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Abstract: In this paper, a photo-excited switchable terahertz metamaterial (MM) polarization con-
verter/absorber has been presented. The switchable structure comprises an orthogonal double
split-ring resonator (ODSRR) and a metallic ground, separated by a dielectric spacer. The gaps
of ODSRR are filled with semiconductor photoconductive silicon (Si), whose conductivity can be
dynamically tuned by the incident pump beam with different power. From the simulated results,
it can be observed that the proposed structure implements a wide polarization-conversion band
in 2.01–2.56 THz with the conversion ratio of more than 90% and no pump beam power incident
illuminating the structure, whereas two absorption peaks operate at 1.98 THz and 3.24 THz with
the absorption rates of 70.5% and 94.2%, respectively, in the case of the maximum pump power.
Equivalent circuit models are constructed for absorption states to provide physical insight into their
operation. Meanwhile, the surface current distributions are also illustrated to explain the working
principle. The simulated results show that this design has the advantage of the switchable perfor-
mance afforded by semiconductor photoconductive Si, creating a path towards THz imaging, active
switcher, etc.

Keywords: metamaterial polarization converter/absorber; switcher; photoconductive silicon; THz
wave; orthogonal double split-ring resonator

1. Introduction

Metamaterials (MMs), a class of artificial materials comprised of sub-wavelength periodic
or non-periodic structures, have received more and more interest in the past few decades [1]
due to their extraordinary characteristics in manipulating electromagnetic (EM) waves un-
available in nature [2]. MMs have been widely used in a variety of functional devices so far,
such as absorber [3–8], cloak [9–12], sensor [13–15], polarizer [16–19] and so on.

With the development of terahertz (THz) techniques and materials, various MM-based
THz devices have been deployed and designed to manipulate THz waves over the past
few decades [20–24]. Among these architectures, in general, the MM structures can be
divided into two types: reflection [21,22] and transmission [23,24]. However, most THz
devices usually can only work in static (reflection/transmission state), and thus have a
single function making them difficult to change once fabricated, which severely hamper
their practical applications.

To solve this challenge, MM structures integrated with active media (i.e., active THz
devices), such as MEMS [25,26], graphene [27–29], vanadium dioxide (VO2) [30,31], indium
antimonide (InSb) [32,33] and semiconductors silicon (Si) [34,35], etc., have been presented
and designed to realize the dynamic and active manipulation of THz wave under the control
of external stimuli, such as electrical biasing, optical illumination and thermal excitation.
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Among these tunable materials, the photoconductive semiconductors (Si) [36,37] can
provide a viable pathway to realize a fast change of the reflection/transmission responses
for the incident waves under the excitation of light pulse with its exceptional optical-
electrical characteristics, including ultrafast response, low cost and high quantum efficiency.

Recently, several active MM-based THz structures based on photoconductive silicon
have been investigated in-depth with a lot of effort [38–41]. These designs can demonstrate
unique advantages, including the operational state, the working frequency and intensity
modulation to ensure a fair comparison with existing devices at hand, but these architec-
tures are incapable of realizing the switchable performance between absorption [42,43] and
polarization conversion [44–46], and it only can work for a single function.

In this paper, a photo-excited switchable MM polarization converter/absorber is
proposed with photoconductive silicon (Si), which can be freely and continuously switched
from a broadband polarization converter to a dual-band absorber in two different pump
beam power. Due to the conductivity of photoconductive Si (σSi) being proportional to
the pump power of the incident optical beam, the switchable capability of this structure
can be achieved by dynamically adjusting the working state of photoconductive Si. This
structure can cover a 24.1% fractional bandwidth of polarization conversion with the
polarization-conversion ratio (PCR) >90% as σSi = 1 S/m, while σSi is equal to 1 × 105 S/m,
where it can behave as a dual-band absorber. The surface current distributions of this
design on both top and bottom layers are provided to investigate the switchable operating
mechanism for different Si conductivity states. This structure would be poised to act as
a suitable alternative to THz sensing, communication and detection, etc., for its excellent
characteristics.

2. Metamaterials and Methods
2.1. Metamaterials Model

The unit cell geometry of the proposed structure is shown in Figure 1. From the figure,
the structure consists of a top metallic orthogonal double split-ring resonator (ODSRR) and
a dielectric substrate with a bottom ground plane. The gold is selected as a metallic model
for this structure with a thickness (t) of 0.4 µm, and conductivity (σ) of 4.561 × 107 S/m.
The dielectric layer is polyimide material (εr = 3.5, tan δ = 0.02) with a thickness (ts) of
6.5 µm. The semiconductor photoconductive Si (blue part) is integrated into the split gaps
of ODSRR, which can be modeled as a dielectric material (εSi = 11.7) with a thickness (t) of
0.4 µm, whose conductivity (σSi) changes with variation of the incident pump beam power.
Then other geometric parameters of the proposed structure (µm) are a = 30, r1 = 13.5,
r2 = 10.5, w = 2, g = 0.5.
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Figure 1. Schemes of the proposed switchable MM polarization converter/absorber structure: (a) 

The front and (b) side views of the unit cell structure; (c) 2-D array. 
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2.2. Mathematical Method

To better explain the switchable property of the proposed structure, the uv coordinate
system is introduced to mark the anisotropic axes, and both u and v axes exhibit 45◦ phase
shifts as compared to the x and y axes, respectively, as shown in Figure 1a. To effectively
analyze the polarization characteristic of the polarization converter, the co-polarization and
cross-polarized reflections can be defined as ryy =

∣∣Ery/Eiy
∣∣ and rxy =

∣∣Erx/Eiy
∣∣ for the

y-polarized incident wave [47], where the subscripts of i and r represent the incident and
reflected wave modes, respectively, and then the subscripts of x and y indicate the electric
field directions. The phase difference between the y and x components of the reflected
THz wave is also written as ∆φ = φxy − φyy. To estimate the polarization conversion
performance, the polarization rotation azimuth angle ϕ and the polarization-conversion
ratio (PCR) can be extracted from the refection coefficients [48] to be targeted as goal metrics
during design. Therefore, ϕ can be calculated as:

ϕ =
1
2

acr tan[
2R cos(∆φ)

1− R2 ] (1)

where R =
∣∣rxy

∣∣/∣∣ryy
∣∣ and PCR can be obtained in the following manner:

PCR =

∣∣rxy
∣∣2∣∣rxy

∣∣2 + ∣∣ryy
∣∣2 (2)

As the bottom layer is a metallic plane, the transmission is nearly zero and, thus, the
absorptivity of this design can be defined as:

A = 1− R = 1− (
∣∣rxy

∣∣2 + ∣∣ryy
∣∣2) (3)

3. Results and Discussions

To demonstrate the switchable performance of this structure, the numerical model is
constructed to simulate with the commercial full-wave solver, software CST Microwave
Studio, for two different Si conductivity (σSi) states. In the simulation setting, the periodic
boundary conditions (PBC) oriented along the x and y directions is used to model the
periodic structure with a normal wave incident upon the unit cell with the E-field vector in
the y axis, as described in detail in Figure 1c, behaving as the exciting source.

3.1. Reflection Responses

The simulated reflection responses as a function of frequency for two different con-
ductivity states are illustrated in Figures 2 and 3. In the case of σSi = 1 S/m without pump
beam power, the cross-polarization rxy is much greater than the co-polarization ryy across
the operating band of 1.8–2.7 THz as plotted in Figure 2a. In Figure 2b, it can be seen that
PCR is more than 0.9 in the frequency range of 2.01–2.56 THz with an absorption rate less
than 0.3. Meanwhile, the rotation azimuth angle is approximately around ±90◦ in this
band, forming a broad cross-polarization conversion bandwidth. Hence, for this case, the
designed structure can be referred to as a broad polarization converter.

With the maximal pump beam power incident on the structure, σSi can reach up to
1 × 105 S/m, termed mental state, such that the Si-filled gaps would be in short circuit
state, then the cross-polarization rxy is less than the co-polarization ryy over the whole
frequency band as observed from Figure 3a. From the results in Figure 3b, the PCR is below
0.2 at the two resonant peaks of 1.98 THz and 3.24 THz, respectively, and the corresponding
absorption rates are around 70.5% and 94.2%, respectively, with the rotation azimuth
angles less than 20◦ across the whole frequency band. Thereby, the structure could be
used as a dual-band absorber. Thus, this proposed hybrid metal-semiconductor ODSRR
structure could be switched to a polarization converter or absorber by the semiconductor
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photoconductive Si which can act as the active THz component with different working
states under different external pumps’ beam power.
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Figure 2. Simulated (a) cross- and co-polarization reflection coefficients and (b) PCR, absorption 

and rotation angle with Si  = 1 S/m. 
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Figure 3. Simulated (a) cross- and co-polarization reflection coefficients and (b) PCR, absorption 

and rotation angle with Si  = 1 × 105 S/m. 

3.2. Validation of the Equivalent Circuit Model 

In an attempt to analytically describe the absorption operation, the schematic de-

scription of the equivalent circuit model (ECM) for this structure is shown in Figure 4a. 

The double metallic rings can be represented by distributive elements, whereas the sub-

strate is considered as a transmission line with the length of st  and the wave impedance 

Figure 2. Simulated (a) cross- and co-polarization reflection coefficients and (b) PCR, absorption and
rotation angle with σSi = 1 S/m.

Crystals 2021, 11, x FOR PEER REVIEW 4 of 11 
 

 

across the operating band of 1.8–2.7 THz as plotted in Figure 2a. In Figure 2b, it can be 

seen that PCR is more than 0.9 in the frequency range of 2.01–2.56 THz with an absorption 

rate less than 0.3. Meanwhile, the rotation azimuth angle is approximately around ±90° in 

this band, forming a broad cross-polarization conversion bandwidth. Hence, for this case, 

the designed structure can be referred to as a broad polarization converter. 

With the maximal pump beam power incident on the structure, Si  can reach up to 

1 × 105 S/m, termed mental state, such that the Si-filled gaps would be in short circuit state, 

then the cross-polarization 
xyr  is less than the co-polarization 

yyr  over the whole fre-

quency band as observed from Figure 3a. From the results in Figure 3b, the PCR is below 

0.2 at the two resonant peaks of 1.98 THz and 3.24 THz, respectively, and the correspond-

ing absorption rates are around 70.5% and 94.2%, respectively, with the rotation azimuth 

angles less than 20° across the whole frequency band. Thereby, the structure could be used 

as a dual-band absorber. Thus, this proposed hybrid metal-semiconductor ODSRR struc-

ture could be switched to a polarization converter or absorber by the semiconductor pho-

toconductive Si which can act as the active THz component with different working states 

under different external pumps’ beam power. 

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

R
ef

le
ct

io
n

Frequency(THz)

(S/m)=1

 R
yy

 R
xy

 

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0
 

(S/m)=1

 PCR

 Absorption

 

Frequency(THz)

P
C

R
/A

b
so

rp
ti

o
n

-100

-80

-60

-40

-20

0

20

40

60

80

100
 

R
o

ta
ti

o
n

 A
n

g
le

(d
eg

)

 
(a) (b) 

Figure 2. Simulated (a) cross- and co-polarization reflection coefficients and (b) PCR, absorption 

and rotation angle with Si  = 1 S/m. 
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Figure 3. Simulated (a) cross- and co-polarization reflection coefficients and (b) PCR, absorption 

and rotation angle with Si  = 1 × 105 S/m. 
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Figure 3. Simulated (a) cross- and co-polarization reflection coefficients and (b) PCR, absorption and
rotation angle with σSi = 1 × 105 S/m.

3.2. Validation of the Equivalent Circuit Model

In an attempt to analytically describe the absorption operation, the schematic de-
scription of the equivalent circuit model (ECM) for this structure is shown in Figure 4a.
The double metallic rings can be represented by distributive elements, whereas the sub-
strate is considered as a transmission line with the length of ts and the wave impedance
Zs = Zo/

√
εr, Zo is the characteristic impedance of the free space. Cm represents the

electrical coupling between two double-opening coupling rings [49]. The values of the
reactive elements can be approximately calculated as [50,51]:

Ci,o = εoεe f f
2a
π

ln(csc
(a− r1,2)π

2a
) (4)

Li,o = µoµe f f
a

2π
ln(csc

wπ

2a
) (5)

where εo and µo are the permittivity and permeability of free space, respectively. εe f f
and µe f f denote the effective permittivity and permeability of the supporting substrate,
respectively. The series circuits RLC provide the two absorption responses at 1.98 and
3.24 THz, respectively.

Then, the impedance of the top ODSRR surface can be indicated by ZF, which is
in parallel with Zs. Therefore, the input impedance and reflection coefficient from this
designed absorber can be respectively calculated as:



Crystals 2021, 11, 1116 5 of 10

Zin = ZF||jZs tan(βts) (6)

S11 = 20 log(
Zin − Zo

Zin + Zo
) (7)

To better validate the availability of ECM, the reflection characteristics calculated from
the full-wave simulation in CST and the circuit model have been achieved for comparison
below in Figure 4b, where good agreement can be seen between the two methods, sufficient
to indicate the fact that the ECM used for the modeling method is valid and that results
from the mathematical simulations constitute good predictions.
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Figure 4. (a) Equivalent transmission-line model of the proposed absorber (circuit parameters: Ci = 
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Figure 4. (a) Equivalent transmission-line model of the proposed absorber (circuit parameters:
Ci = 0.44 fF, Co = 0.12 fF, Cm = 0.26 fF, Li = 4.42 pH, Lo = 3.04 pH, Ri = 4.60 Ω, Ro = 4.78 Ω); (b) Com-
parison of reflectivity of the proposed structure calculated by the ECM and simulated in the CST
software.

3.3. The Intrinsic Operation Mechanism

Meanwhile, to gain some insight on the working principle of switchable operation
of this architecture, the surface current distributions on both top and bottom layers as
σSi = 1 S/m and σSi = 1 × 105 S/m under normal incidence are plotted in Figures 5 and 6,
respectively, at four different frequencies, in which the arrows represent the direction of
current flow and the color corresponds with the intensity.

As σSi = 1 S/m, the surface current distributions at the frequencies of 2.08 and 2.45 THz
are described in Figure 5. For y-polarized incident EM wave, the induced surface currents at
the top and bottom layers are in the anti-parallel direction, thus forming a circulating loop
and exciting a magnetic resonance along the u-direction at 2.08 THz, which can generate
the in-phase reflection Eiv, but instead Eiu is an out-of-phase reflection due to no v-direction
magnetic resonance occurring. Hence, the −90◦ polarization rotation will be implemented,
and then the polarization direction of reflection response is converted from y to x-axis at
the resonant frequency. Similarly, the magnetic resonance operates at 2.45 THz with the
E-field oriented along the v direction, providing the out-of-phase and in-phase reflections
for Eiv and Eiu, respectively. Therefore, the y-to-x polarized reflection will be realized with
90◦ rotation.

As σSi = 1 × 105 S/m for the maximal pump beam power case, the Si-filled gaps of
the ODSRR structure are short-circuited since the semiconductor Si is in the conducting
state. Thus, the ODSRR is treated as a double-ring resonator to lead to the high absorption
performance. As observed from Figure 6, for the y-polarized incident wave, the surface
currents mainly focus on the left and right sides of the outer ring at 1.98 THz, and at
the frequency of 3.24 THz, the surface currents are also mainly distributed at the left
and right arms of the inner ring. All these two absorption responses have a similar
current distribution with that of the conventional ring-shaped MA, so it is worth noting
that the absorption responses are originated from the two arranged dipoles. Therefore,
the proposed structure possesses the ability to conduct the switching state between the
broadband polarization converter and dual-band absorber for two different states.
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3.4. Oblique Incidence Characteristics

Figure 7 shows the oblique incidence characteristics for different Si conductivity (i.e.,
σSi = 1 S/m and σSi = 1 × 105 S/m). From the results, it can be seen that the switchable
structure maintains a wide operating bandwidth over the angle range from 0◦ to 45◦

with good PCRs of over 75% for both TE and TM waves in Figure 7a,b with σSi = 1 S/m.
Figure 7c,d describe the absorption responses against incident angle (θ, the angle between

the incident wave vector
⇀
k and the z-axis) varying from 0◦ to 60◦ as σSi = 1 × 105 S/m.

In TE mode, the lower resonant frequency shifts slightly to the high frequency as θ goes
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up at 1.98 THz in Figure 7c, with the absorptivity gradually increasing. It can be ascribed
to the strong electrical coupling between the outer and inner rings. On the contrary, the
absorption performance is gradually deteriorated with θ changing at the upper frequency
of 3.24 THz because the parallel H-field component decreases. For TM mode, the structure
shows good angular stability when θ reaches up to 45◦ as detailed in Figure 7d. Though
there is a slight frequency discrepancy (0.06 THz and 0.1 THz for TE and TM mode waves,
respectively) for the lower absorption frequency, the upper absorption peak has better
angular robustness than that of this absorption peak for different incidents’ wave modes.
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A comparison with the current three materials, photoconductive Si, VO2 and graphene
embedded in structure to exhibit the switchable performance is illustrated in Figure 8.
It is clearly apparent that the proposed design has achieved a better stable switching
characteristic than the other two. Comparing to the VO2, photoconductive Si can maintain
insensitive to the external temperature of the surrounding environment and provides a
robust switchable relative to graphene.
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4. Conclusions

A photo-excited switchable THz MTM polarization converter/absorber based on the
incorporation of photoconductive Si has been designed and demonstrated in this paper.
The conductivity of Si is dynamically adjusted by the external incident pump power,
applied to provide a means of achieving the polarization modulation for the reflected
waves. The novelty of the structure lies in its switchable performance as compared with
the previous works. This design has its unique advantage of cross-polarization conversion
with a relative bandwidth of 24.1% (PCR >90%) as σSi = 1 S/m without pump beam and
acting as the dual-band absorber under the case of σSi = 1 × 105 S/m with maximal pump
optical illuminating power. The design has opened up a new field towards active switches
and polarization manipulation with high performance in the THz regime. Therefore, this
photo-excited switchable MTM polarization converter/absorber can be potentially applied
to biological imaging, THz scanning, sensors, and so on.
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