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Abstract: A new Ni metal organic framework based on 2,2′-Biphenyldicarboxylic, 4,4′- bipyri-
dine as linker is prepared by hydrothermal reaction and directly used as an electrode material
for supercapacitor and the detection of sarcosine. [Ni3(BIPY)3(BPDA)2(HCOO)2(H2O)2]n (Ni-1;
BIPY = 4,4′-bipyridine; BPDA = 2,2′-Biphenyldicarboxylate) displays the specific capacitance of the
Ni-1 are 667 F/gat 1 A/g and retention is 82% of initial capacitance at 1 A/g. The excellent elec-
trochemical property is ascribed to the intrinsic nature of Ni-1. Furthermore, the sarcosine sensing
performance of the Ni-1 electrode is evaluated in 0.1 M of NaOH solution and the electrode showed
a wider range of linear response 1 × 10−4 M to 1 × 10−3 M. Thus, the results show that the Ni-1 is a
potential candidate for not only sensing of sarcosine but also supercapacitor application.

Keywords: electrochemical sensing; sarcosine; supercapacitor; Ni metal organic framework

1. Introduction

Potential threatening energy crisis and environmental pollution force scientists and
engineers to develop clean and very efficient energy storage technologies to overcome
these issues. Supercapacitors are among such novel energy solutions because they demon-
strate high-power density, long-termstability, and fast charging and discharging when
needed [1–6]. Pseudocapacitance is stored by the rapid Faraday redox reactions occurring
on the active material surfaces. Pseudocapacitive materials have higher specific capaci-
tances than carbon materials (EDLCs). For the purposes, MOFs have been demonstrated
to be useful for electrochemical energy storage and are considered as the most promis-
ing electrode material candidatefor SCs due to their high surface area, tunable pore size,
controllable pore structure, and special structures with potentialpseudo-capacitive redox
centers [7–10].

Panprostate cancer (PCa), the most common malignant tumor diagnosed in males, if
diagnosed early, could be successfully treated. Early diagnosis of PCA also significantly
reduced the mortality rate [8]. Sarcosine, is considered as a differential metabolite, since
sarcosine is increased during PCa progression to metastasis sarcosine and can be detected
non-invasively in urine. Recently, many papers have reported sarcosine sensing [11–15].
Sarcosine detection techniques include high-performance liquid chromatography-mass
spectrometry (HPLC-MS) [16,17] and gas chromatography. However, these methods are
very specialized, expensive, and time-consuming. Therefore, new, very sensitive, specific,
fast, and inexpensive alternative methods are still desired.
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MOFs, highly ordered porous crystalline containing metal ions and organic ligands,
attracted attention for applications related to gas storage and separation [18–20], lumi-
nescent sensing [21–27], and catalysis [28–31] due to high surface area and suitable pore
size. MOF structures are very diverse because of limitless combinations of their building
blocks, cations (from main and transition groups), and ligands [32–34]. Thus, by varying
cation/ligand, combination MOFs with various functionalities can be obtained. MOFs are
considered excellent materials for supercapacitor and sensing applications.

Herein, a new Ni metal organic framework was synthesized and directly used
as an electrode material for super capacitor and electrochemical sensing for sarcosine.
The [Ni3(BIPY)3(BPDA)2(HCOO)2(H2O)2]n (Ni-1; BIPY = 4,4′-bipyridine; BPDA = 2,2′-
Biphenyldicarboxylate, CCDC number 1935262) exhibited a high specific capacitance, and
long-term cycling stability. The Ni-1 exhibited good sensitivity and a wider range of linear
response 1 × 10−4 M to 1 × 10−3 M for the determination of sarcosine. This is the first time
that a new metal organic framework is served as supercapacitor electrode and sensor.

2. Experimental Section
2.1. Materials and Methods

Nickel nitrate hexahydrate was purchased from J&K Chemical. 2,2′-Biphenyldicarboxylic
and 4,4′-bipyridine were purchased from Jinan Henghua Technology company. All
reagents used were commercially available and used without further purification. IR of
[Ni3(BIPY)3(BPDC)2(HCOO)2(H2O)2]n (Ni-1;BIPY = 4,4′-bipyridine; BPDC = 2,2′-
Biphenyldicarboxylate) was recorded on Affinity-1 FT-IR spectrometer ranging from 200
to 4000 cm−1. Powder X-ray diffraction (PXRD) patterns were carried out through Cu-
Karadiation from 5–40◦. Thermal gravimetric analysis (TG) was carried out by using
aNetzsch STA 449C system with a heating rate of 5 K/min under N2 protection.

2.2. Synthesis of Ni-1

Firstly, 2,2′- Biphenyldicarboxylic Acid and 4,4′- bipyridine were dissolved in DMA
to form 1 mol/L DMA solution, and nickel nitrate hexahydrate was dissolved in water to
form 1 mol/L aqueous solution, The above solution 200 µL:300 µL:300 µL and 8 mL H2O
was added to a 25 mL Teflon-lined stainless autoclave, sealed and heated at 160 ◦C for 72 h,
then cooled to room temperature. The green block crystals of Ni-1 were obtained (yield:
75% based on Ni(II)).

2.3. Single-Crystal Structure Determination

Crystal of Ni-1 was collected from the mother liquor. Single-crystal data of Ni-1 were
collected on a Rigaku Oxford CCD diffractometer equipped with graphite-monochromatic
Mo-Kα radiation (λ = 0.71073 Å) at 293 K. The structure was solved by direct methods,
and refined by full-matrix least-square method with the OLEX-2 program package. The
crystallographic data and refinements and the selected bond lengths and angles for Ni-1
are listed in Tables 1 and 2.

Table 1. Crystal data and structure refinement for Ni-1.

Compound Ni-1

Chemical Formula C60H54N6Ni3O18
Formula weight 1323.16
Crystal system Monoclinic
Space group C2
a (Å) 22.501(2)
b (Å) 11.2879(12)
c (Å) 13.4015(12)
α (◦) 90
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Table 1. Cont.

Compound Ni-1

β (◦) 126.099(10)
γ (◦) 90
V (Å3) 2750.3(5)
Z 2
Dc (g/cm3) 1.598
µ (mm−1) 1.101
T (K) 293(2)
Wavelength (Å) 0.71073
F(000) 1368.0
Crystal size (mm) 0.20 × 0.19 × 0.12
θ range(◦) 7.22 to 59.298
Index ranges −28 ≤ h ≤ 31

−15 ≤ k ≤ 15
−18 ≤ l ≤ 16

Reflections collected 11,900
Independent reflections 11,900 [Rint = 0.0759, Rsigma = 0.1150]
Parameters 396
Goodness-of-fit on F2 1.056
R1 indices [I > 2σ(I)] 0.0769
wR2 indices [I > 2σ(I)] 0.1609
R1 indices [all data] 0.1005
wR2 indices [all data] 0.1772
Peak and hole (e Å-3) 1.37/−0.95

Table 2. Selected Bond lengths [Å] and Angles [deg] for Ni-1.

Ni1- O1 = 2.029(7) Ni2- O3 = 2.078(8)
Ni1- O7 = 2.048(6) Ni2- O3 2 = 2.078(8)
Ni1- N2 = 2.090(12) Ni2- N3 = 2.098(15)
Ni1- O5 1 = 2.091(6) Ni2- O2 2 = 2.118(7)
Ni1- N1 = 2.113(12) Ni2- O2 = 2.118(7)
Ni1- O5 = 2.120(6) Ni2- N4 = 2.127(15)

O1-Ni1-O7 98.1(3) O3-Ni2-O3 2 176.6(5)
O1-Ni1-N2 84.6(3) O3-Ni2-N3 88.3(3
O7-Ni1-N2 87.3(4) O3 2-Ni2-N3 88.3(3)
O1-Ni1-O5 1 93.2(3) O3-Ni2-O2 2 99.7(3)
O7-Ni1-O5 1 168.4(3 O3 2-Ni2-O2 2 80.4(3)
N2-Ni1-O5 1 91.2(4) N3-Ni2-O2 2 91.0(2)
O1-Ni1-N1 92.0(4) O3-Ni2-O2 80.4(3)
O7-Ni1-N1 90.8(4) O3 2-Ni2-O2 99.7(3)
N2-Ni1-N1 175.9(3) N3-Ni2-O2 91.0(2)
O5 1-Ni1-N1 91.3(4) O2 2-Ni2-O2 178.0(5)
O1-Ni1-O5 168.3(3) O3-Ni2-N4 91.7(3)
O7-Ni1-O5 92.6(3) O3 2-Ni2-N4 91.7(3)
N2-Ni1-O5 91.1(4) N3-Ni2-N4 180.0
O5 1-Ni1-O5 76.0(3) O2 2-Ni2-N4 89.0(2)
N1-Ni1-O5 92.6(4) O2-Ni2-N4 89.0(2)

Symmetry transformations used to generate equivalent atoms: 1 1 − X, +Y, −Z; 2 1 − X, +Y, 1 − Z.

2.4. Fabrication of Working Electrode

80% of Ni-1, 10% of acetylene black and 10% of PVDF were mixed in N-methyl
pyrrolidone (NMP) until a homogeneous slurry was obtained, which was then applied
to Ni foam and dried at 60 ◦C in the air. Electrochemical sensing tests were performed
using the glassy carbon electrode (GCE, model CHI104, 3 mm in diameter). Prior to the
tests, it was polished with 0.05 µm alumina, followed by ultrasonicated in 50% HNO3,
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absolute ethanol and distilled water mixture for 30 at each step. Two milligrams of MOF
was dispersed in 1 mL of DMF ultrasonically. Five microliters of this suspension was
dropped onto the GCE surface to obtain a Ni-1 based working electrode (NHCPs-GCE).

2.5. Electrochemical Measurements

All the electrochemical measurements were conducted on an electrochemical worksta-
tion (CHI760E). In a three-electrode system, the Ni-1 was used as the working electrode,
with Pt plate as the counter electrode, Hg/HgO as the reference electrode, and 6 M KOH
as the electrolyte, respectively.

3. Results and Discussion
3.1. Structure Description

The Compound Ni-1 shows two-dimensional structure and belongs to C2 space group.
The asymmetric unit contains one and a half nickel (II) centers, one bridging BPDC2− group,
one and a half BIPY, one formic acid group, and one water molecule. As shown in Figure 1, the
Ni2+ are six-coordinated by four O atoms and two N atoms. In coordination mode of Ni(1), N1,
and N2 come from two bipyridine molecules, O1 is from biphenyl dicarboxylic acid molecules,
O6 and O6d are from two formic acid molecules, and O5 is from water molecules. Formic acid
comes from the decomposition of solvent molecules. In coordination mode of Ni(2), N3 and
N4a are from two bipyridine molecules, O2, O3, O2c, and O3c come from two BPDC2− group
(Figure 1). As a bridging ligand, two N atoms in pyridine participate in the coordination, and
only three oxygen atoms of BPDC2− group are involved in the coordination. It is interesting
that in this structure, the conformation of the bipyridine molecule in which N1 is located is
quite different from that of N3 (Figure 2). The bipyridine molecule in which N3 is located
has a symmetry plane, and the two planes of N3 and N4 form a certain angle of 38.60(9)◦,
which is close to the normal bipyridine molecular structure, while the bipyridine molecule of
N1is relatively deformed (without plane of symmetry), N1 and N2 the two planes rotate to
the same plane through the δ bond between C17 and C18 (the angle is 14.89◦). Although this
conformation is not a stable conformation of the bipyridine molecule, the structure δ-bond
rotation precisely enhances the relationship between pyridine rings π-π accumulation. In this
two-dimensional structure, the bipyridine molecule where N1 resides forms a straight chain
with Ni1 via a coordination bond. Similarly, the bipyridine molecule in which N2 resides forms
another straight chain with Ni2 via a coordination bond. The Ni(1) chain and the other Ni1
chains are connected by O6 atom in two coordinated formic acid molecules. After connecting
with Ni1 chain, Ni1 is coordinated with Ni2 chain via O atom of Biphenyldicarboxylic Acid
Molecule. Finally, a two-dimensional layered structure is formed by O-coordination and π-π
stacking (Figure 3)
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Figure 3. 2D structure in the a direction of Ni-1.

3.2. Purity and Thermal Stability

In order to explore the properties of Ni-1, the purity and thermal stability of the
material were investigated. Figure 4a shows the PXRD patterns of the Ni-1, The PXRD
patterns of Ni-1 showed the diffraction peaks corresponding to the simulated Ni-1 pattern.
FT-IR spectrum of Ni-1 showed bands at 1610 and 1493 cm−1, which correspond to bending
and stretching of C = O (Figure 4b), while peaks at 1305 and 1542 cm−1 were ascribed to
the pyridine bending. The Ni-1 thermal stability was analyzed by the thermogravimetric
analysis (TGA) performed in the 50–800 ◦C range under N2 (see Figure 4c). The first
weight-loss stage occurred at 100–350 ◦C due to the loss of weakly bonded water and
DMA solvent molecule. The second weight-loss step occurred at 350–400 ◦C due to the
decomposition of the organic ligand in the MOF.



Crystals 2021, 11, 1036 6 of 11
Crystals 2021, 11, x FOR PEER REVIEW 6 of 11 
 

 

 

 

 
Figure 4. (a) PXRD patterns of simulated and the synthesized Ni-1; (b) FT-IR spectra of Ni-1; (c) 
Thermogravimetric analysis of Ni-1. 

Figure 4. (a) PXRD patterns of simulated and the synthesized Ni-1; (b) FT-IR spectra of Ni-1; (c)
Thermogravimetric analysis of Ni-1.



Crystals 2021, 11, 1036 7 of 11

3.3. Investigation of Electrochemical Properties

CV curves of the Ni-1 supercapacitor electrode were recorded at 10–100 mV/s scan
rates at 0–0.6 V showed faradaic redox peaks (see Figure 5a), which is indicative of the
Faradaic behavior. As the scan rate was increased, no changes in the redox peaks were
detected, which indicates excellent rate capability of the Ni-1 based electrode. The GCD
test showed that the specific capacitances of the Ni-1 based electrodes were equal to 667,
334, 300, 267, and 240 F/g at 1, 2, 5, 8, and 10 A/g current densities, respectively (see
Figure 5b). EIS tests showed straight curves in the low-frequency region (see Figure 5c),
which indicates very low diffusion resistance and fast ion diffusion of electrolyte in the
Ni-1 based electrode. Such excellent electrochemical properties are very beneficial for
excellent capacitive performance. Analysis of the EIS curve in the high-frequency region
revealed low resistance (Rs), judging by the small intercept of the arc with the real axis.
Thus, the Ni-1 based electrode possessed low intrinsic and ionic resistances as well as
excellent contact resistance with the current collector. The retention rate is up to 82% after
5000 cycles at a current density of 1 A/g, which indicates good cycling performance and
stability. The capacitance in comparison with those reported ones is depicted in Table 3.
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Table 3. Comparation of Ni-1 and other materials.

Chemical Compound Performance Ref.

[Co3(µ3-OH)(L)2(H2O)3]− 300 F/g [35]
Co-MOF 206 F/g [36]

[Zn3(NIPA)3(1,3-dpp)(H2O)2·H2O]n 22.8 F/g [37]

3.4. Selectivity and Stability of the Sensor

The selectivity of the Ni-1/GCE-based electrode was tested under the presence of
1.0 mM species (Streptomycin, Erythromycin, Norfloxacin, Tetracycline, Tryptophan) with
0.1 M KOH as an electrolyte. The presence of the compounds did not affect the performance
of our electrode (see Figure 6b), which indicates excellent anti-interference properties of
our Ni-1/GCE.

Figure 6c exhibits the DPV curves of the Ni-1/GCE (recorded at 0.2–0.6 V/s scan
rate and 0.2–0.6 V range in 0.1 M KOH) under the presence of 1 × 10−4– 1 × 10−3 M of
sarcosine. The peak current rose linearly (with the correlation coefficient R2 = 0.9981, see
Figure 4c) as the sarcosine content in the solution was increased, which indicates excellent
sensitivity of the electrode. This linear relationship could be expressed as I (A) = 0.95044 ×
−1.4326. The shelf life of the Ni-1 based GCE was examined by its response (measured
every two days) during its storage at 2 ◦C for two weeks. Our sensor demonstrated the
same current after 10 days of storage (see Figure 6e,f), which suggests its excellent storage
stability and post-storage performance.
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plot showing a linear relationship (e,f) peak current of the electrode after two weeks.

4. Conclusions

We developed a novel Ni2+-containing metal-organic framework (Ni-MOF) material,
which was then used as an active material for sarcosine sensing and for a high-performing
supercapacitor (with excellent capacitance 667 F/g at 1 A/g and long-term cycling stability
82% after 5000 cycles). In fact, the sensor was very sensitive to sarcosine (with a low
detection limit), and its response was linear relative to the increasing sarcosine contractions.
Sarcosine was even detected when other interfering substances (such as Streptomycin,
Erythromycin, Norfloxacin, Tetracycline, Tryptophan) were present. Our results strongly
indicate that the Ni-MOFs are aspiring materials for next-generation supercapacitors
and sensors.
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