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Abstract: Crystalline hydrate of double cesium europium sulfate [CsEu(H2O)3(SO4)2]·H2O was syn-

thesized by the crystallization from an aqueous solution containing equimolar amounts of 

1Cs+:1Eu3+:2SO42− ions. Anhydrous salt CsEu(SO4)2 was formed as a result of the thermal dehydra-

tion of the crystallohydrate. The unusual effects observed during the thermal dehydration were 

attributed to the specific coordination of water molecules in the [CsEu(H2O)3(SO4)2]·H2O structure. 

The crystal structure of [CsEu(H2O)3(SO4)2]·H2O was determined by a single crystal X-ray diffrac-

tion analysis, and the crystal structure of CsEu(SO4)2 was obtained by the Rietveld method. 

[CsEu(H2O)3(SO4)2]·H2O crystallizes in the monoclinic system, space group P21/c (a = 6.5574(1) Å, b 

= 19.0733(3) Å, c = 8.8364(2) Å, β = 93.931(1)°, V = 1102.58(3) Å3). The anhydrous sulfate CsEu(SO4)2 

formed as a result of the thermal destruction crystallizes in the monoclinic system, space group C2/c 

(a = 14.327(1) Å, b = 5.3838(4) Å, c = 9.5104(6) Å, β = 101.979(3) °, V = 717.58(9) Å3). The vibration 

properties of the compounds are fully consistent with the structural models and are mainly deter-

mined by the deformation of non-rigid structural elements, such as H2O and SO42−. As shown by the 

diffused reflection spectra measurements and DFT calculations, the structural transformation from 

[CsEu(H2O)3(SO4)2]·H2O to CsEu(SO4)2 induced a significant band gap reduction. A noticeable dif-

ference of the luminescence spectra between cesium europium sulfate and cesium europium sulfate 

hydrate is detected and explained by the variation of the extent of local symmetry violation at the 

crystallographic sites occupied by Eu3+ ions, namely, by the increase in inversion asymmetry in 

[CsEu(H2O)3(SO4)2]·H2O and the increase in mirror asymmetry in CsEu(SO4)2. The chemical shift of 

the 5D0 energy level in cesium europium sulfate hydrate, with respect to cesium europium sulfate, 

is associated with the presence of H2O molecules in the vicinity of Eu3+ ion. 
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1. Introduction 

The unusual electron configuration of rare-earth elements (REE) results in the specific 

chemical and physical properties of their compounds widely applied in glass and ceramic 

industries [1–10], nuclear engineering [11–13], electronic and photonic systems [14–26]. 

The 4f electrons of rare-earth elements are completely shielded by the filled 5s and 5p 

shells. The screening effect leads to the fact that the binding field only slightly affects the 

electrons of the 4f shell and it leads to the appearance of narrow absorption bands in the 

electronic spectra [7,27–30]. Unpaired f electrons determine not only the valence charac-

teristics of rare-earth elements and spectroscopic parameters of their compounds, but also 

magnetic properties. Accordingly, in many REE compounds, paramagnetic and ferromag-

netic effects were observed [31–36]. 

Among the REE elements, europium compounds are of particular interest, since Eu3+ 

ions provide efficient photoluminescence in the red spectral range highly needed for cre-

ating white LEDs with similar to daylight emission characteristics [37–46]. In recent years, 

a large number of studies related to the synthesis and properties of crystal phosphors 

doped with Eu3+ ions have appeared. However, in such systems, the doping level is usu-

ally very low and, often, the distribution of Eu3+ ions in the corresponding crystallographic 

positions is not obvious. For this reason, in complex compounds, it is difficult to clearly 

determine the relation between the coordination and spectroscopic parameters of Eu3+ 

ions in the host lattice. In such a situation, the compounds with a stoichiometric content 

of europium ions have attracted the increasing attention of researchers [37,38,47–53]. Self-

activated phosphors are characterized by an almost complete absence of structural de-

fects, and the precise determination of the crystal structure makes it possible to evaluate 

the relations between the Eu3+ ion coordination in the lattice and spectroscopic character-

istics of the compound. Simple europium stoichiometric compounds with tetrahedral 

MO4 units, where M = Mo, W and S, were thoroughly studied and their applicability as 

highly efficient polyfunctional materials was shown [54–67]. At the same time, the prop-

erties of complex compounds of monovalent cations and rare-earth elements with tetra-

hedral anions are presented quite sporadically in the literature [37,48–51,53,68–72]. The 

structures and some properties of several double molybdates and tungstates with general 

composition AEu(MO4)2 (A = Li, Na, K, Cs, Rb, Ag+; M = Mo, W) were investigated in the 

past and the examples of such contributions can be found elsewhere [72–76]. Contrary to 

that, the characterizations of the complex sulfate compounds of europium and monova-

lent cations are very scarce in the literature [53,68,69,71,77–81]. The present study is aimed 

at the observation of structural, thermal and spectroscopic characteristics of 

[CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2. To the best of our knowledge, these sulfates 

have not been considered up to now. However, a structural similarity can be assumed 

between [CsEu(H2O)3(SO4)2]·H2O and earlier reported sulphate tetrahydrates ALn(SO4)2 

4H2O (A = Rb, Cs, Tl, NH4) because of the similarity in the ionic radii of Cs+ and these A+ 

ions [69,80–86]. 

2. Methods and Materials 

In the synthesis, the solutions of CsNO3, Eu(NO3)3 and H2SO4 were used as starting 

materials. For the solution preparation, twice distilled deionized water was used. The vol-

umes of liquids were measured using glass pipettes and cylinders with the accuracy of 0.1 

mL. Solid reagents were weighed on an analytical balance with the accuracy of 0.1 mg. 

An europium nitrate solution was prepared using Eu2O3 (99.995%, TDM-96 Ltd., Rus-

sia). To remove carbonate and europium hydroxide impurities occasionally formed dur-

ing their storage, the commodity oxide was calcined at 900 °C for 12 h, after which it was 
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cooled to room temperature in a desiccator over silica gel. Subsequently, the calcined eu-

ropium oxide, mass: 17.5963 g was transferred into a flask, and 21.6 mL of concentrated 

nitric acid (C(HNO3) = 14.6 mol/L, ρ = 1.3956 g/cm3, ultrapure, Vekton Ltd., Russia) was 

added in small portions to the europium oxide. The mixture was carefully stirred until the 

oxide was completely dissolved according to equation: 

Eu2O3 + 6HNO3→2Eu(NO3)3 + 3H2O  

After the dissolution, the solution volume in the flask was adjusted to the mark with 

deionized water and mixed well for homogeneity. A sulfuric acid solution with the molar 

concentration of 2 mol/L was prepared by diluting concentrated sulfuric acid. To make 

this, 50 mL of water was poured into a 100.00 mL volumetric flask, then 11.17 mL of con-

centrated sulfuric acid (C(H2SO4) = 17.9 mol/L, ρ = 1.8349 g/cm3, ultrapure, Vekton Ltd., 

Russia) was carefully poured in small portions, avoiding a strong heating of the solution. 

After this, the solution was naturally cooled to room temperature and the volume was 

adjusted to the mark with deionized water. 

[CsEu(H2O)3(SO4)2]·H2O was obtained by a slow crystallization of the solution contain-

ing stoichiometric amounts of ions. For this, in a glass beaker, 10 mL of the CsNO3 (C(Cs+) = 

1 mol/L) solution, 10 mL of the Eu(NO3)3 (C(Eu3+) = 1 mol/L) solution and 10 mL of the H2SO4 

(C(SO42−) = 2 mol/L) solution were mixed. The mixed solution was inserted into a desiccator 

over silica gel at 25 °C. In 12 h, the crystals precipitated from the mother liquor fell out in 

the reaction mixture. They were extracted, washed with ice water, pressed between filter 

paper sheets and dried in an empty desiccator to a constant weight. Anhydrous sulfate 

CsEu(SO4)2 was obtained by calcining the hydrate [CsEu(H2O)3(SO4)2]·H2O in a muffle fur-

nace at the temperature of 500 °C for 10 h in the air. The CsEu(SO4)2 double sulfate was 

synthesized only in the powder form. 

The photo images of the obtained single crystals of [CsEu(H2O)3(SO4)2]·H2O, as ob-

served with the use of optical microscope, are shown in Figure 1a. As it is seen, the crystals 

were transparent and they were well faceted, and that was a robust indicator of their high 

structural quality, as it was earlier observed for different materials [79,87–89]. The crystals 

were partly twinned due to the existence of several crystallization centers. The SEM pat-

tern of CsEu(SO4)2 particles is given in Figure 1b. The product mainly contained loose 

aggregates. Such type of the particle micromorphology is commonly formed in powder 

compounds fabricated by the high-temperature decomposition process due to gas release 

effects [90,91]. 
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(a) 

 
(b) 

Figure 1. (a) Photo images of selected [CsEu(H2O)3(SO4)2]·H2O crystals and (b) an SEM pattern of 

the CsEu(SO4)2 powder. 

The optical microscopy images of the crystals were fixed with an MS-2 microscope 

(State Optical Institute, Saint Petersburg, Russia) in reflected unpolarized light. The SEM 

patterns were exhibited using a JEOL JSM-6510LV scanning electron microscope. To avoid 

the surface charging effects, the powder samples were deposited on a conductive sub-

strate (carbon tape) and covered with a nanometer gold layer (99.9%). 
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The single crystal X-ray diffraction data from [CsEu(H2O)3(SO4)2]·H2O were recorded 

by a SMART APEXII diffractometer (Mo K,  = 0.7106 Å) at T = 102(2) K. The orientation 

matrixes and cell parameters were calculated and refined by 45,124 reflections. The main 

information about the crystal data, data collection and refinement are reported in Table 1. 

The program APEXII (Bruker) was used to integrate the reflex intensities. Space group 

P21/c was obtained by the analysis of extinction rules and intensity statistics obtained from 

all reflections. The multiscan absorption correction of reflection intensities was performed 

by the APEXII software (Bruker, 2003-2008, Germany). Then, the intensities of equivalent 

reflections were averaged. The structure was solved by the direct methods using package 

SHELXS and refined in the anisotropic approach for non-hydrogen atoms using the 

SHELXL program [92]. All hydrogen atoms of H2O molecules were found via Fourier dif-

ference maps and, further, they were refined in a constrained mode. The structure test for 

the presence of other missing elements of symmetry and possible voids was produced 

using the PLATON program [93]. The DIAMOND program was used for the crystal struc-

ture plotting [94]. 

Table 1. Main parameters of processing and Rietveld refinement of the [CsEu(H2O)3(SO4)2]·H2O and 

CsEu(SO4)2 powder samples. 

Compound [CsEu(H2O)3(SO4)2]·H2O CsEu(SO4)2 

Space group P21/c C2/c 

T, K 300 K 

a, Å 6.5574(1) 14.327 (1) 

b, Å 19.0733(3) 5.3838 (4) 

c, Å 8.8364(2) 9.5104 (6) 

β, ° 93.931(1) 101.979 (3) 

V, Å3 1102.58(3) 717.58 (9) 

Z 4 4 

Rwp, % 5.50 6.58 

Rp, % 4.32 5.04 

Rexp, % 2.93 3.00 

χ2 1.87 2.19 

RB, % 6.01 2.46 

The powder diffraction data of [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2 for Rietveld 

analysis were collected at room temperature with a Bruker D8 ADVANCE powder dif-

fractometer (Cu-Kα radiation) and linear VANTEC detector. The step size of 2θ was 0.02°, 

and the counting time was 5 s per step. The Rietveld refinement was performed by using 

TOPAS 4.2 [95]. The structural parameters of [CsEu(H2O)3(SO4)2]·H2O determined by the 

single crystal analysis were used as a basis in powder pattern Rietveld refinement. For the 

CsEu(SO4)2 sample, all peaks were indexed by monoclinic cell (C2/c) with the parameters 

close to those of RbEu(SO4)2 [96]. Therefore, the crystal structure of RbEu(SO4)2 was taken 

as a starting model for Rietveld refinement, and, in the structure, the Rb ion was replaced 

by the Cs ion. The refinement was stable and gave low R-factors. The crystallographic 

data were deposited in Cambridge Crystallographic Data Centre (CSD# 2102324-2102325). 

The data can be downloaded from the site (www.ccdc.cam.ac.uk/data_request/cif) (ac-

cessed on 10 August 2021). 

The Fourier-transformed infrared spectroscopy (FTIR) measurements were carried 

out with the use of a Fourier Transform Infrared Spectrometer FSM 1201 (Infraspek Ltd., 

Saint Petersburg, Russia). The sample for the investigation was prepared as a tablet with 

the addition of annealed KBr. The Raman spectra were recorded using an i-Raman Plus 

spectrometer (B&W Tek, Germany) at a laser excitation wavelength of 785 nm. The diffuse 

reflectance spectra were measured on a UV-2600 spectrophotometer (Shimadzu, Japan) 
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equipped by the ISR-2600Plus attachment with an integrating sphere. The optical 

bandgap was estimated on the base of the measurements of diffuse reflectance spectra. 

The calculation of electronic bandgap structures of [CsEu(H2O)3(SO4)2]·H2O and 

CsEu(SO4)2 was performed by using the DFT (density functional theory) method as imple-

mented in the CASTEP code [97]. On-the-fly generated norm-conserving potentials were 

used and 5s5p6s, 4f5s5p6s, 3s3p, 2s2p and 1s electrons were treated as the valence ones for 

Cs, Eu, S, O and H, respectively. The self-consistent field tolerance was set to 2.0 10−7 

eV/atom. The energy cutoff was chosen as 1143 eV for both compounds and superimposed 

by the 3 × 1 × 2 k-point grid, in the case of [CsEu(H2O)3(SO4)2]·H2O, and by the 4 × 4 × 2 k-

point grid in the case of CsEu(SO4)2. The local density approximation based on the Perdew 

and Zunger [98] parameterization of the numerical results of Ceperley and Alder [99] was 

used. The Hubbard U energy term Uf = 6 eV for the Eu 4f orbital was applied. 

The thermal analysis was carried out in the argon flow with the use of a Simultaneous 

Thermal Analysis (STA) equipment 499 F5 Jupiter NETZSCH (NETZSCH Holding, Selb, 

Germany). The powder samples were inserted into alumina crucibles. The heating rate 

was 3 K/min. For the enthalpy determination, the equipment was initially calibrated with 

the use of standard metal substances, such as In, Sn, Bi, Zn, Al, Ag, Au, Ni. The heat effect 

peaks were determined with the package Proteus 6 2012. 

The luminescence spectra under room temperature were registered on a HORIBA 

Jobin Yvon T64000 triple spectrometer with the spectral resolution 2.1 cm−1 using the ex-

citation from the GaN laser at 410 nm and the power of 5 mW on the sample. The micro-

scope based on Olympus BX-41 with the Olympus LMPlanFl 50 × objective lens f = 10.2 

mm with numerical aperture N.A. = 0.5 was used. The unfocused laser radiation illumi-

nated the small sample powder quantity tangentially. The angle between incident laser 

light and the registered luminescence was about 60 degrees. 

3. Results and Discussions 

3.1. Crystal, Vibrational and Electronic Structure 

According to the single crystal and powder diffraction analysis (Figure 2a, Tables 1 

and S1–S5), [CsEu(H2O)3(SO4)2]·H2O crystallized in the monoclinic space group P21/c. The 

grown crystals did not contain any foreign crystalline impurity. The asymmetric part of 

the unit cell contained one Cs+ ion, one Eu3+ ion, two S6+ ions, eight O2− ions and four H2O 

molecules. The Cs+ ion in [CsEu(H2O)3(SO4)2]·H2O was coordinated by 13 O2− ions forming 

a complex polyhedron. The Cs+ ion was coordinated by four Eu ions, six SO4 tetrahedra 

and two H2O molecules. Each Eu3+ ion was coordinated by six O2− ions and three H2O 

molecules forming a EuO6(H2O)3 three-capped trigonal prism (Figure 3a). The EuO6(H2O)3 

polyhedron was joined with two SO42− tetrahedra by nodes and edges, respectively, form-

ing, in total, a 2D net. The tridentate bridge–chelate μ2 coordination of the anion towards 

Eu atoms was observed. One H2O molecule was not coordinated to any metal and it 

should be considered as an isolated one. It was interesting to consider the stability of this 

type of structure in reference to the metal ion substitution. The collection of the known 

compounds [A(Ln,Ac)(H2O)3(SO4)2]·H2O is presented in Table S6 (see supplementary ma-

terials) and the dependence of unit cell volume VA on the ion radius IR of the Ln or Ac 

element is shown in Figure 4 [69,80–86]. It was evident that only such big-sized cations as 

A = NH4, Tl, Rb and Cs provided a stable monoclinic structure. In this crystal family, the 

upper limit of VA = 1142.11 Å3 was reached in [CsLa(H2O)3(SO4)2]·H2O, but the lower limit 

was unclear. At least, it was below or equal to VA = 1040.5 Å3 obtained in 

[RbEr(H2O)3(SO4)2]·H2O. Up to now, the dominant part of the [A(Ln,Ac)(H2O)3(SO4)2]·H2O 

crystals was synthesized for lanthanide elements and only three compounds were re-

ported on for actinide elements. However, the monoclinic crystals [AAc(H2O)3(SO4)2]·H2O 

were reported on for all A cations, except for Cs, and it indicated that the search for new 

compounds among actinides is a promising field for future research activities. As seen in 

Figure 4, the VA(IR) dependences could be well approximated by the linear functions 
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specific for each A element: VNH3 = 506.67 IR + 433.28, VTl = 677.64IR + 222.52, VRb = 

438.36IR + 515.74 and VCs = 420.25 IR + 570.12. These functions could be used for the pre-

diction of unit cell volumes of other presently unknown crystals [ALn(H2O)3(SO4)2]·H2O. 

For example, in [ALn(H2O)3(SO4)2]·H2O, all possible VCs values should be in the range of 

VCs = 1062.69−1142.11 Å3. 

 
(a) 

 
(b) 

Figure 2. Difference Rietveld plots of (a) [CsEu(H2O)3(SO4)2]·H2O and (b) CsEu(SO4)2. 
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(a) 

 
(b) 

Figure 3. Crystal structures of (a) [CsEu(H2O)3(SO4)2]·H2O and (b) CsEu(SO4)2. The unit cells are 

outlined. 
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Figure 4. Unit cell volume dependences on the ionic radius of Ln3+ or Ac3+ ion for compounds 

[Cs(Ln,Ac)(H2O)3(SO4)2]·H2O. The point of [CsEu(H2O)3(SO4)2]·H2O is highlighted by a red circle. 

According to the results of the powder diffraction analysis (Figure 1b, Tables 1 and S7 

and S8), CsEu(SO4)2 crystallizes in the monoclinic space group C2/c. As it is seen in Figure 

3b, the structure was of layered type. There were a half of Eu, a half of Cs ions and one SO4 

group in the asymmetric part of the unit cell. The Cs+ ion in CsEu(SO4)2 was coordinated by 

14 O− ions forming a hexagonal dipyramid. In the CsEu(SO4)2 structure, the Cs+ ion was 

coordinated by six Eu ions and eight SO4 tetrahedra. Each Eu3+ ion was coordinated by six 

sulfate groups SO42− via oxygen atoms. Two sulfate groups were chelately coordinated, 

while the rest were monodentate, resulting in the formation of a two-capped trigonal prism, 

and the coordination number of europium was equal to eight (Figure 3b). The tetradentate 

bridge–chelate μ3 coordination mode of the anion towards Eu3+ was observed for 

CsEu(SO4)2. The structure of CsEu(SO4)2 was isostructural to that of RbEu(SO4)2 [96]. 

The vibrational spectra of [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2 are shown in Fig-

ure 5a,b, respectively. The normal vibrational modes of free (SO4)2− ions had the wave-

numbers of 450, 611, 983 and 1105 cm−1 for ν2, ν4, ν1 and ν3 vibrations, respectively [100]. 

The correlation for the internal vibrational modes of free sulfate ion and its site symmetry 

in the lattice and crystal symmetry for the investigated compounds are given in Table 2. 

Both sulfates had the same factor group symmetry and (SO4)2− units occupied the identical 

symmetry sites. According to the structure refinement results, CsEu(SO4)2 was character-

ized by only one crystallographically independent SO4 tetrahedron, while 

[CsEu(H2O)3(SO4)2]·H2O had two independent SO4 units in its structure. Thus, the number 

of bands in the Raman and Infrared spectra in the regions of (SO4)2− vibrations should 

have been twice as big in [CsEu(H2O)3(SO4)2]·H2O than in CsEu(SO4)2. This relation is 

clearly seen in Figure 6, where one strong band was found in the region of ν1 symmetric 

stretching vibrations (970-1100 cm−1) of SO4 tetrahedra in the case of CsEu(SO4)2 and two 

bands in the case of [CsEu(H2O)3(SO4)2]·H2O. The ν3 vibrations were observed in the range 

of 1020–1250 cm−1. The ν4 vibrational modes (antisymmetric bending) were located be-

tween 575 and 690 cm−1. The ν2 symmetric bending vibrations were found in the range of 

400–520 cm−1. The strong multicomponent band of H2O vibrations was observed in the 

Infrared spectrum of [CsEu(H2O)3(SO4)2]·H2O, as seen in Figure 5a. The spectral bands 
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from 1550 to 1750 cm−1 were related to the H–O–H bending vibrations, while a wide band 

over 3000–3700 cm−1 appeared due to the symmetric O–H stretching. The total set of the 

Raman and Infrared modes observed in the experiment and their wavenumbers are pre-

sented in Table S9. 

 
(a) 

 
(b) 

Figure 5. Infrared and Raman spectra of (a) [CsEu(H2O)3(SO4)2]·H2O and (b) CsEu(SO4)2. 
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Figure 6. Comparison of the Raman spectra of [CsEu(H2O)3(SO4)2]·H2O (purple curve) and 

CsEu(SO4)2 (black curve) in the range of sulfate tetrahedra stretching. 

Table 2. Correlation between molecular symmetry, site symmetry and factor group symmetry for 

SO42− vibrations in [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2. 

Molecular Symmetry 

Td 

Site Symmetry 

C1 

Group Symmetry 

C2h 

A1 (ν1) A Ag + Au + Bg + Bu 

E (ν2) 2A 2(Ag + Au + Bg + Bu) 

F2 (ν3) 3A 3(Ag + Au + Bg + Bu) 

F2 (ν4) 3A 3(Ag + Au + Bg + Bu) 

The band gap energies of [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2 were determined 

from the UV reflectance spectra with the use of the Kubelka–Munk function: F(R) = K/S = 

(1 − R)/2R, where K is the absorption coefficient, S is the scattering coefficient and R is the 

material reflectance. The Tauc plots [101], where the Kubelka–Munk function (F(R)hν)n 

was dependent on photon energy hν, are shown in Figure 7. The nature of electronic tran-

sition was determined by the exponent factor n = 2 or 1/2 for direct or indirect electronic 

transitions, respectively. As it is seen in Figure 7a,b, the linear function extrapolation to 

the abscissa axis was successfully reached in the case of n = 2, and the direct band gap 

values were determined as those equal to 4.51 and 4.34 eV for [CsEu(H2O)3(SO4)2]·H2O 

and CsEu(SO4)2, respectively. 
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(a) 

 
(b) 

Figure 7. Tauc plots for (a) [CsEu(H2O)3(SO4)2]·H2O and (b) CsEu(SO4)2. 

The paths along the Brillouin zone for the investigated compounds (Figure 8), chosen 

as a set of specific line segments connecting distinctive BZ points, should be written as: Γ–

Z–D–B–Γ–A–E–Z–C2–Y2–Γ for [CsEu(H2O)3(SO4)2]·H2O and Γ–C|C2–Y2–Γ–M2–D|D2–A–

Γ|L2–Γ–V2 for CsEu(SO4)2 [102]. The coordinates of these points were: Γ(0, 0, 0), Z(0, 0.5, 

0), D(0, 0.5, 0.5), B(0, 0, 0.5), A(−0.5, 0, 0.5), E(−0.5, 0.5, 0.5), C2(−0.5, 0.5, 0), Y2(−0.5, 0, 0) for 

[CsEu(H2O)3(SO4)2]·H2O (Figure 8a) and Γ(0,0,0), C(−0.287, 0.287, 0), C2(−0.713, −0.287, 0), 

Y2(−0.5, −0.5, 0), M2(−0.5, −0.5, 0.5), D(−0.725, −0.275, 0.5), D2(−0.275, 0.275, 0.5), A(0, 0, 0.5), 

L2(−0.5, 0, 0.5), V2(−0.5, 0, 0) for CsEu(SO4)2 (Figure 8b). 
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(a) 

 

(b) 

Figure 8. Brillouin zones of (a) [CsEu(H2O)3(SO4)2]·H2O and (b) CsEu(SO4)2. 

The calculated electronic band structures of [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2 

are shown in Figure 9. The bandgap calculated value was determined as the difference 

between the valence band top (VBT) and the conduction band bottom (CBB). As europium 

is a lanthanide, the band structure was presented as spin up and spin down components. 

The VBT and CBB points of [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2 were located in the 

center of the Brillouin zone (see Figure 9) and, thus, we can say that both compounds were 

direct band gap materials. The calculated bandgap value for [CsEu(H2O)3(SO4)2]·H2O was 

5.09 eV, while, for CsEu(SO4)2, Eg = 3.30 eV. Thus, the transformation from the hydrate to 

the anhydrous compound reduced the bandgap value in the pair of sulfates. 
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(A) (B) 

Figure 9. The electronic band structures of (A) [CsEu(H2O)3(SO4)2]·H2O and (B) CsEu(SO4)2. 

The partial density of states (PDOS) for [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2 are 

shown in Figure 10 and the contribution of each type of atoms can be considered. It can be 

stated that the valence band top in both compounds was governed by the p electrons of oxy-

gen, while the conduction band bottom was formed by the d electrons of Eu3+ ions. The small 

peak related to the f-electron state of Eu3+ ions appeared near the Fermi level in both cases. 
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(a) 

 
(b) 

Figure 10. Electronic partial density of states in (a) [CsEu(H2O)3(SO4)2]·H2O and (b) CsEu(SO4)2. 

3.2. Thermochemical Properties 

Since anhydrous sulfate CsEu(SO4)2 was formed as a result of the 

[CsEu(H2O)3(SO4)2]·H2O dehydration, a full-scale study of thermochemical properties can 

be performed based only on the thermal analysis data shown for [CsEu(H2O)3(SO4)2]·H2O 

in a wide temperature range (Figure 11, Table 3). The [CsEu(H2O)3(SO4)2]·H2O dehydra-

tion proceeded in three stages and led to the formation of anhydrous sulfate CsEu(SO4)2. 

In the first stage, three water molecules were pinched off (effect A). The remaining water 
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molecule was firmly bound in the structure and the dehydration process occurred in two 

stages, which corresponded to the formations of a hemihydrate (effect B) and anhydrous 

salt (effect C), respectively. Anhydrous sulfate CsEu(SO4)2 was stable up to 800 °C, and, at 

higher temperatures, a two-stage decomposition was observed. At the first stage (effect 

D), the decomposition into simple sulfates and decomposition of europium (III) sulfate 

occurred with the formation of europium oxysulfate Eu2O2SO4. At the second stage (effect 

E), the europium oxysulfate decomposition took place. Thus, the final thermal destruction 

product at ~1200 °C was a mixture of cesium sulfate and europium oxide. This destruction 

mechanism resembled that of AgEu(SO4)2 [53], but, in the case of AgEu(SO4)2, the decom-

position effects of the complex sulfate and those of europium sulfate were differentiated. 

 

Figure 11. DSC/TG curves recorded for [CsEu(H2O)3(SO4)2]·H2O. 

Table 3. Thermal effects in [CsEu(H2O)3(SO4)2]·H2O. 

Effect Reaction References 
Loss of Mass, % 

Theoretical Experimental 

A [CsEu(H2O)3(SO4)2]·H2O→CsEu(SO4)2·H2O + 3H2O↑ 

This work 

9.85 9.57 

B CsEu(SO4)2·H2O→CsEu(SO4)2·1/2H2O + 1/2H2O↑ 11.48 11.02 

C CsEu(SO4)2·1/2H2O→ CsEu(SO4)2 + 1/2H2O↑ 13.13 12.92 

D CsEu(SO4)2→Cs2SO4 + Eu2O2SO4 +  2SO2 + O2 27.71 27.31 

E Eu2O2SO4→Eu2O3 + SO2 + 1/2O2 [48,67] 35.00 34.99 

The most interesting feature of the [CsEu(H2O)3(SO4)2]·H2O dehydration process was 

the unusual water molecules evaporation order, which seemed to be impossible on the 

base of the crystal structure, where three water molecules were coordinated to the euro-

pium atom, and one water molecule was in the void of the crystal structure. Commonly, 

in solids under heating, water molecules in voids are lost first and, then, coordinated 
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water molecules are evaporated. However, in [CsEu(H2O)3(SO4)2]·H2O, the order was op-

posite. To explain this phenomenon, it is necessary to consider in detail the coordination 

of water molecules in the structure and the system of hydrogen bonds shown in Figure 

12. It was obvious that the detachment of an uncoordinated water molecule would cause 

the destabilization of the molecules bound to the O10 and O15 atoms, and it determined 

the pinching off of these three molecules in one stage. At the same time, the water mole-

cule bound to the O9 atom was very tightly coordinated by the europium polyhedron and 

two sulfate tetrahedra, and this fact determined its increased stability. It could be intri-

guing to compare the thermal dehydration processes in [CsEu(H2O)3(SO4)2]·H2O and other 

isostructural compounds listed in Table S6. However, to our best knowledge, the results 

of the thermochemical analysis are available only for [Tl(Ln,Ac)(H2O)3(SO4)2]·H2O [69]. In 

[Tl(Ln,Ac)(H2O)3(SO4)2]·H2O, three water molecules were evaporated first, and, at the sec-

ond stage, the fourth water molecule was lost. Thus, the dehydration routes in 

[Tl(Ln,Ac)(H2O)3(SO4)2]·H2O and [CsEu(H2O)3(SO4)2]·H2O were different. Unfortunately, 

a detailed analysis of the different behavior of these crystals was impossible because only 

the cell parameters were reported for [Tl(Ln,Ac)(H2O)3(SO4)2]·H2O [69], and their crystal 

structures remain unknown. 

 

Figure 12. Coordination of water molecules in the [CsEu(H2O)3(SO4)2]·H2O structure. 

3.3. Luminescence Properties 

The exciting radiation at 410 nm used for luminescent measurements fell into the 

resonance with the transition from the ground state 7F0 to the 5D3 state of the Eu3+ ion. The 

luminescence from 5D3, 5D2 and 5D1 states was negligible, as compared to that from the 5D0 
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state. The spectra of luminescence from the 5D0 state are presented in Figure 13 for both 

cesium europium sulfate and cesium europium sulfate hydrate. Both crystals belong to 

the monoclinic symmetry class but to different space groups (C2/c and P21/c, correspond-

ingly), and the luminescent spectra of the Eu3+ ion drastically differed. The local symmetry 

of the Eu3+ ion in cesium europium sulfate was C2, while in cesium europium sulfate hy-

drate it was C1. This difference seemed to be of minor importance; however, from the 

spectra, additional features of the local environment could be deduced. The amplitudes 

of luminescent bands at the magnetic dipole 5D0→7F1 transition and at the crystal-field-

induced 5D0→7F2 transition were almost equal, and that indicated a relatively low devia-

tion from the inversion symmetry at the Eu3+ ion site in cesium europium sulfate (Figure 

14a). Alternatively, the crystal-field-induced 5D0→7F2 transition confidently dominated in 

cesium europium sulfate hydrate, indicating a much larger violation of the inversion sym-

metry at the Eu site in this hydrate crystal (Figure 14b). Using the Judd–Ofelt analysis (see, 

e.g., paper by Kolesnikov et al. [103]), the radiative lifetime of Eu ion in cesium europium 

sulfate hydrate was 2.27 times smaller than in cesium europium sulfate due to a larger 

violation of inversion symmetry specified above. At the same time, the ultranarrow line 

amplitude of at the 5D0→7F0 transition in cesium europium sulfate was of the same order 

of magnitude as the amplitude of magnetic dipole transition that evidenced a relatively 

stronger extent of the mirror symmetry violation at the Eu site in cesium europium sulfate, 

with respect to that in cesium europium sulfate hydrate. 

 

Figure 13. Emission spectra of [CsEu(H2O)3(SO4)2]·H2O (blue) and CsEu(SO4)2 (red). 
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(a) 

 
(b) 

Figure 14. Local environment of the Eu3+ ion in (a) CsEu(SO4)2 and (b) [CsEu(H2O)3(SO4)2]·H2O. 

The extent of the chemical shift of the ultranarrow Eu line induced by the presence 

of H2O molecules in the vicinity of the Eu site in cesium europium sulfate hydrate, with 

respect to cesium europium sulfate, is illustrated in more detail in Figure 15. The ul-

tranarrow line position in cesium europium sulfate was at 578.8 nm, while in cesium eu-

ropium sulfate hydrate it shifted to 579.3 nm. 
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Figure 15. Luminescence spectra of Eu3+ in [CsEu(H2O)3(SO4)2]·H2O (blue) with respect to CsEu(SO4)2 (red) in the vicinity 

of the ultranarrow line 5D0-7F0 demonstrating the shift of ultranarrow line. 

4. Conclusions 

Thus, two new double sulfates [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2 were ob-

tained and systematically investigated. The method of simple crystallization of their aque-

ous solution made it possible to obtain high quality single crystals of 

[CsEu(H2O)3(SO4)2]·H2O. The thermal dehydration provided the powder of anhydrous 

double sulfate CsEu(SO4)2 with a high stoichiometry, which is unattainable in a solid-

phase reaction between simple sulfates. Both sulfates crystallized in a monoclinic system, 

but in different space groups, and it led to a significant difference in their vibrational, 

optical and luminescent properties. The band gap decreased on the transition from 

[CsEu(H2O)3(SO4)2]·H2O to CsEu(SO4)2. The thermochemical behavior of crystalline hy-

drate, which seemed illogical at first sight, was well explained by a detailed examination 

of the coordination of water molecules in the structure. A decisive aspect was found by 

the consideration of a system of hydrogen bonds, leading to an increased stability of one 

water molecule in the structure. The noticeable difference of the luminescence spectra be-

tween cesium europium sulfate and cesium europium sulfate hydrate was found and ex-

plained by the variation of the extent of local symmetry violation at the crystallographic 

sites occupied by Eu3+ ions, namely, the inversion symmetry and mirror symmetry. The 

chemical shift of the 5D0 energy level in cesium europium sulfate hydrate, with respect to 

cesium europium sulfate, was associated with the presence of H2O molecules in the vicin-

ity of the Eu3+ ion. 
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cle/10.3390/cryst11091027/s1, Table S1: Crystallographic data and main parameters of single crystal 

processing and refinement, Table S2: Coordinates of atoms and equivalent isotropic displacement 

parameters of Cs(Eu(H2O)3(SO4)2)H2O after single crystal refinement, Table S3: Main bond lengths 

of Cs(Eu(H2O)3(SO4)2)H2O, as obtained from single crystal refinement, Table S4: Fractional atomic 

coordinates and isotropic displacement parameters (Å2) of Cs(Eu(H2O)3(SO4)2)(H2O) after Rietveld 

refinement of powder pattern, Table S5: Main bond lengths (Å) of Cs(Eu(H2O)3(SO4)2)(H2O) ob-

tained after Rietveld refinement of powder pattern, Table S6: Cell parameters of known compounds 

[A(Ln,Ac)(H2O)3(SO4)2]·H2O, A = NH4, Tl, Rb, Cs, Table S7: Fractional atomic coordinates and iso-

tropic displacement parameters (Å2) of CsEu(SO4)2, Table S8: Main bond lengths (Å) of CsEu(SO4)2, 

Table S9: Raman and Infrared bands (cm−1) observed in [CsEu(H2O)3(SO4)2]·H2O and CsEu(SO4)2 

and their assignments, related cif and checkcif files. 
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