-doped Sm1–xThxFeAsO1–yFy samples synthesized by the solid-state reaction
can effectively enhance superconductivity, resulting in a maximum Tc of 58.6 K [58].

Table 1. A list of polycrystalline samples reported for the 1111 (REFeAsO) and 1144 (AEAFe4As4)
families, along with their synthesis conditions and superconducting properties. Tsyn is used for the
synthesis temperature and heating time. The Solid-State Reaction (SSR) method at high pressure
and ambient pressure is represented by the high-pressure synthesis technique (HPST) and the
conventional synthesis process at ambient pressure (CSP-AP), respectively.

Sample Synthesis Method and
Conditions Superconducting Properties

LaFeAs(O,F) CSP-AP, Tsyn = 1180 ◦C, 48 h Tmax
c = 28.5 K, Hc2(0) = 105 T [61]

(La,K)FeAs(O,F) CSP-AP, Tsyn = 1180 ◦C, 48 h Tmax
c = 26.5 K, Hc2(0) = 122 T [61]

LaFeAsO1-y HPST, Tsyn = 1100–1200 ◦C, 2 h Tmax
c = 28 K [68]

(La,Sr)FeAs CSP-AP, Tsyn = 1150 ◦C, 40 h Tmax
c = 26 K [59]

(La,Y)FeAs(O,F) CSP-AP, Tsyn = 1250 ◦C, 25 h Tmax
c = 40.2 K, Hc2(0) = 60.5 T [69,70]

(La,Y)FeAsO0.6 HPST, Tsyn = 1150 ◦C, 2 h Tmax
c = 43.1 K [71]

LaFe(As,Sb)(O,F) CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax
c = 30.1 K, Hc2(0) = 73 T [72]

La(Fe,Co)AsO CSP-AP, Tsyn = 1220 ◦C, 12 h Tmax
c = ~14.3 K [73]

(La,Th)FeAsO CSP-AP, Tsyn = 1180 ◦C, 48 h Tmax
c = 30.3 K, Hc2(0) = 47 T [62]

LaFe(As,P)O CSP-AP, Tsyn = 1100 ◦C, 40 h Tmax
c = 10 K, Hc2(0) = 27 T [74]

LaFe0.95Co0.05AsO0.89F0.11 CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax
c = ~15 K [75]

LaFe0.99Co0.01AsO0.89F0.11 CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax
c = ~10 K [75]

LaFeAsO0.6H0.6 HPST, Tsyn = 1100 ◦C, 2 h Tmax
c = ~38.3 K [76]

CeFeAs(O,F) CSP-AP, Tsyn = 1180 ◦C, 48 h Tmax
c = 42.5 K, Hc2(0) = 94 T [77]

(Ce,Y)FeAs(O,F) CSP-AP, Tsyn = 1100 ◦C, 30 h Tmax
c = 48.6 K, Hc2(0) = 90 T [78]

CeFe(As,P)O CSP-AP, Tsyn = 1175 ◦C, 50 h Tmax
c ~4 K [79,80]

CeFe(As,P)O0.95F0.05 CSP-AP, Tsyn = 1175 ◦C, 50 h Tmax
c = 21.3 K [81]

Ce(Fe,Co)As(O,F) CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax
c = 23.4 K, Hc2(0) = 25.3 T [82]

Ce(Fe,Co)AsO CSP-AP, Tsyn = 1180 ◦C, 48 h Tmax
c = 11.31 K, Hc2(0) = 45.2 T [64]

Ce(Fe,Ni)AsO CSP-AP, Tsyn = 1150 ◦C, 48 h No Tc [66]
Ce(Fe,Zn)AsO CSP-AP, Tsyn = 1150 ◦C, 48 h No Tc [66]

CeFe(As,Sb)(O,F) CSP-AP, Tsyn = 1180 ◦C, 48 h Tmax
c = 43.17 K, Hc2(0) = 137 T [83]

CeFeAsO0.6H0.6 HPST, Tsyn = 1100 ◦C, 2 h Tmax
c = ~47.9 K [76]

PrFeAs(O,F) CSP-AP, Tsyn = 1150 ◦C, 24 h Tmax
c = 50 K [84]

Pr(Fe,Co)AsO CSP-AP, Tsyn = 1100 ◦C, 48 h Tmax
c = 16 K, Hc2(0) = 50.2 T [63]

(Pr,Sr)(Fe,Co)AsO CSP-AP, Tsyn = 1160 ◦C, 40 h Tmax
c= 16 K [85]

PrFeAsO0.6H0.6 HPST, Tsyn = 1100 ◦C, 2 h Tmax
c = ~51.9 K [76]

NdFeAsO1-y HPST, Tsyn = 1100–1200 ◦C, 2 h Tmax
c = 54 K [68,86]

NdFeAs(O,F) CSP-AP, Tsyn = 1350 ◦C, 15 h Tmax
c = 55 K [87,88]

(Nd,Gd)FeAs(O,F) CSP-AP, Tsyn = 1350 ◦C, 15 h Tmax
c = 55.1 K, Jc(5K) = 3.4 × 103

A/cm2 [89]
Nd(Fe,Rh)AsO CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax

c = 18 K, Hc2(0) = 100 T [90]
NdFe0.85Ru0.15AsO0.89F0.11 CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax

c = 34 K [91]
NdFe0.9Co0.1AsO0.89F0.11 CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax

c = ~18 K [75]
NdFe0.98Mn0.02AsO0.89F0.11 CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax

c = ~27 K [75]
Nd0.99Ca0.01FeAsO0.8F0.2 CSP-AP, Tsyn = 1150 ◦C, 20 h Tmax

c = ~48 K [92]
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Table 1. Cont.

Sample Synthesis Method and
Conditions Superconducting Properties

Nd(Fe,Co)AsO CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax
c = ~16.5 K, Hc2(0) = 26 T [93]

SmFeAs(O,F) CSP-AP, Tsyn = 900 ◦C, 45 h Tmax
c = 57.8 K, Hc2(0) = 315 T [29]

SmFeAs(O,F) CSP-AP, Tsyn = 980 ◦C, 40 h Tmax
c = 58.1 K [57]

(Sm,Th)FeAs(O,F) CSP-AP, Tsyn = 1150 ◦C, 30 h Tmax
c = 58.6 K [58]

Sm(Fe,Co)AsO CSP-AP, Tsyn = 1180 ◦C, 45 h Tmax
c = 15.2 K [94]

(Sm,Sc)FeAs(O,F) CSP-AP, Tsyn = 950 ◦C, 2 h Tmax
c = 53.5 K, Hc2(0) = 298 T [95]

(Sm,Th)FeAsO CSP-AP, Tsyn = 1150 ◦C, 30 h Tmax
c = 45 K [58]

Sm0.9Y0.1FeAsO0.8F0.2 CSP-AP, Tsyn = 1300 ◦C, 40 h Tmax
c = 43 K [96]

Sm(Fe,Ir)AsO CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax
c = 16 K [97]

SmFe0.97Mn0.03As(O,F) CSP-AP, Tsyn = 900 ◦C, 45 h Tmax
c = 30 K, Hc2(0) = 205 T [65]

SmFe0.94Mn0.06AsO0.88F0.12 CSP-AP, Tsyn = 900 ◦C, 45 h Tmax
c = 16.5 K, Hc2(0) = 43 T [65]

SmFe0.94Ni0.06AsO0.88F0.12 CSP-AP, Tsyn = 900 ◦C, 45 h Tmax
c = 18 K, Hc2(0) = 47 T [65]

SmFe0.94Ni0.03AsO0.88F0.12 CSP-AP, Tsyn = 900 ◦C, 45 h Tmax
c = 33 K, Hc2(0) = 200 T [65]

SmFeAs0.95P0.05O0.88F0.12 CSP-AP, Tsyn = 900 ◦C, 45 h Tmax
c = 40 K, Hc2(0) = 292 T [67]

SmFeAs0.8P0.2O0.88F0.12 CSP-AP, Tsyn = 900 ◦C, 45 h Tmax
c = 20 K, Hc2(0) = 31 T [67]

SmFeAsO1-x HPST, Tsyn = 1300 ◦C, 2 h Tmax
c = 57 K, Hc2(0) = 60 T [60]

(Gd,Th)FeAsO HPST, Tsyn = 1300 ◦C, 2 h Tmax
c = 56 K [98]

GdFeAsO1-x HPST, Tsyn = 1350 ◦C, 2 h Tmax
c = 56 K [99,100]

GdFeAs(O,F) HPST, Tsyn = 1350 ◦C, 2 h Tmax
c = 51.2 K, Hc2(0) = 20 T [99]

GdFeAs(O,F) CSP-AP, Tsyn = 1150 ◦C, 48 h Tmax
c = 36.6 K [101]

Gd(Fe,Ir)FeAsO CSP-AP, Tsyn = 1200 ◦C, 72 h Tmax
c = 18.9 K, Hc2(0) = 24 T [102]

Sr1-xSmxFeAsF CSP-AP, Tsyn = 1000 ◦C, 10 h Tmax
c = 56 K [103]

CaFe1-xCoxAsF CSP-AP, Tsyn = 1000 ◦C, 10 h Tmax
c = 22 K [104]

CaKFe4As4 CSP-AP, Tsyn = 860–920 ◦C, 2–6 h Tmax
c = 33.1 K [12]

CaRbFe4As4 CSP-AP, Tsyn = 860–920 ◦C, 2–6 h Tmax
c = 35 K [12]

CaCsFe4As4 CSP-AP, Tsyn = 860–920 ◦C, 2–6 h Tmax
c = 31.6 K [12]

SrRbFe4As4 CSP-AP, Tsyn = 860–920 ◦C, 2–6 h Tmax
c = 35.1 K [12]

SrCsFe4As4 CSP-AP, Tsyn = 860–920 ◦C, 2–6 h Tmax
c = 36.8 K [12]

CaKFe4As4 CSP-AP, Tsyn = 955 ◦C, 6 h Tmax
c = 34.2 K, Hc2(0) = 138 T [32]

Polycrystalline samples: These samples are prepared by Solid-State Reaction methods
(SSR) which generally provide an important processing route through solid-state diffusion
to get a thermodynamically stable phase at high-temperature sintering. Many reports are
based on the study of polycrystalline samples prepared by the SSR method as mentioned in
Table 1, where SSR at ambient pressure and high pressure is referred to as “Conventional
Synthesis Process at ambient pressure (CSP-AP)” and “High-pressure synthesis techniques
(HPST)”, respectively. Due to the air sensitivity of the precursors, the initial process of
the synthesis was performed inside the glove box and sealed into the evacuated quartz
tube containing an internal inert crucible or a metal tube, as shown in Figure 2. The
1111 family is very versatile concerning various kinds of doping, such as F doping at
O-sites, Co/Ni/Mn/Zn doping at Fe-sites, and Sb/P doping at As sites in parent REFeAsO
compounds (Table 1). Generally, the highest Tc is obtained by F doping, and a lot of work
has been done with F-doping, but the control of this dopant according to the composition
is not a very easy task through CSP-AP. In contrast, since the 1111-type compounds contain
at least four components, in the case of dopants, more than five elements are included,
and precisely controlling their composition is very difficult. During the initial synthesis
process, even if starting materials are mixed at the correct composition ratio, the prepared
substance contains a spurious phase whose composition differs from the nominal one for
many polycrystalline materials. For example, in the case of Sm1111, the impurity phases of
SmOF, SmAs, and/or Sm2O3 are formed, and their concentrations generally increase as
the dopant concentration increases in SmFeAsO1-xFx [29,34]. It is a very common situation
for other members of the 1111 family, especially those containing rare earth elements. The
impurity phase of REFO is stable, and it is not so easy to eliminate. From quantitative
analysis, Malavasi et al. [105] demonstrated the difference in composition between nominal
and prepared NdFeAsO12xFx and noted that the measured F-content in a specimen with the
nominal composition of NdFeAsO0.78F0.22 is 0.188. The relationship between the nominal F
content and the real one is determined through electron probe microanalysis [105].
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To overcome these problems, a high-pressure solid-state reaction method has been
used for the 1111 family. The high-pressure synthesis technique (HPST) has been utilized
for preparing a series of oxygen-deficient REFeAsO (RE = La and Nd) polycrystalline
samples [68,86]. The introduction of oxygen vacancies causes a decrease in lattice parame-
ters, and superconductivity appears when the a- and c-axis lattice parameters shrink by
0.1% when compared to undoped compounds (REFeAsO). When RE = La is replaced with
RE = Nd in RE1111, the a-lattice parameter is decreased by 0.2%, and the maximum Tc is
increased from 28 K to 54 K [68,86]. Further O-deficiency in La1111 eventually results in
the reduction of Tc [68]. On the other hand, in the case of Nd1111, the maximum Tc value
is robust against the introduction of O-deficiency, suggesting that the superconducting
region is much narrower for La1111 than for Nd1111 [68,86]. Similarly, hydrogen doping of
Sm1111 and Ce1111 is not possible via CSP-AP, but HPST (2 GPa and 1200 ◦C) can produce
a series of H-doped 1111 [3,68]. These studies have depicted the unique behavior of two
superconducting domes in the phase diagram and highlight the new findings of FBS that
generate the new physics and new doping effects in 1111 by HPST, whereas single dome
behavior is observed in the phase diagram of F-doped 1111 through CSP-AP. In the case of
H-doped 1111, the first dome is similar to F-doped La1111 (through CSP-AP), but the range
of the second dome is much wider than that reported in the F-substituted case for the other
rare earth (RE) systems [3]. Kametani et al. [31] have reported polycrystalline SmFeAsO0.85
and NdFeAsO0.94F0.06 bulk samples synthesized by solid-state reaction under high pressure.
These samples are better than the CSP-AP samples, but impurity phases and cracks were
found during the microstructural analysis. Furthermore, two distinct scales of current, i.e.,
intergrain and intragrain current, are observed in the reported polycrystalline samples,
which suggests an electromagnetic granular nature of 1111 [30,32,37]. It implies that a
locally circulating intragrain supercurrent and others due to intergrain pinning exist in the
bulk sample. Microstructural analysis shows the presence of macroscopic inhomogeneity,
and cracks and wetting amorphous phases at grain boundaries [31]. Because of these
extrinsic factors, the intergrain Jc has a very low value for these samples [30,32,37]. Figure 3
summarizes the 1111 family’s transition temperature Tc dependence on the reported inter-
grain Jc with various FBS. Many groups have optimized the synthesis parameters during
solid-state reaction methods such as low-temperature synthesis and have improved the
sample quality [29,57]. However, the obtained samples always have problems with grain
connectivity and impurity phases. For these reasons, the obtained intergrain Jc value of the
1111 family is very small, as shown in Figure 3, for the requirements of practical applica-
tions. To improve the grain connectivity and critical current properties, various techniques
such as metal additions (Sn, Pb, Ag, Zn, In), cold or hot pressing, and hot isostatic pressing
could be useful during the synthesis process of the polycrystalline samples, which generally
improve the microstructure as reported for FBS wires/tapes fabrication [4]. For example,
Singh et al. have studied the effect of Sn addition in Sm1111, where Sn additions reduced
the impurity phases in SmFeAsO0.8F0.2 [4,106], increasing clean and well-connected grain
boundaries. Remanent magnetization measurements revealed that Sn addition improved
the intergrain Jc at 5 K from 1 × 102 to 1.1 × 104 A cm−2 for SmFeAsO0.8F0.2 and from
4 × 103 to 9.7 × 103 A cm−2 for SmFeAsO0.88F0.12 [106], as shown in Figure 3. This en-
hancement of the intergrain Jc might be attributable to the strong intergrain coupling due
to the improved grain connectivity by the Sn additions. However, these obtained values
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are still much lower than the practical level, which suggests further improvement of grain
size and grain connections is required by reducing the extrinsic factors [4,31,37,106]. Hence,
we need more research in this direction through advanced techniques.
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magnetization measurements for different FBS families together with that of the 1111 and 1144
families. All the mentioned samples are prepared by the conventional synthesis process at ambient
pressure (CSP-AP). The data were gathered from the references [11,16,30,32,37,107–110].

Single crystals: Many groups have reported the single crystal growth of this fam-
ily [50,111–118] using different growth parameters. However, it is not an easy task to obtain
high-quality and suitable-sized 1111 crystals. Despite many efforts in the last 12 years, the
grown crystals of 1111 are still limited in dimensions [50,118], struggling to keep the nomi-
nal composition as the actual composition and to reduce secondary phases or impurities.
Due to these problems, the existing results are debatable, and at the moment, a consensus
has not been reached yet, similar to other FBS families. For example, a lot of studies have
been done on 122 materials with various doping elements (K for Ba, Co for Fe, and P for As)
and with different doping concentrations [9,10,119,120]. The reported Jc values determined
by magnetic hysteresis loop (MHL) measurements are controversial even for the same
types of doped crystals. For example, the doping dependence of Jc follows the doping
dependence of Tc for Ba(Fe, Co)2As2, whereas other reports show that Jc does not follow
Tc and is highest in the underdoped region for Ba(Fe, Co)2As2 and (Ba, K)Fe2As2 where
different pinning sources are also proposed [53,119,121,122]. Extrinsic factors, rather than
doping concentration, determine Jc in BaFe2(As,P)2 [119,120]. Due to these issues, there
are many unresolved features concerning their superconducting properties. Mostly, the
following two methods are used to grow the single crystals of the 1111 family:

(a) Flux methods: Generally, the melt-solidification process cannot work for these
compounds due to the presence of many elements that tend to form incongruent melting
compounds. Thus, the solution-growth process is needed, and the final growth temperature
must be lower than the decomposition temperature of the final compound. In this direction,
one of the useful methods is the “flux method”. The flux growth method at ambient pressure
is used significantly for this family because this method generally helps to start the reaction
much lower than that used for solid-state reaction methods. A general block diagram for
the self-flux method is shown in Figure 4. The details of the reported 1111 crystals are
mentioned in Table 2 with their growth conditions and superconducting properties. FM-AP
is used for the Flux method at ambient pressure. Quebe et al. [111] have reported the
crystal growth of the parent compound REFeAsO through NaCl/KCl flux. Single crystals
of PrFeAsO and NdFeAsO with a size of 70–100 µm have been grown from alkali-metal
chloride flux. Fang et al. [113] have used this method to grow NdFeAs and NdFeAsO0.7F0.3
at ambient pressure. Jesche et al. [114] have grown larger single crystals of CeFeAsO using
a Sn-flux technique. Yan et al. [123] used NaAs to grow large single crystals of LaFeAsO,
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LaFeAs(O, F), and LaFe0.92Co0.08AsO at ambient pressure, and Jesche et al. [114] used Sn
as a flux to grow CeFeAsO at ambient pressure. Nitsche et al. [115] have grown the single
crystals of REFeAsO (RE = La, Ce, Pr, Nd, Sm, Gd, and Tb) using NaI/KI as flux and
obtained crystals with a size of up to 300 µm. The first attempts to grow single crystals
following previous studies on RETMxAs2 (TM = transition metal) [116] were conducted
with rare-earth metal oxide (RE2O3), arsenic, and iron as starting materials, and alkali-metal
chlorides as flux. As observed before [50], REOCl hindered the formation of phase-pure
samples and single crystals of the target compounds. When using sodium or potassium
iodide, the less stable oxide iodides (REOI) are not formed. As an oxygen source, the
exchange of rare-earth metal oxide by iron (III)-oxide or better by iron (II)-oxide improved
single-crystal growth. However, the synthesis of REFeAsO with rare-earth metals heavier
than terbium failed to apply the NaI/KI flux method [111,115]. Unfortunately, according to
published papers [20,50], 1111 single crystals via flux growth are difficult to obtain [111,115].
This is because these are oxides facing the hurdle of the low solubility of oxygen in liquid
metals at 1100 ◦C excluding their growth from “classical” metal fluxes and their self-flux
variants [124]. However, the ambient pressure reaction process usually limits the synthesis
temperature [124–129] and takes a very long time to grow even a tiny crystal size. This
process creates chemical inhomogeneity due to the presence of lighter elements and the
high vapor pressure of arsenic.
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Table 2. List of single crystals reported for the 1111 (REFeAsO) and 1144 (AEAFe4As4) families,
including growth conditions and superconducting properties. Tsyn is used for the synthesis tem-
perature and heating time. FM-AP and FM-HP represent Flux method at ambient pressure and the
Flux method at high pressure, respectively. SSCG-AP and SSCG-HP refer to the Solid-State Crystal
Growth method at ambient pressure and high pressure, respectively.

Sample Synthesis Method and Conditions Superconducting Properties

SmFeAs(O,F) FM-HP, Flux: NCl/KCl, Tsyn = 1350–1450 ◦C,
4–85 h

Tmax
c = 53 K, Hc2(0) = ~100 T, Jc(15 K,7

T) = 2 × 105 A/cm2 [50]
REFeAsO FM-AP, Flux: NaCl/KCl, Tsyn = 800 ◦C, 2 weeks No Tc [111]

NdFeAsO0.9F0.1 SSCG-HP, No Flux, Tsyn = 1350–1400 ◦C, 8 h Tmax
c = 45 K [54,112]

LaFeAsO0.9F0.1 SSCG-HP, No Flux, Tsyn = 1350–1400 ◦C, 8 h Tmax
c = 14 K [112]

NdFeAsO0.7F0.3 FM-AP, Flux: NCl, Tsyn = 1050 ◦C, 2 weeks Tmax
c = 49 K, Hc2(0) = 49 T [113]

CeFeAsO FM-AP, Flux: Sn, Tsyn = 1500 ◦C, 1 h No Tc [114]
CeFeAs0.7P0.3O FM-AP, Flux: Sn, Tsyn = 1500 ◦C, 1 h No Tc [114,129]
SmFeAs(O,F) FM-AP, Flux: CsCl, Tsyn = 950 ◦C, 5 h Tmax

c = 57.5 K, Hc2(0) = ~330 T [34]

PrFeAsO1-y
FM-HP, No Flux/Flux:As/FeAs/PrFeAs(O,F),

Tsyn = 1300–1400 ◦C, 2 h Tmax
c = 44 K [125]

REFeAsO FM-AP, Flux: NaI/KI, Tsyn = 1050 ◦C, 6–7 days No Tc [115]
LaFeAsO0.91F0.09 FM-AP, Flux: NaAs, Tsyn = 1150 ◦C, 24 h Tc = 11 K [123]

LaFe0.98Co0.02AsO FM-AP, Flux: NaAs, Tsyn = 1150 ◦C, 24 h Tc = ~8 K [123]
(La/Nd)FeAsO FM-AP, Flux: NaAs, Tsyn = 1100 ◦C, 12 h No Tc [126]

LaFeAsO SSCG-AP, Tsyn = 1080 ◦C, 200 h No Tc [127]
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Table 2. Cont.

Sample Synthesis Method and Conditions Superconducting Properties

CaFe0.882Co0.118AsF FM-AP, Flux: CaAs, Tsyn = 1230 ◦C, 20 h Tc = 22 K [126]

Sm(Fe,Co)AsO FM-HP, Flux: NaAs/KAs, Tsyn = 1350–1450 ◦C,
4–85 h

Tc = 16.4 K, Hc2(0) = 100 T, Jc(2K,0T) = 1
× 105 A/cm2 [118]

PrFeAs(O,F) FM-HP, Flux: NaAs/KAs, Tsyn = 1350–1450 ◦C,
4–85 h

Tc = 30 K, Jc(5K,0T) = 1 × 105 A/cm2

[118]

PrFeAsO0.80-xFx
FM-HP, Flux: NaCl/KCl, Tsyn = 1350–1450 ◦C,

4–85 h Tc = 38.3 K [50]

NdFeAsO0.89-xFx
FM-HP, Flux: NaCl/KCl, Tsyn = 1350–1450 ◦C,

4–85 h Tc = 46.3 K [50]

GdFeAsO0.76-xFx
FM-HP, Flux: NaCl/KCl, Tsyn = 1350–1450 ◦C,

4–85 h Tc = 22.7 K [50]

NdFeAs(O,F) FM-HP, Flux: NaAs/KAs, Tsyn = 1350–1450 ◦C,
4–85 h Tc = 38.5 K [118]

SmFeAs(O,H)
FM-HP, Flux:

Na3As/3NaH+As/Na3As+3NaH+As,
Tsyn = 1200 ◦C, 4–85 h

Tc = 43.0 K [20]

CaKFe4As4 FM-AP, Flux: FeAs, Tsyn = 1180 ◦C, 5 h Tc = 35.0 K, Hc2(0) = ~100 T,
Jc(2K,0T) = ~107–108 A/cm2 [18,130]

CaK(Fe1-xNix)4As4 FM-AP, Flux: FeAs, Tsyn = 1180 ◦C, 5 h Tc = 9–30 K [131]
CaK(Fe1-xCox)4As4 FM-AP, Flux: FeAs, Tsyn = 1180 ◦C, 5 h Tc = 2–29 K [131]

CaRbFe4As4 FM-AP, Flux: FeAs, Tsyn = 1180 ◦C, 2 h Tc = 35 K [132]
EuRbFe4As4 FM-AP, Flux: FeAs, Tsyn = 1250 ◦C, 24 h Tc = 35 K, Hc2(0) = ~135 T [133]
EuRbFe4As4 FM-AP, Flux: RbAs, Tsyn = 920 ◦C, 12 h Tc = 37 K [134,135]

A few groups have tried the high-pressure growth methods [50,54,68,125], which
usually enhance the reaction rate and have many advantages over conventional methods.
FM-HP is used for the Flux method at high pressure. This high-pressure method enables
the high-temperature reaction by reducing the vaporization of lighter elements and also
reducing the inhomogeneity of the samples, which speeds up the reaction process. There
are only a few reports of 1111 crystal growth by using high-pressure techniques (FM-
HP), as mentioned in Table 2, which have resulted in the growth of slightly large and
homogeneous crystals. Ishikado et al. [125] have reported the single crystal growth of
PrFeAsO1-y in BN crucibles under a pressure of about 2 GPa at 1300–1400 ◦C for 2 h, and
the obtained crystals were around 500 µm. Karpensiki et al. [50] adopted the high-pressure
crystal-growth method and produced the RE1111 crystals with a size of 300 µm. They
carried out a systematic investigation of the parameters controlling the growth of RE1111
crystals, including the thermodynamic variables, reagent composition, and kinetic factors
such as reaction time and cooling rate. The high-pressure flux method using Na-As and
KAs as a flux provided the slightly larger-sized 1111 crystals (up to ~1 mm) which were
separated from the flux before its characterization [50]. In comparison with NaCl/KCl
flux growth, these fluxes are at least three times more efficient in obtaining large-sized
crystals [50]. There are reports that NaAs works as a flux, enabling the uptake of oxygen via
the intermediate formation of NaAsO2 yielding small crystals, and sometimes intergrowth
with a 122 phase has also been reported [123,124,136]. By applying pressure, SmFeAsO
single crystals of up to 150 µm have been obtained. Using high pressure and arsenic as flux,
Ishikado et al. [125] obtained large single crystals of the parent PrFeAsO. From pellets of
NdFeAsO and LaFeAsO synthesized at high pressure, Martin et al. [112] have been able to
isolate crystals with a size up to half a millimeter.

Hence, the 1111 family is currently the least investigated and understood among all
FBS, mostly due to the lack of appropriate single crystals. The reported crystals were very
tiny and available only for some compositions (Table 2), but the research community needs
a series of better single crystals to understand the intrinsic properties and to complete
the superconducting phase diagram of 1111 without the extrinsic effects. However, the
1111-phase formation and chemical composition are more difficult to control during the
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growth process. The quality of the crystal can be confirmed by structural and compositional
analysis, which are related to superconducting properties. High-pressure techniques (FM-
HP), on average, produce sufficiently large crystals when compared to conventional growth
methods (FM-AP) [50,118]. Thus, to grow large and homogeneous single crystals, further
optimization of the growth conditions is required using the pressure method, including the
suitable type of flux.

(b) Solid-State Crystal Growth (SSCG) method: This method utilizes the phenomenon
of abnormal grain growth to grow single crystals from a polycrystalline matrix. Recently,
Kappenberger et al. [127] reported the growth of large 3-dimensional and facetted single
crystals of the parent compound LaFeAsO only using solid-state single crystal growth at
ambient pressure (SSCG-AP), as shown in Figure 5. This unconventional crystal growth
method was successfully used for the first time to grow LaOFeAs crystals with high quality
as well as good physical properties. A schematic representation of the SSCG method for
growing 1111 single crystals is presented in Figure 5a.

First, a polycrystalline sample of LaFeAsO was prepared using a two-step solid-state
reaction method. Afterward, the polycrystalline powder and Na-As powder in a volume
ratio of about 1:1 were layered into an alumina crucible. The Na-As powder melted into a
liquid phase at around 550 ◦C during annealing, diffused into the pores of the polycrys-
talline compact, and promoted crystal growth. The most important aspect to be mentioned
in this report is that NaAs are not a flux, as sometimes misinterpreted in the literature, but
only aids in increasing interfacial anisotropy as a trigger for abnormal grain growth [127].
Representative crystals with pronounced facets are shown in Figure 5b. These kinds of
three-dimensional and faceted crystals are typical for this SSCG method but very uncom-
mon for crystals of the pnictide superconductors and especially for the oxypnictides [127].
This method has been used to grow the crystal for parent compounds, but F-doped 1111
was not successful [127]. Martin et al. [54,112] have grown single crystals of LaFeAsO0.9F0.1
and NdFeAsO0.9F0.1 using the Solid-State Crystal Growth method at high pressure (SSCG-
HP) without the use of a mediator powder (Table 2). The crystals were extracted from 5 mm
diameter pellets synthesized under high pressure and high temperature, and the value of
10% F substitution is nominally based on the initial stoichiometry of the pellet. More work
is needed in this direction with various kinds of doping content.
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Figure 5. (a) A block diagram of the Solid-State Crystal Growth (SSCG) process at ambient pres-
sure (SSCG-AP). The Na-As, as the liquid medium promotor for the growth, is used in between
the polycrystalline LaFeAsO pellets. After annealing, a bimodal size distribution has developed,
including large, faceted crystals. (b) The grown LaFeAsO single crystals with pronounced facets have
a thickness of ~0.4 mm [127].
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3. Family 1144

This new family was discovered in November 2016, where some pairs of alkali and
alkaline earth elements of varying sizes lead to stoichiometric AEAFe4As4 (AE = Ca, Sr
and A = K, Rb, Cs) [12] such as CaKFe4As4, SrAFe4As4 (A = Rb, Cs), CaRbFe4As4, and
CaCsFe4As4. In essence, their structure is identical to the AEFe2As2 structure, just with
layer by layer segregation of the AE and A ions. The reported Tc value for this 1144 family
ranges from 31 to 37 K confirmed from magnetic and transport characterizations [12].
Surprisingly, these stoichiometric compounds have such a high Tc without the addition
of any doping [12]. Recent studies have established that this family has a very high
critical current density (Jc) of the order of 108 A/cm2 and a high Hc2 (~100 T) with very
low anisotropy. Furthermore, Jc has better field dependence than the 122 family and
other FBS [18]. Interestingly, high Tc values of the 1144 family are among the highest
reported for bulk, fully ordered, stoichiometric FBS [12]. Hence, this family provides
a wonderful opportunity to explore the superconducting properties of FBS in a highly
ordered compound [17].

Furthermore, extremely high Jc and an isotropic Hc2 of 1144 indicate significantly
improved superconducting properties when compared to other FBS [18,137] families. These
experimental findings recommend the 1144 family as a possible strong candidate for
superconducting magnet applications where high-quality wires or tapes are required.
As we know, wires and tapes for bulk applications are always based on polycrystalline
materials, and we need a large quantity of high-quality polycrystalline samples [4]. Hence,
an optimization of the synthesis method of 1144 powder is generally required, so that a
robust synthesis process can be established for a large amount of the powder sample.

Polycrystalline: Polycrystalline 1144 samples have been synthesized by solid-state
reaction (SSR) methods as similar to other FBS, as the general process of SSR is shown
in Figure 2. For the first time, Iyo et al. [12] synthesized powder CaKFe4As4 by CSP-AP
and found that this new 1144 phase is very sensitive to form two 122 impurity phases of
CaFe2As2 and KFe2As2. One should keep in mind that these 122 phases are competitive
during the 1144 synthesis process and are more stable than the 1144 phase. In other
words, CaFe2As2 and KFe2As2 (122) are the two most common phases that can appear as
impurity phases during the formation of CaKFe4As4. Table 1 summarizes the reported
polycrystalline samples with their superconducting properties. Recently, Singh et al. [17,32]
have optimized the pure phase formation of CaKFe4As4 by preparing the samples in a
very broad temperature range using Ta-tube. These samples are characterized by various
measurements such as XRD, magnetization, and transport to conclude. These studies find
that the synthesis process of the 1144 phase has a very narrow temperature window and a
small temperature difference to eliminate the impurity phases. The synthesis conditions of
955 ◦C for 6 h were the optimum conditions for obtaining pure polycrystalline CaKFe4As4
with the highest onset Tc value of 34.2 K, a sharp transition width of 2 K, and also a high Jc
compared to other 1144 bulk samples [32]. Furthermore, the heating time dependence has
also been checked with the best synthesis temperature (955 ◦C), which showed that samples
prepared at 955 ◦C for a longer period (~17 h) have the tendency to start forming CaFe2As2
and KFe2As2 impurity phases. The field dependence of the calculated Jc for this polycrystal
sample at various temperatures shows that the Jc value at 2 K is larger than 104 A-cm−2

even at 5 T and improved compared with other 1144 polycrystalline samples [32]. However,
the order of such a Jc value has also been observed in polycrystalline samples of other
FBS families [11,30] and it is larger than that observed in specifically processed C-doped
MgB2 [19,138].

Furthermore, Cheng et al. [139] used the Nb tube for sealing the mixture powder after
it was ball milled for 10 h in an Ar atmosphere and heated the sample at 900 ◦C for 30 h
by the CSP-AP. The final product showed some amounts of the impurity phases, such as
KFe2As2. Recently, Masi et al. [140] carried out the mechanochemical step on precursor
powder mixtures before using a solid-state reaction synthesis route (CSP-AP) to produce
the CaKFe4As4 compound. This study suggests that the high-energy ball milling step could
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act as a promotor for the reaction among the pure elements. This activation process of
the powders significantly reduces the synthesis temperature compared to the previous
literature (~900 ◦C). They prepared 1144 samples in the temperature range of 500–700 ◦C
and showed that the 1144 samples prepared at 700 ◦C had fewer impurity phases than other
samples. Masi et al. [140] also reported the effect of an alkaline or alkaline-earth depletion or
an iron enrichment on the starting chemical composition: chemical variations are reflected
in the formation of secondary phases without, however, significantly influencing the
superconducting properties of the samples. The reported critical current density [140]
is affected by extrinsic factors presented in the samples, such as pores, impurity phases,
and also the observed oxygen contamination at the grain boundaries during the milling
process of the powder. These studies indicate that the mechanochemically process plays an
important role in reducing the synthesis temperature, which can play a significant role in the
development of superconducting wires and tapes in terms of purification and densification
processes. Furthermore, Ishida et al. [141] have used the Spark Plasma Sintering (SPS)
techniques for the synthesis of CaKFe4As4 polycrystalline samples and the density of
prepared CaKFe4As4 has been enhanced compared to conventional methods. Interestingly,
the prepared 1144 phase is stable up to 500 ◦C during the post-annealing process. Above this
temperature, the 1144 phase started to degrade into 122 phases (CaFe2As2 and KFe2As2).
Even long-time heating such as 17 h at synthesis temperature (955 ◦C) also degraded the
1144 phase into 122 phases [17,32]. Hence, the reported synthesis phase diagram of 1144 has
a very narrow temperature and time window for the preparation of high-quality and large
amounts of samples [17,32] by the CSP-AP. A recent study based on the effects of adding
low-melting-point metals (Pb, Sn, In, and Ge) to polycrystalline CaKFe4As4 (CaK1144)
superconductors has also been investigated [142]. It showed that Sn addition was effective
both to suppress the impurity phases as well as increase the Jc of CaKFe4As4 without
affecting the Tc value, as similar to that reported for Sm1111 [106].

To understand the granular nature of the 1144 family, the remanent magnetization
study based on polycrystalline [32] shows the two peaks concerning intergrain and intra-
grain connectivity as similar to the 1111 family [37,78]. The intergrain Jc of 1144 is shown
in Figure 3, which is smaller than 122, 1111, and 11 families. This study suggests that
the prepared 1144 samples are in a pure phase, but the grain connectivity is very weak
due to the presence of many pores inside the sample. This means that, while pure phase
formation is important for bulk superconductivity, well-grain connectivity is also required
for improved superconducting properties. There is no report based on the HPST.

Single crystal: Since the stoichiometric 1144 phase has four elements, the solution
growth method for the single crystal growth is challenging from a four-element melt.
Furthermore, the final 1144 phase and its parent 122 phases (AeFe2As2 and AFe2As2) are
structurally and chemically similar [12,130]. The first report based on the polycrystalline
sample also suggests the similarity of the crystallographic a-lattice parameters between
122s is necessary for the formation of the 1144 phase [12]. Hence, during the crystallization
process, 1144 phase formations are competed against by these two 122 phases, which could
appear as impurities, as discussed above. The list of reported 1144 crystals is summarized
in Table 2 with their growth conditions and superconducting properties. Single crystals
of CaKFe4As4 are grown by high-temperature solution growth from FeAs flux at ambient
pressure (FM-AP) [130,137]. As shown in Figure 4, the precursor powders were filled up
and welded into a Ta-crucible, which was sealed into an evacuated silica ampoule. The
growth ampoule was heated to 650 ◦C for 3 h and then heated to 1180 ◦C for 5 h. In the
next step, it was cooled down to 1050 ◦C over 2 h, and then slowly cooled from 1050 ◦C to
930 ◦C over 30 h [130]. At the end of the reaction, the quartz tube was removed from the
furnace to avoid the phase formation of the competent 122 phases. The grown CaKFe4As4
crystals are mirrorlike plates with a thickness of 100–200 µm which generally depends
on the inner diameter of the crucible. Single crystals of CaKFe4As4 are not particularly
air-sensitive and can remain in the air for weeks without any noticeable degradation in
their appearance or physical properties [130]. Wang et al. [143] have also grown crystals
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using the self-flux method (FeAs as a flux) where reaction materials were mixed and
ground thoroughly in a mortar with a molar ratio of Ca: K: Fe:As = 1.1: 1: 10: 10. The
average size of the grown crystals is ~1 mm. Bao et al. [135] have used RbAs as a flux to
grow the millimeter-sized crystals of RbEuFe4As4 single crystals. These crystals depict
the superconducting transition temperature of 36.8 K which is the highest value for the
1144 family. This report also recommends that this flux RbAs can be used to grow the single
crystal of other transition metal compounds having the same crystal structure. Furthermore,
single crystals of Ni-doped CaKFe4As4, i.e., CaK(Fe0.949Ni0.051)4As4 were grown from a
high-temperature Fe-As rich melt and extensively characterized using thermodynamic
and transport measurements [131]. The selected crystal with dimensions of 4.0 × 4.0 ×
0.1 mm3 was used for the characterizations where the superconducting transition of 9 K
and the magnetic ordering transition of ~50 K were observed for CaK(Fe0.949Ni0.051)4As4
crystals [131]. There is not a single report based on the high-pressure growth techniques
(FM-HP) [17]. We expect the high-pressure synthesis method for single crystals and
polycrystalline samples will further improve the sample quality and its superconducting
properties.

4. Discussion

For the 1111 family, most studies have been reported based on polycrystalline samples
(Table 1) compared to single crystals (Table 2). We have plotted the transition temperature
Tc and upper critical fields Hc2 for the reported polycrystalline and single crystal 1111
samples, as shown in Figure 6. The reported high Tc of La1111, Pr1111, and Gd1111 crystals
is smaller than that of their polycrystalline samples, while in the case of Sm1111 and Nd1111
crystals, the highest Tc is almost the same as that of their polycrystalline samples. The
preparation of the polycrystalline sample is an easy synthesis process compared to single
crystal growth. For single crystal growth, a generally high heating temperature is needed
where it is a hard task to control many elements due to vaporization, such as fluorine,
arsenide, potassium, etc. Initial 1111 polycrystalline samples were prepared at a high
temperature such as 1200 ◦C and later studies show the effect of low-temperature synthesis,
such as 900 ◦C (Table 1) where it is better to reduce the vaporization of the elements
and control the composition of the final product. These effects have appeared with the
improved superconducting properties of even the same composition, such as F doped
Sm1111 with a high Tc of 57.8 K [29,57]. However, there is still a problem with impurity
phases and the preparation of the completely pure phase formation. As a result of these
factors, the reported superconducting properties contradict the sample compositions of the
polycrystalline samples [11,29,34]. To overcome these problems, single crystals generally
play an important role. The reported Hc2 value is around 100 T, as shown in Figure 6,
whereas the single crystals of Sm1111 show a very high Hc2 value of over 300 T [34].
However, growing crystals of 1111 are still very challenging [50]. A few reports show the
positive effects of the high-pressure techniques on growing the 1111 crystals [50], however,
these crystals were limited by their compositions [50] (Table 2) and were not very suitable
for many measurements due to their tiny dimensions. In the near future, we will need
more devoted work in this direction through optimization of the growth parameters, flux,
suitable pressure parameters, etc.

In the case of 1144, most of the work has been performed on CaKFe4As4 and EuRbFe4As4
(Tables 1 and 2). The reported Tc and Hc2 values are depicted in Figure 7, and the reported
1144 compositions are mentioned in Tables 1 and 2. Interestingly, the highest Tc for the
members of the 1144 family is the same for the polycrystalline and single-crystal samples, as
depicted in Figure 7. In addition, the reported Hc2 is around 100 T for 1144. As mentioned
above, the preparation of 1144 samples, either polycrystal or single crystal, has a very
narrow synthesis/growth window and the competent phase of CaFe2As2 and KFe2As2
during the growth. The first report of polycrystalline samples was not in a pure phase [12].
However, later studies have optimized many synthesis parameters and reported the pure
phase formation of CaKFe4As4 where the grain connectivity was another issue [17,32]. In



Crystals 2022, 12, 20 15 of 22

the case of single crystals, we have to scan many crystals in the same batch of samples to
find the best crystal due to the presence of competent 122 phases [130,137]. However, the
average size of a crystal is around 1 mm. Recent studies have also started to work with
other members of the 1144 family [133] and possible doping such as Ni at Fe sites [131].
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Over 10 years after the discovery of high-Tc in FBS, the synthesis processes of polycrys-
talline and single crystals have been improved by optimizing various growth parameters,
which have enhanced their superconducting properties [18,29,32,34,106,141]. However, the
low intergrain Jc value of polycrystal FBS (Figure 3) suggests the pronounced weak-link
characteristics due to the presence of pores, impurity phases, and cracks at grain boundaries
and sometimes even within grains. These extrinsic factors reduce the current path and
transport properties of the bulk samples. Further studies will be needed to understand
and reduce the effects of extrinsic factors, which will help to improve grain connectivity
in the FBS polycrystalline samples. In the case of 1111 and 1144 single crystals, more
studies are required to optimize the main composition and the size of a growing crystal
by considering many factors such as starting composition, temperature gradient in the
crucible, crucible material and size, process temperature, cooling rate, batch volume in
the crucible, flux type, etc. We need to use advanced techniques such as high-energy ball
milling, ultrasonic milling processes, and high-pressure techniques so that the intrinsic
superconducting properties of FBS can be explored through high-quality samples. One
should keep in mind that the initial synthesis process of these families is a little bit crucial
due to the toxic nature of arsenic and the air sensitivity of the initial precursors. However,
the prepared samples are safe and stable in the open air.

5. Conclusions

We have reviewed the growth of the single crystal and the preparation of the bulk
samples of the 1111 and 1144 families with their reported superconducting properties. In
the last 13 years, many synthesis parameters have been optimized by various techniques,
which has led to improved sample quality and superconducting properties. Surprisingly,
the highest Tc was reached in 1111 as a doped family and in 1144 as a stoichiometric
compound. Additionally, in the case of the 1144 family, the Jc is extremely high, even at a
high magnetic field. These unique properties require us to explore these families in more
detail.

Furthermore, the 1111 family is very versatile chemically, and different types of doping
have been reported in the blocking (REO) and superconducting layers (FeAs), which
provides an understanding of the effect of electron and hole doping. Due to the lack of high-
quality and large-sized crystals, the intrinsic properties of this family have not been much
explored, and the reported superconducting properties are contradictory. Interestingly,
the 1144 family provides a wonderful opportunity to understand the superconducting
properties of FBS in a stoichiometric compound. Based on the few studies, high-pressure
growth methods are very effective for growing high-quality crystals and improving sample
quality, so we need more studies in this direction for different members of these two
families. Furthermore, these two families are strong contenders for practical applications,
necessitating the growth of a series of high-quality single crystals and bulks to investigate
the intrinsic properties of these families. This short review will be useful for the further
sample growth progress of the 1111 and 1144 families, which may be beneficial for basic
studies and practical applications such as superconducting wires and tapes.
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