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Abstract: A high modulus of elasticity is a distinctive feature of carbon fibres produced from
mesophase pitch. In this work, we expand our previous study of pitch/linear low-density polyethy-
lene blend fibres, increasing the concentration of the linear low-density polyethylene in the blend
into the range of from 30 to 90 wt%. A scanning electron microscope study showed two distinct
phases in the fibres: one linear low-density polyethylene, and the other pitch fibre. Unique mor-
phologies of the blend were observed. They ranged from continuous microfibres of pitch embedded
in linear low-density polyethylene (occurring at high concentrations of pitch) to a discontinuous
region showing the presence of spherical pitch nodules (at high concentrations of linear low-density
polyethylene). The corresponding mechanical properties—such as tensile strength, tensile modulus,
and strain at failure—of different concentrations of linear low-density polyethylene in the pitch fibre
were measured and are reported here. Thermogravimetric analysis was used to investigate how the
increased linear low-density polyethylene content affected the thermal stability of linear low-density
polyethylene/pitch fibres. It is shown that selecting appropriate linear low-density polyethylene con-
centrations is required, depending on the requirement of thermal stability and mechanical properties
of the fibres. Our study offers new and useful guidance to the scientific community to help select the
appropriate combinations of linear low-density polyethylene/pitch blend concentrations based on
the required mechanical property and thermal stability of the fibres.

Keywords: mesophase-pitch; polyethylene; carbon-fibres; morphology; winder; blend

1. Introduction

There is an increasing need for polymer materials with improved properties to meet
modern requirements since no single polymer has all desired properties [1]. Most polymer
blends are prepared by melting [2] and polymer blending, with the fibres produced by a
melt compound extruder. This is an economic and useful method of manufacturing new
materials with advantageous properties [3–7]. To investigate how this can be improved,
one must understand how the morphology of the obtained fibre is formed, changed, and
controlled during the extrusion or mixing process, or with the help of mixing material
ratios. An important and novel aspect of this research is that it completes the definition
of the mechanical and thermal properties of LLDPE/MP blends for the complete range
of mixes.

Carbon fibres (CFs) with manmade rayon as precursor had been created by 1960 [8,9],
and by 1963, carbon fibres with a high elastic modulus were being manufactured from
pitch [10]. Due to superior mechanical, electrical, and thermal features, CFs are extensively
employed in numerous applications, ranging from space exploration to healthcare. How-
ever, their industrial application would greatly increase if they could be manufactured at a
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significantly lower cost with improved mechanical characteristics [11]. MP-based carbon
fibre (MPCF) is one material that appears very promising due to how easily the mesophase
appears [12,13].

CFs made from pitch precursors are classified into one of two types based on their
characteristics and pitch precursor used: MP-based or derived from isotropic pitch. The
former shows high resistance to longitudinal stress and, as used here, has a molar mass
of roughly 2600 g/mol [14], while the latter possesses desirable mechanical properties.
Controlled production of isotropic pitch is considered difficult because, above a specific
temperature, mesophase spheres can suddenly appear [15]. Moreover, anisotropy can
occur with the enhanced alignment of the fibres, which results in improved mechanical
properties compared to CFs derived from isotropic pitch or polyacrylonitrile (PAN) [9].
However, while the precursor may be cheap, purification of the pitch is costly, and its
widespread use in industry depends on the degree to which flaws are introduced in the
course of manufacturing.

The manufacture of CFs using pitch and synthetic polymers that are easily available
should lower the cost of materials, allowing CFs to be used more widely. Relative to
expensive PAN-based fibres, the mechanical properties of relatively easily available, low-
cost materials—such as organic polymers—have been found to be insufficient [16], whereas
CFs have superior mechanical properties and are light weight [17]. Compared to PAN,
textile-grade polyethylene (PE) is attractive as a precursor for CF synthesis for three
reasons: It has a relatively high carbon content, a higher carbonation rate, and its use could
substantially reduce the cost of production [18–21]. PE is cheap compared to PAN because
between half and two-thirds of the production cost of PAN is incurred in synthesizing
the precursor, which PE does not require. Fusion spinning is also a quicker and more
environmentally friendly method of producing PE compared to PAN. However, MP has
intrinsic shortcomings: MPCFs are brittle and that increases the difficulty of successfully
spinning fibres [3,4]. This is a complex phenomenon that depends on stress level, intrinsic
material properties (crystallinity and molecular orientation of the polymer), and other
external parameters [22]. Oxidation of MPCF is the most critical step in the fabrication
process, but it is also the most inefficient due to the time required [23].

As part of an extensive program to produce low-cost PE-based CFs with superior
physical and other desirable characteristics, Huang et al., (2009) presented a new technique
for the manufacture of a melt-spun, carbonised, and sulfonated PE precursor [24]. The
same process could produce CFs with a 75% yield [18,20,23–31].

We blended LLDPE with MP to reduce fibre brittleness and increase fibre spinnability.
LLDPE is very ductile, can be converted into CFs, and promises to be a superb blending
material that can be used to produce less brittle MP carbon fibre precursors. Polymers are
elements formed of a lengthy chain of molecules that repeat themselves. Low density, good
strength-to-weight properties, resistance to corrosion, and low thermal conductivity are
some of their advantages [32,33]. The molar mass of LLDPE is high (between 50,000 and
200,000 g/mol), higher than either HDPE or LDPE [34]. Our ultimate goal was to produce
CF-based PE and MP, with a relatively low molar mass of between 400 and 800 g/mole,
which could increase the proportion of carbon in the carbon fibre when it is added to
PE [19,20,35,36]. Innovatively generating MP/PE-derived CFs at a reduced cost and
combining enhanced ductility with stronger mechanical properties and fewer flaws can
only improve the usability of both MPCF and PE carbon. Reinforcing using fibres is an
important technological innovation in today’s world, with applications extending from
strengthening concrete [37] to improving agricultural mulching film [38]. Because LLDPE is
so often a component of these advances, greater knowledge of its properties and behaviour
when blended should be of wide interest.
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Aldosari et al., (2020) have reviewed the possibility of achieving these desired objec-
tives and showed that, despite relevant research being at an early stage, they could be
achieved by using a PE/pitch blend to produce CF precursors with improved ductility [11].
In our previous work, we showed the feasibility of mixing LLDPE/pitch as a possible
precursor for the manufacture of CFs [39]. That work was limited to a narrow LLDPE/MP
range, from 0 to 20 wt% LLDPE, with a corresponding range from 100 to 80 wt% MP.
In this paper, we have expanded our previous study into a more comprehensive investi-
gation of LLDPE/MP blend fibres, extending the range investigated to between 30 and
90 wt% LLDPE in 10 wt% increments. This extended study allows us to better compare
the variations introduced into the manufacturing process and the corresponding changes
in mechanical properties and thermal stability of the fibres over the complete range of
LLDPE in LLDPE/MP blend fibres from 0 to 90 wt%. This allows us to select the best
possible LLDPE/MP blend. The optimum precursor fibre can potentially overcome the
issue of the high level of the brittleness of pitch fibres for future high-performance CF
manufacturing. As this research is a direct continuation of our previously published work,
the same equipment was used and the reader may refer to [39] for details.

This work studies the effect of the LLDPE content of the blend on its morphology,
ranging from continuous microfibres of pitch contained in LLDPE (at high concentrations
of pitch) to discontinuous spheres of pitch (at high concentration of LLDPE) see Graphical
Abstract. It considers factors affecting the chemical composition of the pitch mesophase
dispersed in a matrix of LLDPE on the tensile strength and tensile modulus, and its
correlation with the structural morphology of the pitch/LLDPE composite.

2. Experimental Methods
2.1. Materials

In this study, the MP precursor was purchased from Bonding Chemical. Its softening
point was 268 ◦C, melting point 298 ◦C, and density 1.425 g/cm3. The mesophase content
was 92%. The LLDPE was bought from Sabic, Saudi Arabia; it had a softening point of
99 ◦C, a melting point of 121 ◦C, and a density of 0.918 g/cm3.

2.2. Materials Processing

A Noztek Pro Filament single-screw melt fibre spinning extruder was used. Details of
this and the fibre collection are given in our previous paper [35]. The nozzle was 0.5 mm in
diameter and 1.5 mm in length. The extruder was set to 315 ◦C and at a 2.5 m/min extrusion
speed, with the stretching speed set to 2.5 m/min. To obtain different fibre blends, pitch
and PE were fed into the extruder in different ratios. The manufacturing processing stages
are shown in Figure 1. The sample designation for the different proportions is LLDPE (x)
wt% and MP (100-x) wt%. Figure 2 is a diagrammatic representation of cold stretching.
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spheres to ellipses.

3. Characterisation Methods
3.1. Microscopy: Optical and SEM

Optical microscopy: fibre diameter was measured via a Nikon ECLIPSE ME600
at 20× magnification. Nomarski microscopy was used to enhance sample contrast and
determine the diameter of the fibres.

The SEM used to examine the prepared specimens was a Tescan VEGA3 and associated
Aztec software. Before the measurements were made, a thin gold layer was sputter-
coated onto the specimens. The specimens were cut into 50 mm lengths. The specimens
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were mounted end-on for the vertical image and for surface features laid horizontally on
aluminium stubs, for more details see [39].

3.2. Tensile Mechanical Test

Tensile measurements on the spun MP/PE fibres were made in accordance with
Standard ISO 11566-1996, Figure A1 [40] with a DEBEN Microtest fibre tensile tester
connected to a Leica EC4 Microscope; see Figure A1 in Appendix A. We placed a single
filament over the centre of the slot and temporarily fixed one end of specimen, mounting it
with adhesive tape, and lightly stretched the specimen across the slot, then fixed the other
end of the specimen to other ends of the mounting with adhesive tape, and then bound the
specimen to the mounting by applying a drop of adhesive. Each sample was subjected to
six tests to confirm repeatability.

3.3. Differential Scanning Calorimetry (DSC)

A Mettler Toledo DSCQ2000 was used for the DSC measurements. Specimens were
heated from 0 to 200 ◦C at 20 ◦C/min in an inert environment. The sample was then kept at
a higher temperature for 200 s to eliminate any prior thermal history. The non-isothermal
behaviour and kinetics of the samples were studied by cooling them at 20 ◦C/min after
completing the heating and cooling cycles.

3.4. Thermogravimetric Analysis

For the prepared specimens, a Mettler Toledo Thermogravimetric Analyser TGAQ500
was used for the TGA analysis. Under a nitrogen environment, the specimens were heated
from 50 to 800 ◦C at 20 ◦C/min, after which the specimens were kept at 800 ◦C for 300 s to
remove any preceding thermal history.

4. Results and Discussion
4.1. Optical Microscopy

Optical microscopy was used to study the morphology of the blend’s fibres. The
diameter of the sample fibres depended upon the wt% LLDPE, decreasing as the LLDPE
content increased, see Table 1 and Figure 3.

All other factors remaining constant, we observed shrinkage in the diameter of the
fibres with increased LLPDE wt% due to the greater axial elongation obtained by the same
applied axial force; see Figure 2. The morphology of the blend changed with LLDPE
wt% [41].

Many parameters influence the diameter of the extruded fibres, including the diameter
of the die orifice, extrusion speed, and polymer viscosity. Figure 3 shows the optical images
obtained for cold-drawn specimens using an optical microscope. Figure 3 also shows that
different fibre diameters were obtained by reducing or increasing the LLDPE content.

Table 1. LLDPE/MP fibre diameter as a function of LLDPE wt%.

Blend Designation Fibre Diameter, µm

LLDPE (30 wt%)/MP 152 (±0.54)
LLDPE (40 wt%)/MP 149 (±0.30)
LLDPE (50 wt%)/MP 146 (±0.36)
LLDPE (60 wt%)/MP 143 (±0.38)
LLDPE (70 wt%)/MP 140 (±0.51)
LLDPE (80 wt%)/MP 138 (±0.53)
LLDPE (90 wt%)/MP 135 (±0.24)
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4.2. SEM of Fibres

Pitch fibres tend to generate microfibrils within their fibres, as shown in the SEM
images [42]; also see Figure 4i–viii, and Figure A2 for LLDPE/MP blends in the range of
between 30 and 100 wt% of LLDPE. The MP molecules show a strong preference to align
themselves with the longitudinal fibre axis, and this process has a tendency to begin in the
liquid crystalline phase [11]. This could be the reason for micro-fibre development in our
samples. As the LLDPE wt% content of the LLDPE/MP fibres increased to about 60%, the
development of microfibres inside the blend was significantly reduced; see Figure 4iii,iv.

It was observed from the results that the fibrous pitch/LLDPE domains were due to
the continuously increasing elongational force along the spinning line, and they gradually
extended from spheres into long continuous nanofibrillar formations (Figure 2). The
creation of fibrillar structures is necessary to improve the mechanical properties of polymer
blend fibres [43,44]. The PE does not form the liquid crystal phase, so when PE is added to
the pitch, it reduces the microfibre content. With a high LLDPE content, e.g., 70 wt% LLDPE
(Figure 4v,vi), we see discontinuous elliptical-shaped inclusions of pitch domains. At
80 wt% LLDPE (Figure 4vii,viii), no continuous microfibre formations in the LLDPE/pitch
blend fibres are observed, and we see small spherical pitch domains dispersed in LLDPE.
Pure LLDPE fibres (Figure 4viiii) do not show any micro-fibres.

With immiscible polymer blends, the morphology of the dispersed phase is crucial
in determining its physical properties [45]. As a result, we deduced that increasing the
wt% LLDPE in a blend substantially affects the morphology of the fibre. It was observed
from the results that the extruder rotation rate affected morphology by changing the
polymer dwell time in the extruder [46]. It is widely known that the performance and
properties of polymer blends are directly related to the morphology of the pitch/LLDPE
polymer blends [47], so the size, shape, and orientation of the phases can be used to
characterise the morphology of pitch/LLDPE polymer blends. A major problem in the
development of polymer blends is how to influence morphology. Here, we have shown that
viscoelastic drop deformation is essentially a problem of coalescence and breakup. Many
investigations on the blending of polymer process assumed Newtonian fluid systems using,
for example, Taylor’s minor deformation theory or Grace’s breakup curve [46]. However,
the Newtonian fluids theories were shown to be inapplicable for polymer blending, which
is not surprising [48,49].
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4.3. Tensile Tests of Pitch Blends

LLDPE is widely used in many and various forms because it is cheap and flexible. One
investigation has demonstrated that LLDPE’s average tensile strength is around 6.1 MPa,
and can be enhanced by the addition of fibre straws [50]. A second investigation claimed to
have demonstrated that LLDPE can have a tensile strength as high as 9.9 MPa [51]. Others
have claimed that, by adding multiple-walled carbon nanotubes, the tensile strength can
rise to 22 MPa [52]. Enhanced values such as these suggest that the possible uses of LLDPE
could be expanded if it is used in conjunction with other materials.

The stress limit of extruded neat LLDPE is typically about 40 MPa, and the typical
strain will be about 0.8 which suggests that the LLDPE component in LLDPE/MP fibres
has an important load-bearing role, and toughens the material [39]. Figure 5 shows that
boosting the wt% LLDPE in relatively brittle LLDPE/MP fibres can be significant.
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We also see in Figure 5 the stress vs. strain curves for LLDPE/MP blends for between
30 and 90 wt% LLDPE. Obviously, the stress vs. strain behaviour of the specimens is
a function of wt% LLDPE. The maximum values of tensile strength and strain increase
progressively with wt% LLDPE. The minimum tensile strength (13.84 MPa) and minimum
strain (30%), occurred with an LLDPE content of 30 wt%, while the maximum tensile
strength (36.97 MPa) and maximum strain (68%) occurred with an LLDPE content of
90 wt%.

As in our previous paper [39], we identified being brittle with low strain to failure, and
the pitch fibre samples demonstrated such brittle behaviour. Increasing the wt% LLDPE in
the blend increased the strain to failure, which was taken to mean that increasing the pro-
portion of LLDPE in the fibres decreased brittleness. The data gathered on tensile strength
and modulus, and strain to failure of the LLDPE/MP fibres, are presented in Table 2. We
see that the greater the wt% LLDPE, the larger the tensile strength and modulus, and strain
to failure. It has been reported in previous work that different morphologies have different
properties that can be used to satisfy different requirements. Controlling the final morphol-
ogy requires a good understanding of how the mechanism of morphology develops in
polymer blends, and would be beneficial when designing the processes and equipment to
improve the required properties in batch mixers or extruders [4,53,54]. However, in the
current study, the time of the extrusion process and the length of extruder does not change
throughout the fabrication process.

4.4. DSC for LLDPE/Mesophase Pitch Blends

As reported by Aldosari et al. [39] (2021), DSC has been utilized to evaluate the
crystallization of various blends of low- and high-density polyethylene (LDPE and HDPE)
with LLDPE. Typically, crystallization temperature is reduced with the addition of LLDPE.
This decrease can be credited to the high molar mass of LLDPE, which increases chain
entanglements, making crystallization more challenging.
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Table 2. Tensile strength, modulus, and strain to failure of LLDPE/MP fibres with different wt%
LLDPE (figures in brackets represent the standard deviation).

Samples Tensile Strength
(MPa)

Tensile Modulus
(MPa) Strain at Failure

LLDPE (30 wt%)/MP 13.84 (±0.33) 798 (±4.3) 0.30 (±0.031)
LLDPE (40 wt%)/MP 17.53 (±0.44) 817 (±4.5) 0.36 (±0.038)
LLDPE (50 wt%)/MP 21.47 (±0.34) 838 (±3.8) 0.43 (±0.041)
LLDPE (60 wt%)/MP 25.06 (±0.85) 852 (±5.6) 0.48 (±0.028)
LLDPE (70 wt%)/MP 28.91 (±0.52) 873 (±6.9) 0.56 (±0.021)
LLDPE (80 wt%)/MP 33.06 (±0.48) 944 (±6.1) 0.62 (±0.029)
LLDPE (90 wt%)/MP 36.97 (±0.43) 989 (±3.4) 0.68 (±0.035)

Experimental data were analysed using least-squares and the rates of change of the
thermograms calculated to provide the necessary kinetic data. The degradation rate of
LDPE was found to be a second-order effect [55]. The thermal characteristics of LLDPE/MP
blends within the range of between 30 and 90 wt% LLDPE, were explored using DSC.
The tests were performed for a range of fusion and crystallization temperatures of the
LLDPE/MP blends, as determined by the wt% of the LLDPE.

In Figure 6a and Table 3, we see that all the plots have clear and well-ordered crystal-
lization peaks, and the greater the wt% of LLDPE, the higher the value of the peak heat
flow. We also observe that increasing the LLDPE content of the LLDPE/MP blend increases
the enthalpy of crystallization. Figure 6a also demonstrates that, as the wt% of the LLDPE
in the LLDPE/MP blend increases, the crystallisation temperature decreases. This confirms
the crystallisation temperature of the blends depends on LLDPE content.
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Figure 6. (a) Crystallisation (∆Hc, enthalpy of crystallization, is the area under the exotherm
curve) and (b) melting (∆Hm, enthalpy of fusion, is the area under the endotherm curve) of
LLDPE/mesophase pitch blends.

Table 3. Melting and crystallisation temperatures of LLDPE/mesophase pitch blends.

Samples Melting Temperature
(◦C)

Crystallization
Temperature (◦C)

Enthalpy of Fusion
(J/g) Sample

Enthalpy of Fusion
(J/g) LLDPE

LLDPE (30 wt%)/MP 123.1 102.1 52 173
LLDPE (40 wt%)/MP 123.3 102.2 74 185
LLDPE (50 wt%)/MP 123.4 102.3 106 212
LLDPE (60 wt%)/MP 123.5 102.4 153 255
LLDPE (70 wt%)/MP 123.6 102.5 181 258
LLDPE (80 wt%)/MP 123.8 102.7 198 247
LLDPE (90 wt%)/MP 123.9 102.9 217 241

Figure 6b and Table 3 show that the temperature at which the blend melts, and
the corresponding enthalpy of the test samples, is a function of the wt% LLDPE in the
LLDPE/MP blend. The fusion temperature of the blend increases with LLDPE content.
Thus, for the range considered here, the maximum melting temperature is at 90 wt%
LLDPE. Correspondingly, the maximum enthalpy of fusion is also at 90 wt% LLDPE. This
is because fewer crystalline spheres are present with the higher the percentage of LLDPE in
the blend [39]. These results confirm the wt% of LLDPE in LLDPE/MP blends influences
both the melting and crystallisation behaviour of the blends.

4.5. Thermogravimetric Analysis of LLDPE/MP Blends

TGA is commonly used to evaluate a composite material’s thermal stability. Here, it
was used to investigate the thermal decomposition of LLDPE/MP blends with different
wt% of LLDPE burned in air. The higher the decomposition temperatures, the greater the
thermal stability [52,56].
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TGA measures the proportion and/or quantity of the mass of a material that is
transformed, either as a function of temperature or isothermally, as a function of time.
This is usually carried out in a regulated atmosphere [57]. TGA can be used to assess any
substance that shows a change in weight when combusted, identifying phase changes
during decomposition or oxidation [58]. Thermogravimetric analyses typically consist of a
specimen pan supported by a precision scale [57]. These data are used to study the weight
change, the material’s chemical structure, and decomposition [59].

The TGA was performed with temperatures between 100 and 800 ◦C. Thermal decom-
position for a range of LLDPE/MP blends was investigated, and the TGA curves obtained
are presented in Figure 7. Figure 7 presents the loss of mass as a function of temperature
for the test specimens. We see that the LLDPE/MP blend with 90 wt% LLDPE has suffered
severe decomposition at 540 ◦C with over 90% mass loss. However, the blend with 30 wt%
LLDPE shows only 60% mass loss at that temperature. This confirms that MP is more
stable than LLDPE, and the wt% LLDPE in the blend influences its thermal stability. The
decomposition temperatures of various LLDPE/MP blends are seen in Figure 7. Those
fibres with 30 wt% and 40 wt% LLDPE could preserve more than 30% of the fibre mass until
about 800 ◦C. With their decreased brittleness and relatively higher thermal stability, these
two blends could provide acceptable precursors for the fabrication of CFs. We also studied
the onset decomposition temperature of the samples. The onset degradation temperature
is defined as the temperature at which the sample shows 5% initial mass loss. As seen in
Table 4, onset degradation temperature also reduced with increasing LLDPE content in the
LLDPE/pitch fibres. This observation further supports our initial finding that increased
LLDPE content will reduce the thermal stability of the LLDPE/pitch blend.
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Table 4. Thermogravimetric analysis (TGA) result for 30 to 90 wt% LLDPE/MP.

Samples Onset Degradation
Temperature * (◦C)

Final Degradation
Temperature (◦C)

Final Residue
(%)

LLDPE (30 wt%)/MP 490.5 571.7 30
LLDPE (40 wt%)/MP 481.6 539.4 27
LLDPE (50 wt%)/MP 475.2 536.3 22
LLDPE (60 wt%)/MP 472.2 532.1 19
LLDPE (70 wt%)/MP 462.9 528.3 15
LLDPE (80 wt%)/MP 453.4 527.1 12
LLDPE (90 wt%)/MP 446.2 525.4 8

* Onset degradation temperature defined as temperature at which the sample shows 1% initial mass loss.

5. Conclusions

This paper shows how the concentration of LLDPE affects the morphology and
physical properties of LLDPE/MP blend fibres over the range of between 30 and 90 wt%
LLDPE. The SEM image analysis of higher LLDPE content blends showed significantly
altered morphology from micro-fibres to non-microfibers. The fibre diameter also showed
a marginal reduction with increased wt% LLDPE in the LLDPE/MP blend fibres. The DSC
analysis reveals that the enthalpy of fusion increases with the increase in LLDPE content in
the sample.

The micromechanical testing of the LLDPE/MP blends showed a clear increase in
both tensile modulus and strength, as well as strain to failure with an increase in the
LLDPE content. However, TGA revealed a reduction in the temperature of the onset of
degradation and a reduction in the residual mass (after about 540 ◦C) with an increase in
the wt% LLDPE in the LLDPE/MP fibres. Hence, selection of LLDPE/pitch blend fibres
must be based on both mechanical performance and the thermal stability of fibres.
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