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Abstract: AgBiSe2, which exhibits complex structural phase transition behavior, has recently been
considered as a potential thermoelectric material due to its intrinsically low thermal conductivity. In
this work, we investigate the crystal structure of Sn-doped AgBiSe2 through powder X-ray diffraction
and differential scanning calorimetry measurements. A stable cubic Ag1−x/2Bi1−x/2SnxSe2 phase
can be obtained at room temperature when the value of x is larger than 0.2. In addition, the
thermoelectric properties of Ag1−x/2Bi1−x/2SnxSe2 (x = 0.2, 0.25, 0.3, 0.35) are investigated, revealing
that Ag1−x/2Bi1−x/2SnxSe2 compounds are intrinsic semiconductors with a low lattice thermal
conductivity. This work provides new insights into the crystal structure adjustment of AgBiSe2 and
shows that Ag1−x/2Bi1−x/2SnxSe2 is a potentially lead-free thermoelectric material candidate.

Keywords: crystal structure; thermoelectric property; Seebeck coefficient; thermal conductivity

1. Introduction

As devices that can convert heat and electricity, thermoelectric devices have received
significant attention and have become a research hotspot in recent years [1–3]. The ther-
moelectric properties of materials can be evaluated by using the dimensionless quantity
ZT. The value of ZT can be calculated with the formula S2σT/(кele + кlatt), where S, σ, T,
кele, and кlatt are the Seebeck coefficient, electrical conductivity, temperature, electronic
thermal conductivity, and lattice thermal conductivity, respectively. Accordingly, semi-
conductors with low lattice thermal conductivities have been widely studied and show
excellent thermoelectric performance. These semiconductors include Zintl phases [4,5],
fast ion conductors [6,7], complex oxides [8,9], and chalcogenides [10].

Ternary chalcogenides with the I-V-VI2 formula (I = Cu, Ag; V = As, Sb, Bi; VI = S,
Se, Te) have an intrinsically ultra-low lattice thermal conductivity due to their unique crystal
structures [11–13]. For example, due to the anharmonicity caused by the repulsion between
neighboring chalcogen ions and lone-pair electrons, the lattice thermal conductivity of
CuSbS2 is only about 0.5 W·m−1·K−1 at 627 K [14]. In AgSbSe2 and AgSbTe2, the mixing
of Ag and Sb atoms can lead to a further decline in lattice thermal conductivity [15–18].
I-V-VI2 compounds have a wide range of structural diversity. The crystal structure of
Cu-containing compounds such as CuSbS2 and CuSbSe2 can be viewed as the stacking
of [CuSb(S/Se)2] layers in an AĀAĀ-type sequence along the c axis direction [19,20].
AgSbSe2 and AgSbTe2 crystallize in the cubic space group Fm3m with disordered Ag and
Sb cations [21], while AgBiVI2 (VI = S, Se, Te) compounds exhibit complex temperature-
dependent phase transition behavior [22–25].

AgBiSe2 compound exists in three polymorphs: a disordered cubic phase, an ordered
hexagonal phase, and a rhombohedral phase. Their structures are shown in Figure 1. As
an n-type semiconductor with poor electrical conductivity, the thermoelectric properties of
AgBiSe2 can be enhanced by increasing the charge carrier concentration via doping In, Nb,
or Ge at Ag sites [26–28] or by doping halogen elements at Se sites [29]. Both experimental
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and density functional theory calculation results indicate that p-type hexagonal AgBiSe2
can potentially be used in room-temperature thermoelectric applications [30,31]. Addition-
ally, the phase transition temperatures of AgBi1−xSbxSe2 are determined by the doping
concentration of Sb [32,33]. Very recently, Br-doped cubic (AgBiSe2)0.7(PbSe)0.3 phase has
been proved to be potential material with fine thermoelectric properties in the range from
300 to 800 K [34]. The stable cubic AgBiSe2 phase may potentially exhibit excellent thermo-
electric properties due to its intrinsic crystal structures and related electronic structures.
The high symmetry can result in energy band degeneracy, and thus lead to high power
factor, while the material with disordered atoms usually exhibits ultra-low lattice thermal
conductivity [35]. Accordingly, further investigation into methods for achieving a stable
cubic AgBiSe2 phase and enhancing its thermoelectric properties are of great interest.
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Figure 1. Crystal structures of the hexagonal, rhombohedral, and cubic phases of AgBiSe2.

Inspired by the research on (AgBiSe2)1−x(PbSe)x, we focus on another IV-A metal and
find that a stabilized room-temperature cubic AgBiSe2 phase can also be achieved via Sn
substitution. In previous studies, both AgSbSe2 and PbSe have cubic crystal structures, so
it is not hard to understand the phase transition behavior in (AgBiSe2)1−x(AgSbSe2)x and
(AgBiSe2)1−x(PbSe)x solid solutions [32–34]. Herein, although the crystal structure of SnSe
is not cubic [36], the solid solution between SnSe and AgBiSe2 has a cubic structure at room
temperature. Such a finding indicates that in-depth studies on structural phase transition
and its related physical properties are needed. In addition, in this work the thermoelectric
properties were also investigated, and the results indicate that Ag1−x/2Bi1−x/2SnxSe2 is a
potentially lead-free thermoelectric material with ultra-low lattice thermal conductivity.

2. Materials and Methods

Ag1−x/2Bi1−x/2SnxSe2 samples were prepared via high-temperature solid-state re-
actions. Stoichiometric amounts of Ag (Alfa, 99.9%), Bi (Aladdin, 99.999%), Sn (Alfa,
99.99%), and Se (Alfa, 99.99%) were cut into small pieces and weighed in an argon-filled
glovebox. The elements were mixed and loaded into evacuated silica tubes. The tubes
were then heated to 1273 K at a rate of 80 K/h and homogenized at this temperature for
20 h using a programmable furnace. Finally, the tubes were slowly cooled down to room
temperature over 20 h. The synthesized ingots were ground into fine powders for use in
further measurements.

Powder X-ray diffraction (PXRD) patterns of Ag1−x/2Bi1−x/2SnxSe2 were measured
with a step size of 0.02◦ by using a Bruker D8 Advance X-ray powder diffractometer at room
temperature and Cu Kα radiation. Rietveld refinements of AgBiSe2, Ag0.975Bi0.975Sn0.05Se2,
and Ag0.95Bi0.95Sn0.10Se2 were performed using Fullprof [37]. Differential scanning calorime-
try (DSC) measurements were performed on the polycrystalline powders of
Ag1−x/2Bi1−x/2SnxSe2 (35–45 mg) using a NETZSCH STA 449 F3. DSC measurements
were taken over a temperature range of 350 K to 650 K. The heating rate was 10 K/min. The
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microstructure and energy-dispersive spectroscopy (EDS) mapping of Ag0.90Bi0.90Sn0.20Se2
sample were carried out using a Zeiss Sigma 500 field emission scanning electron mi-
croscopy (SEM).

Ag1−x/2Bi1−x/2SnxSe2 (x = 0.2, 0.25, 0.3, 0.35) powders were sintered into pellets
with high relative densities by using a LABOX-325 spark plasma sintering instrument
(Dr. Sinter Land). An axial compressive stress of 40 MPa was applied at 773 K for 7 min
under 10 Pa. The Seebeck coefficients and electrical conductivity values at temperatures of
300 K to 773 K were measured using a NETZSCH SBA 458 instrument with a temperature
gradient of 4 K across ~8.25 mm. Thermal conductivity was calculated using the standard
formula κ = CpDρ, where Cp is the specific heat calculated by the Dulong-Petit law, D is
the thermal diffusivity measured using the laser flash method (NETZSCH LFA 457), and ρ
is the measured mass density.

3. Results and Discussion

Theoretical diffraction patterns for hexagonal, rhombohedral, and cubic AgBiSe2 are
shown in Figure 2a, while Figure 2b shows PXRD patterns for Ag1−x/2Bi1−x/2SnxSe2 (x = 0,
0.1, 0.15, 0.2, 0.25, 0.30, 0.35). The measured diffraction patterns of AgBiSe2 are completely
consistent with the theoretical patterns of the hexagonal phase, indicating that the pristine
AgBiSe2 is phase pure. The diffraction patterns change with increasing Sn concentration in
the Sn-doped compounds. For instance, the (110) diffraction pattern at 43.26◦ and (018)
diffraction pattern at 44.52◦ become closer with an increasing Sn ratio. Meanwhile, some
small patterns such as (003) at 13.5◦, (101) at 24.98◦, and (006) at 27.18◦ disappear when
x is higher than 0.15. The PXRD patterns for the samples with high Sn concentrations
are similar to the theoretical diffraction patterns of cubic AgBiSe2, revealing that a stable
cubic phase can be achieved at room temperature via Sn doping. There are no impurity
patterns in the measured data, indicating that solid solutions were formed in all the samples.
It should be noticed that although the diffraction patterns of Ag0.925Bi0.925Sn0.15Se2 are
consistent with the cubic phase, the broad pattern at about 43.82◦ potentially hints that
Ag0.925Bi0.925Sn0.15Se2 is an intermediate phase between the hexagonal and cubic phases.
Accordingly, only the thermoelectric properties of cubic Ag1−x/2Bi1−x/2SnxSe2 (x = 0.2,
0.25, 0.3, 0.35) are discussed in this paper.
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Figure 2. (a) Theoretical diffraction patterns for hexagonal, rhombohedral, and cubic phase AgBiSe2.
Patterns are labeled with their primary crystal indices. (b) Experimental diffraction patterns of
Ag1−x/2Bi1−x/2SnxSe2 (x = 0, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35). (c) Calculated lattice parameters (a)
from the PXRD results vs. Sn concentration (x). The dashed line indicates the best linear fit of the
lattice parameters.

As shown in Figure 2c, the lattice parameters determined from the experimental
PXRD patterns increase linearly with increasing Sn concentration. This is consistent with
Vegard’s law. In general, variations in the lattice parameter of chalcogenide semiconductors
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can be explained by ionic radius differences between the intrinsic and doped elements.
Since the ionic radius of Sn2+ is difficult to define [38], the increased lattice parameter
cannot be directly explained by comparing ionic radii. However, a cubic SnSe phase which
crystallizes in a rock salt structure may potentially help understand this change in lattice
parameter [39]. The Sn-Se bonding distance in cubic SnSe is about 2.995 Å, much longer
than the Ag/Bi-Se distance of 2.916 Å in cubic AgBiSe2. Thus, the ionic radius of Sn2+ in
the rock salt structure should be larger than the average ionic radius between Ag+ and Bi3+.

DSC measurements were performed for Ag1−x/2Bi1−x/2SnxSe2 (x = 0, 0.05, 0.10, 0.15,
0.20, 0.25, 0.30) in order to understand the polymorph change at room temperature. The
results are shown in Figure 3. For pristine AgBiSe2, one small peak at about 500 K indicates
the phase transition from a hexagonal to a rhombohedral phase, while the sharp peak at
586 K represents the transformation to a cubic phase. For Sn-containing materials, the
temperature corresponding to the sharp endothermic peak decreases with increasing Sn
concentrations. Therefore, the thermal energy required to overcome the potential energy
between the hexagonal and cubic phases also decreases. For Ag0.925Bi0.925Sn0.15Se2, a
small and flat endothermic peak at about 520 K indicates the existence of the hexagonal
phase, consistent with the prior discussion of PXRD data. The finding is interesting since
neither AgBiSe2 nor SnSe has a cubic structure at room temperature. Accordingly, in order
to understand the phenomenon, detailed analysis of the crystal structures for Ag-V-Se
(V = As, Sb, Bi) compounds was performed.
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Figure 3. DSC curves for Ag1−x/2Bi1−x/2SnxSe2 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) samples in the
range of 350 K to 650 K. The endothermic direction is downward in the figure.

AgBiSe2 shows multiple crystal phase transitions with increasing temperature, trans-
forming from ordered hexagonal P3m1 to rhombohedral R3mR and then to the disor-
dered rock salt structure [21]. AgSbSe2 is a cubic phase material with mixed Ag and
Sb atoms [21], while AgAsSe2 crystallizes in the rhombohedral space group R3mH [40].
Although these compounds crystallize in different space groups, their crystal structures
are very similar, as shown in Figure 4. It is clear that the difference between Ag-Se and
V-Se bonding distances plays a major role in determining the crystal structure of Ag-V-Se
materials. In order to describe the bonding distance difference simply, the ratios between
average Ag-Se and V-Se bonding distances in octahedrons are shown in the figure. The
ratios of ravg(Ag-Se)/ravg(V-Se) for AgBiSe2, AgSbSe2 and AgAsSe2 are 0.95, 1.00, and
1.09, respectively. The ratios affect the Se-As-Se angle directly, and further determine the
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distortion degree of the octahedral environments. The longer Bi-Se distance in AgBiSe2
leads to a Se-Bi-Se angle of 87.2◦. In contrast, the shorter As-Se distance of 2.710 Å in
AgAsSe2 results in a larger Se-As-Se angle (92.5◦). Accordingly, for AgVSe2 compounds,
adjustment of Ag-Se and V-Se distances can change the crystal structure. The Sn-Se bond-
ing distance is longer than the Ag-Se distances but shorter than the Bi-Se distances. In
Ag1−x/2Bi1−x/2SnxSe2, the bonding distance difference between Ag/Sn-Se and Bi/Sn-Se
decreases with increasing Sn ratio. So the crystal structure of AgBiSe2 can be transformed
to cubic phase via Sn doping. The Rietveld refinement results of Ag1−x/2Bi1−x/2SnxSe2
(x = 0, 0.05, 0.10) are consistent with the above analysis. As is shown in Figure S1, the
Se-Bi-Se angle increases with increasing x value. Considering that these structures are
extremely complex, further experimental studies on the crystal structures of metal-doped
AgBiVI2 (VI = S, Se, Te) are still needed.
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Figure 4. Ball-and-stick representation of (a) hexagonal AgBiSe2, (c) AgSbSe2, and (e) AgAsSe2. Ball-
and-stick views of fragments showing the connection between [AgSe6] and (b) [BiSe6], (d) [SbSe6],
and (f) [AsSe6] octahedrons. The ravg(Ag-Se), ravg(Bi-Se), ravg(Sb-Se) and ravg(As-Se) in the figure are
average bonding distances of Ag-Se, Bi-Se, Sb-Se and As-Se in octahedrons, respectively.

As shown in Figure S2, there is no obvious pore or crack in the cross-sectional im-
age, suggesting high density of the sintered sample. The distribution for all elements is
homogeneous, indicating that the material is phase pure. Figure 5 shows the measured
temperature-dependent thermoelectric transport properties of Ag1−x/2Bi1−x/2SnxSe2. Tin
doping leads to significant changes in both the Seebeck coefficient and electrical con-
ductivity. Due to the phase transition behaviour, both Seebeck coefficient and electrical
conductivity of pristine AgBiSe2 do not change monotonically with increasing temperature.
Pristine AgBiSe2 is an intrinsic n-type semiconductor with a negative Seebeck coefficient
over the entire measured temperature range. The Seebeck coefficients of the Sn-doped
materials are positive at room temperature, indicating that the dominating charge carriers
are holes. The room-temperature Seebeck coefficient of Ag0.90Bi0.90Sn0.20Se2 is about +130
µV/K, while that of Ag0.875Bi0.875Sn0.25Se2 increases to about +350 µV/K. A similar carrier
type transition behaviour has been observed in AgBi1-xSbxSe2 [33,34]. With increasing
temperature, the Seebeck coefficients of the Ag1−x/2Bi1−x/2SnxSe2 samples are converted
into n-type negative values. The carrier type change from p-type to n-type can be at-



Crystals 2021, 11, 1016 6 of 10

tributed to the thermally generated extrinsic carriers at high temperatures. The absolute
value of the Seebeck coefficients in the high-temperature region decreases with increas-
ing Sn content. With increasing temperature, the electrical conductivity of all materials
exponentially increases, indicating that the cubic crystal structure Sn-doped materials
are intrinsic semiconductors. As shown in Figure S3, the logarithmic plot of ρ in the
high temperature region versus the inverse temperature show linearity. According to
the thermal activation model, the energy band gaps for all Sn-doped samples are calcu-
lated using the formula ln ρT = Eg/2kBT + f , where Eg is the band gap, T is the absolute
temperature, and kB is the Boltzmann constant. The band gaps deduced from thermal
activation model for Ag0.90Bi0.90Sn0.20Se2, Ag0.875Bi0.875Sn0.25Se2, Ag0.85Bi0.85Sn0.30Se2 and
Ag0.825Bi0.825Sn0.35Se2 are 0.63 eV, 0.47 eV, 0.42 eV and 0.38 eV, respectively. The band gap
gradually decreases with the increasing Sn ratio. In addition, in contrast to the changes
to the Seebeck coefficients, the electrical conductivity of Ag1−x/2Bi1−x/2SnxSe2 gradually
increases with the increasing Sn ratio. It is clear that the carrier type change is related to
the doping of Sn. The most likely reason for this phenomenon is that the participation of
Sn modifies the intrinsic point defects of Ag1−x/2Bi1−x/2SnxSe2. However, it is very diffi-
cult to confirm this conjecture from theoretical calculations or experiment measurements
due to the disordered atomic distribution of these materials. The electrical conductivity
of Sn-doped AgBiSe2 falls in the range from 110 S/cm to 150 S/cm at 773 K, which is
comparable with cubic (AgBiSe2)1−x(PbSe)x [32]. Due to the change of carrier type, an
extreme power factor (PF) value is observed at about 373 K. The maximum PF value of the
Ag1−x/2Bi1−x/2SnxSe2 materials with p-type transport properties is about 0.8 µW/cm·K2,
while Ag0.875Bi0.875Sn0.25Se2 exhibits the maximum n-type PF value of ~1.2 µW/cm·K2

at 773 K.
The measured total thermal conductivity of Ag1−x/2Bi1−x/2SnxSe2 samples is shown

in Figure 6a. The room temperature thermal conductivity of Ag1−x/2Bi1−x/2SnxSe2 ranges
from 0.5–0.6 W/m·K, lower than the measured thermal conductivity of pristine AgBiSe2
due to the enhanced point defect scattering. It should be noticed that the thermal con-
ductivity of Sn-doped samples is inclined to contain less bipolar contribution due to the
coexistence of holes and electrons. The thermal conductivity contributed from lattice
vibration (κlatt) and bipolar effect (κbip) is calculated by subtracting the electronic thermal
conductivity from total thermal conductivity. The electronic thermal conductivity (κele) is
estimated by using the formula κele = LσT, where L, σ, and T are the Lorenz factor, electrical
conductivity, and absolute temperature, respectively. The Lorenz factors are calculated
using a single parabolic band (SPB) model [41]. Considering that Ag1−x/2Bi1−x/2SnxSe2
materials may exhibit multiple band behaviour, so the SPB model can only provide ap-
proximate estimates in this work. Figure 6b shows the calculated κlatt + κbip results in the
range of 300 K to 773 K. Due to the enhanced point defects scattering, the lattice thermal
conductivity of Sn-doped AgBiSe2 is lower than that of pristine AgBiSe2 in the range
from 300 K to 523 K. The κlatt + κbip values of Ag0.9Bi0.9Sn0.2Se2, Ag0.875Bi0.875Sn0.25Se2, and
Ag0.825Bi0.825Sn0.35Se2 are in the range of 0.45–0.6 W/m·K, while that of Ag0.85Bi0.85Sn0.3Se2
is much lower (only 0.37 W/m·K at 773 K). Such a low thermal conductivity is comparable
with previous studies of cubic AgBiSe2 materials [32–34]. This ultra-low κlatt + κbip value
can be explained by two reasons, namely the increased point defect scattering caused
by doping Sn and the increased phonon–phonon scattering with increasing temperature.
Figure 7 presents the calculated ZT values of the Ag1−x/2Bi1−x/2SnxSe2 samples. The final
ZT values are very low compared with state-of-the-art thermoelectric materials, ranging
from 0.06 to 0.14 at 773 K. However, due to the high structural symmetry and low thermal
conductivity of these materials, Ag1−x/2Bi1−x/2SnxSe2 can still be viewed as a potential
thermoelectric material candidate.
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4. Conclusions

In summary, the polymorph changes and thermoelectric properties of Sn-doped
AgBiSe2 were investigated. The room-temperature crystal structure of Ag1−x/2Bi1−x/2SnxSe2
was transformed from a hexagonal structure to a disordered cubic structure when the value
of x was larger than 0.20. In addition, the carrier type of Ag1−x/2Bi1−x/2SnxSe2 at room
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temperature was p-type, in contrast to the the n-type conductivity of pristine AgBiSe2. The
electrical conductivity exponentially increased with increasing temperature. The thermal
conductivity of Ag1−x/2Bi1−x/2SnxSe2 was ultra-low (in the range of 0.4 to 0.8 W/m·K)
over the entire measured temperature range. Due to its high structural symmetry and
low thermal conductivity, Ag1−x/2Bi1−x/2SnxSe2 is a potentially lead-free thermoelectric
material candidate. However, further in-depth investigation into enhancing the power
factor of this material will be necessary.
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