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Abstract: The oxidative coupling of methane (OCM) to C2 hydrocarbons (C2H4 and C2H6) has
aroused worldwide interest over the past decade due to the rise of vast new shale gas resources.
However, obtaining higher C2 selectivity can be very challenging in a typical OCM process in the
presence of easily oxidized products such as C2H4 and C2H6. Regarding this, different types of
catalysts have been studied to achieve desirable C2 yields. In this review, we briefly presented
three typical types of catalysts such as alkali/alkaline earth metal doped/supported on metal oxide
catalysts (mainly for Li doped/supported catalysts), modified transition metal oxide catalysts, and
pyrochlore catalysts for OCM and highlighted the features that play key roles in the OCM reactions
such as active oxygen species, the mobility of the lattice oxygen and surface alkalinity of the catalysts.
In particular, we focused on the pyrochlore (A2B2O7) materials because of their promising properties
such as high melting points, thermal stability, surface alkalinity and tunable M-O bonding for OCM
reaction.

Keywords: oxidative coupling of methane; ethylene; lattice oxygen; pyrochlore; La2Ce2O7

1. Introduction

Methane, being an abundant hydrocarbon resource, provides a kind of comparably
cheaper and environmentally friendly fuel [1,2]. The use of natural gas as an important
industrial feedstock has increased as compared to petroleum over the past few decades due
to the extraction of natural gas from unconventional sources, for example shale deposits [3].
Figure 1 reveals the recoverable shale gas reserves in the world in trillion cubic feet (TCF).

Ethylene is used as a raw material in the manufacture of polymers such as polyethy-
lene, polystyrene, polyvinyl chloride and polyethylene terephthalate, as well as fibers,
petrochemical products and organic chemicals. It is also used as the main feedstock (~50%)
in the chemical industry. Hence, many global chemical companies are planning to develop
economical and feasible processes to produce ethylene directly from methane [3,4].

In general, steam and the thermal cracking of naphtha processes are used for ethylene
production in petroleum refineries. Global ethylene production is mainly dependent on
these processes [5,6]. However, some of the key problems identified here are energy
intensiveness (up to 40 GJ heat per tonne ethylene) and environmental unsustainability [7].
High temperatures (>1200 ◦C) are required for breaking the C-H bond (bond energy,
440 kJ/mol) in this process and approximately three tons of CO2 is released per ton of
ethylene production [8]. Therefore, another way ethylene can be produced from natural
gas is via indirect paths by the formation of syngas (CO/H2) through the catalytic Fischer-
Tropsch synthesis (FTS) process [9,10]. Alternatively, syngas can be transformed into
methanol and then methanol to ethylene [11,12]. In addition to this, methane can also
be converted directly to value-added chemicals and fuels through oxidative and non-
oxidative catalytic reaction pathways. The non-oxidative processes involve the coupling of
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methane to olefins; this process suffers from intrinsic thermodynamic limitations and needs
higher energy for large-scale applications [13]. Therefore, most of the research for direct
conversion has emphasized a process called oxidative coupling of methane (OCM) [14–19].
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Figure 1. Global projection of technically recoverable shale gas reserves in trillion cubic feet (TCF).
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Zhao et al. [14] prepared hierarchically structured porous flower-like materials such as
La2O3-H- and Sr-doped (Sr0.1LaOx-H) compounds and highly dense non-porous (La2O3-D
and Sr0.1LaOx-D) microspheres. The porous materials showed higher catalytic perfor-
mances in OCM than non-porous catalysts, presumably due to the creation of the active
sites in porous materials, which could enhance the activation of oxygen. Sr0.1LaOx-H
showed better OCM results than La2O3-H and reached the optimum selectivity (~48%) and
C2 yield (~19%) at 550 ◦C due to Sr isolating the active sites of the catalyst, which can act
as a strong basic site. However, deactivation occurred in the Sr0.1LaOx-H catalyst during
OCM in ~30 h, but adding a small amount of Zr can produce better stability in OCM. Lopes
et al. [15] prepared La2Ti2O7-based catalysts (LaTi1−xMgxO3+δ) with varied Ti/Mg molar
ratios through the partial substitution of Ti by Mg to regulate the quantities of alkaline
sites and surface oxygen species, properties crucial for OCM reaction. The characterization
data testifies that alkalinity and the surface oxygen vacancy concentration increase as Mg
increases. The presence of high amounts of Mg on the surface can increase the incidence of
defective sites in the interface formed by La-O-Mg. In general, the rich defects are active and
selective toward C2 production in the OCM reaction. Hence, the catalytic results showed
that methane conversion and C2 selectivity increased as a function of the Mg amount,
and also this catalyst exhibited high thermal stability after 24 h on stream. Sato et al. [16]
proposed that, in the presence of an electric field, the CePO4 nanorod catalysts showed
high activity and stability even at low temperatures for OCM (C2 yield = 18%) without
any external heating. Because, in the electric field, these catalysts can be produced and
regenerate the surface-active oxygen species even at low temperatures, which are mainly
responsible for OCM, Schmack et al. proposed a meta-analysis method. It is often useful
ascertain the links between a catalyst’s physicochemical characteristics and its performance
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in an OCM reaction [17]. Pirro et al. [18] proposed the process simulator and illustrated it
for the OCM to determine the catalyst-dependent kinetics for industrial implementation.
For the case study, the feeding of oxygen and cooling were operated under a multi-stage
adiabatic configuration. Three catalysts (Sn-Li/MgO, NaMnW/SiO2 and Sr/La2O3) were
introduced to estimate the methane conversion and C2+ yield compared to a single stage.
They revealed that multi-phase configuration is advantageous compared to a single phase.

The OCM process follows the value-added transformation of natural gas through the
catalytic reaction between methane and oxygen for ethylene production. Although more
than four decades have passed since the initial work on OCM, this reaction has still not
been able to be used as a successful industrial process for ethylene production because of
the lower yield (<30%) of C2 products.

In the reaction mechanism of OCM, the first step of abstraction of a hydrogen atom
from methane with the help of surface-active oxygen results in the formation of hydroxyl
groups, which react with each other to produce H2O, and at the same time create an
oxygen vacancy on the catalyst surface. Meanwhile, methyl radicals will combine to
form ethane which further undergoes a dehydrogenation reaction to produce the desired
product of ethylene, as shown in Figure 2. According to previous reports, active oxygen
species on the surface of catalyst consist of peroxide (O2

2−), lattice oxygen (O2−), carbonate
(CO3

2−), superoxide (O2
−) and hydroxide (OH−) ions. Among all, surface lattice oxygen

(O2−) anions play a crucial role in attaining the C2 product selectively, whereas surface
electrophilic anions (O−, O2

− and O2
2−) usually result in an over-oxidation of the COx

product [20,21].
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From the pioneering work of Keller and Bhasin [22] and Ito and Lunsford [23], various
catalysts have been investigated to attain adequate methane conversion and C2 selectiv-
ity/yield. Most of the metal oxides in the periodic table, such as transition metal oxides,
rare earth metal oxides, alkali or alkaline earth metal oxides, perovskites and pyrochlore
compounds, have been individually or in various combinations tested for OCM reac-
tion [3,24–28]. Zavyalova et al. [29] conducted a comprehensive statistical analysis of about
~1000 research articles related to OCM. They pointed out that both rare-earth metal oxides
and alkaline-earth metal oxides, along with alkali metal oxides, are good candidates for
OCM reaction. In addition, binary and ternary combinations of metal oxides are also
crucial for high and sustainable catalytic activity in the OCM reaction. The selectivity of
the catalysts can be further improved by using various dopants such as alkali (Cs, Na)
and alkaline earth (Sr, Ba) metals, whereas Mn, W and the Cl− anion dopants can be used
to enhance the catalytic activity. Figure 3 represents the most promising OCM catalytic
systems with C2 yields greater than 25%.
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This review presents three types of catalysts for OCM reaction and highlights the
features that play key roles in the OCM reactions, such as active oxygen species, the
mobility of the lattice oxygen, and the surface alkalinity of the catalysts. The catalyst
compositions and their catalytic functions are also discussed. Special attention has been
focused on pyrochlore (A2B2O7) materials with promising properties such as high melting
points, thermal stability, surface alkalinity and tunable M-O bonding, these being essential
for OCM reaction.

2. Catalysts for Oxidative Coupling of Methane

Oxide catalysts are the main catalysts used for OCM reaction. These can be a pristine
form or modified with group alkali/alkaline earth metals or transitional metals. These
catalytic systems are established under various synthesis methods such as hydrothermal,
sol-gel, precipitation, impregnation, thermal decomposition and flame spray pyrolysis
to yield tunable catalyst compositions by varying basicity and oxygen vacancies, which
are the most important characteristics of OCM catalysts and also key factors in activating
methane. These catalysts can be coupled with tunable reaction conditions such as space,
velocity and temperature to enhance methane conversion, selectivity and yield [19,30].

2.1. Alkali/Alkaline Earth Metal Doped/Supported on Metal Oxide Catalysts

Pristine or unmodified metal oxide catalysts generally exhibit low C2 selectivity/yield
and rapid deactivation in OCM reaction. Modified systems are considered to achieve higher
yield at lower temperature regions due to the altered either basicity or oxygen vacancies
and/or other defects, which are crucial for CH4 activation [31–36]. Ferreira et al. [32]
developed CeO2 catalysts modified with earth alkaline metals (M = Mg, Ca, and Sr) and
demonstrated that among these three dopants, Ca-doped CeO2 catalyst showed the best
performance in the OCM reaction. This is mainly due to the similar ionic radii of Ca2+ and
Ce4+ ions and the higher ratio of the oxygen species O2

− and O2
2− to lattice oxygen and a

high amount of surface basic sites. Yıldız et al. [33] proved that mesoporous TiO2-rutile
supported MnxOy-Na2WO4 catalysts’ better performance than commercial TiO2-rutile-
and TiO2-anatase-supported catalysts. In addition, this catalyst is stable during 16 h on
stream in OCM. Ivanov et al. [34] synthesized Mg, Al, Ca, Ba and Pb-substituted titanates
SrTi1−xAxO3(A = Mg, Al, Ca, Ba, Pb, x = 0.1) and Sr2Ti1−xAxO4(A = Mg, Al, x = 0.1)
catalysts by using a mechanochemical method and tested these catalysts for OCM reaction
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at 850 and 900 ◦C. Finally, they demonstrated that among these dopants, Mg- and Al-doped
SrTiO3 and Sr2TiO4 catalysts showed the best performance in the OCM reaction to provide
a higher C2 yield up to 25% and C2 selectivity around 66%, presumably due to (Sr, Mg)O
oxide segregate on the surface, which has active oxygen ion-radicals. Peng et al. [35]
developed SnO2 modified with alkaline metals and demonstrated that the Li-doped SnO2
catalyst showed the best performance in the OCM reaction among these dopants. This
is mainly due to the higher surface intermediate alkaline sites and electrophilic oxygen
species. Moreover, this catalyst showed stable catalytic performance up to 100 h without
deactivation. Finally, they proposed that the catalytic activity and selectivity towards the
desired products were higher for the optimized catalyst (Sn5Li5) than Mn-Na2WO4/SiO2 at
a lower temperature (750 ◦C), which is considered a state-of-the-art catalyst for OCM. Kim
et al. [37] carefully explored the role of oxygen species using lanthanum-based perovskite
catalysts, which are prepared by a citrate sol-gel method. Their study found that the active
surface lattice oxygen species and a facile filling of lattice oxygen vacancies by gas-phase
oxygen are responsible for the production of C2 hydrocarbons in OCM.

Elkins et al. [38] studied rare earth oxides (Sm2O3, TbOx, PrOy and CeO2) doped with
alkali (Li and Na) and alkaline earth metal (Mg and Ca) supported on MgO. These metal
dopants can alter the acid-base property of catalysts, which has an impact on catalysts
activity, selectivity and stability. Hence, doped catalysts showed higher C2 yields than
undoped catalysts owing to the presence of strong basic sites (see Figure 4). Among all
catalysts, Li-TbOx/n-MgO showed better activity, C2 selectivity and C2 yield at 650 ◦C.
However, undoped catalysts showed higher yield at a lower temperature (<600 ◦C) than
the doped catalysts because the active sites in doped catalysts are blocked with by-product
CO2 at low temperatures.
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Li-doped MgO is one of the best systems for OCM reaction [39–45] because, in this
system, an additional electron is produced when each Li+ cation replaces an Mg+2 cation.
This excess of an electron is compensated by the formation of electron holes strongly
bonded to lattice oxygen, and O− centers are formed with a strong radical character
localized to the O atom, as in the case of Li-doped MgO forming [Li+O−] centers. [Li+O−]
catalyzes the CH4 dehydrogenation in the following steps:

[Li+O−] + CH4 → [Li+OH−] + CH3 (1)

2[Li+OH−]→ [Li+O2− ] + Li+V + H2O (2)

[Li+O2−] + Li+V + 1/2O2 → 2[Li+O−] (3)
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Here, ‘V’ denotes an oxygen vacancy. The [Li+O−] centers are generated in Equation (3)
again to fulfill a redox cycle [46]. Ali Farsi et al. [41] reported that 7% Li/MgO catalysts were
prepared with two different preparation methods, such as incipient wetness impregnation
(IWI) and sol-gel (SG). The catalyst prepared by using the sol-gel method exhibited better
methane conversion, higher C2 selectivity, and yield for the desired product than the
catalyst prepared by the IWI method. The better performance of the catalyst prepared
through the sol-gel method was suggested to relate to the following two factors: (i) it has a
significantly larger surface area, and (ii) it comprises a greater quantity of Li incorporated
in the MgO matrix. Both of these effects contribute to an increase in the number of active
sites in the catalyst. However, at 850 ◦C, the selectivity of Li/MgO-SG catalyst decreased
because of the evaporation of some of the Li from the MgO surface. Qian et al. [42] reported
that Li can restructure the MgO surface to expose high-indexed facets such as {110}, {111}
and {100} facets; among them, the Mg4c

2+ sites of MgO {110} facets are highly active and
selective in catalyzing the OCM reaction, which produces high C2 selective products by
the formation of methyl radical intermediate without other less-stable carbon-containing
radicals (CH2 and CH), which will reduce the methyl radical dissociation and subsequent
combustion reaction. Li-doped MgO catalysts with different Li loadings (1.3% and 5.6%)
have been prepared by Luo et al. [47]. Different Li contents were observed over both the
as-prepared catalysts, but similar Li was present in the used catalysts with different Li
surface distribution. Hence, higher CH4 conversion and C2 selectivity were observed over
Li (5.6%)/MgO than the Li (1.3%)/MgO catalyst because the loss of Li occurred during
the reaction process through the movement of these ions from the bulk material to the
catalyst surface and successive desorption was responsible for asymmetrical and coarse
structures with bare MgO {110} and {111} facets observed in Li (5.6%)/MgO catalysts but
not in the Li (1.3%)/MgO. Hence, the main role of Li in MgO-based catalyst during OCM
reaction acts as a structural modifier of the active MgO component rather than as an active
center. Due to the poor stability of these Li-supported catalysts, some researchers have
recently focused on depressing Li-ions’ evaporation at high temperatures. Matsumoto
et al. [48] proposed that the catalytic activity and selectivity towards desired products
were higher over crystalline Li2CaSiO4 than Mn-Na2WO4/SiO2, which is considered a
state-of-the-art catalyst for OCM. The CH4 conversion and C2 selectivity were obtained
at 28.3% and 77.5%, respectively, at the temperature of 750 ◦C for the OCM reaction. In
addition, they exhibited higher catalyst durability for 50 h on stream without deactivation
and structural changes. The improvement of OCM activity in Li2CaSiO4 is likely to result
from the combination of multiple cations in the crystal lattice. The structure of Li2CaSiO4
consists of a single oxygen site, neighboring with Li, Ca and Si (two Li, two Ca, and one
Si atoms). The resulting coordination around oxygen provides a dual character such as
strong basicity and lattice stability, which are mainly responsible for CH4 conversion and
C2 selectivity, respectively. Elkins et al. [49] reported two different types of metal oxide
catalysts such as Li-doped TbOx and Sm2O3 supported on MgO and they found that the
Li-Tb2O3/n-MgO catalyst exhibited high activity and selectivity towards desired products
at low reaction temperature i.e 650 ◦C. In addition, the catalyst showed higher stability
and lower deactivation rate after 30 h on stream, because the Li addition prompted the
reduction of TbOx phase to Tb2O3 and also shifted the Tb 3d core-level electrons to higher
binding energy that caused strong Li-TbOx interactions, which in turn became more active
toward C2 product formation than the SmOx. Table 1 summaries the available data in
literature on various Li doped/impregnated catalysts for OCM.
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Table 1. OCM reaction over various Li supported/doped catalyst.

Year Catalyst Reaction Condition CH4 Conv. (%) C2 Select. (%) C2 Yield (%) Ref.

1985 7% Li/MgO CH4:O2:N2 = 1.0: 2.0: 25.0, T = 720 ◦C
flow = 0.83 mL s−1, 4 g catalyst 37.8 50.3 19 [46]

1989 Li(5 wt%)/MgO CH4/O2/He = 78:8:14, T = 675 ◦C 9.0 82.0 7.4 [50]
2011 7%Li/MgO-IWI CH4:O2:inert = 3:1:3, T = 800 ◦C, 0.3 g catalyst 26.1 61.3 16 [41]
2011 7%Li/MgO-SG CH4:O2:inert = 3:1:3, T = 800 ◦C, 0.3 g catalyst 39.6 66.4 26.3 [41]

2014 Li-TbOx/n-MgO CH4:O2 = 4:1, T = 700 ◦C, *GHSV = 2400 h−1,
0.4 g catalysts 23.9 63.8 15.3 [49]

2014 Li-Sm2O3/n-MgO CH4:O2 = 4:1, T = 700 ◦C, GHSV = 2400 h−1,
0.4 g catalysts 21.1 62.5 13.2 [49]

2014 1% Li/MgO CH4/O2/N2 = 4:2:4, T = 800 ◦C, GHSV = 4500 h−1 38.0 35.0 13.3 [51]

2020 Li2CaSiO4
CH4:O2:N2 = 1.0:0.25:8.75, T-800 ◦C, flow rate = 10

mL/min., 1 g catalyst 30.8 71.8 22.1 [48]

2020 Li2CaSiO4
CH4:O2:N2 = 1.0:0.25:8.75, T-800 ◦C, flow rate = 10

mL/min., 1-g catalyst 45.6 57.7 26.3 [48]

2020 1.3 wt.% Li/MgO 8% CH4 and 4% O2 balanced with Ar, T = 750 ◦C,
flow rate: 150 mL/min. 42.0 46.0 19.3 [42]

2020 5.6 wt.% Li/MgO 8% CH4 and 4% O2 balanced with Ar, T = 750 ◦C,
flow rate: 150 mL/min. 36 59 21.2 [42]

*GHSV—gas hourly space velocity.

The Li-supported systems, especially Li-MgO catalysts, are among the most studied
OCM Catalysts. Because they show a C2 yield of 20% with higher methane conversion
rates at lower temperatures, however, these catalysts suffer from deactivation due to Li
vaporization. [Li+O−] is specified as the active site for the formation of methyl radical
intermediate in OCM reaction, even though many features are still unclear, such as stability
of the catalyst, structure activity relationship, and active center; hence, proficient materials
are needed to stabilize Li to overcome these issues, and these systems must be stable at high
temperatures, where OCM usually occurs. Thus, the synthesis of efficient and Li stable
catalysts for OCM is highly challenging. To overcome these issues, in order to improve the
catalytic stability of these catalysts, various modifications have been made during the last
few decades via the addition of rare-earth oxides or doping with earth alkaline metals or
through coordination of multiple ions. As per the previous results, we understand that the
mixed-phase oxides have multiple elements with an interface that are believed to show
higher activity and stability due to the synergistic effect between the metal oxides. For
example, when used Li doped TbOx and Sm2O3 supported on MgO and they found that
the Li-Tb2O3/n-MgO catalyst exhibited higher stability and lower deactivation rate after
30 h on stream [49], while Li2CaSiO4 showed the better catalytic activity and selectivity
over Mn-Na2WO4/SiO2 and also exhibited higher catalyst durability for 50 h on stream
without deactivation and structural changes for the OCM reaction [48].

2.2. Modified Transition Metal Oxide Catalysts

Mn-NaWO4/SiO2 catalyst is widely accepted as the most applicable catalyst, with
a higher C2 yield (~27%) in OCM [33,52–60]. Li S-B. et al., J. H. Lunsford et al. and
R. M. Lambert et al. groups established Mn-NaWO4/SiO2 and the optimized chemical
composition of this catalyst is 1.9 wt% Mn-5 wt% NaWO4/SiO2 with Na: W: Mn atom ratio
of 2:1:2 [55,61,62]. Ghose et al. [54] prepared different nanostructured complex metal oxides
such as Sr–Al complex oxides, La2O3, La–Sr–Al complex oxides, and Na2WO4-Mn/SiO2 by
using the solution combustion synthesis (SCS) method. Among these catalysts, Sr3Al2O6
(double perovskite phase) in the Sr–Al oxides is active for OCM. The La2O3 catalyst showed
the highest C2 yields (~13.5%) as compared to similar catalysts presented in the literature.
However, the addition of La exhibited a higher C2 yield even at lower temperatures of
750 ◦C. The Na2WO4-Mn/SiO2 catalyst was stable and showed a higher C2 yield (25%) in
OCM, which is one of the best results in the literature. Wang et al. [57] carefully explored
the effect of Na2WO4-Mn/SiO2 catalysts prepared by different methods such as incipient
wetness impregnation (IWI), mixture slurry and the sol-gel method for OCM reaction.
As per the different analytical methods, IWI showed that Na, W and Mn are mainly
distributed on the catalyst’s surface. However, the other two ways are produced more
uniform between the surface and bulk on the catalysts. Hence, the mixture slurry method
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has excellent stability and is stable during 500 h on stream at 800 ◦C in the OCM, and
during the stream, methane conversion, and C2 selectivity are maintained at 27–31% and
68–71%, respectively. Yunarti et al. [58] developed promising oxide composite material
Na2WO4/Mn/Mg0.05Ti0.05Si0.90On, prepared using a one-pot sol-gel method. This catalyst
showed a 23.1% C2 yield at 800 ◦C, an 18% higher C2 selectivity, and a 35% higher C2
yield than the conventional Na2WO4/Mn/SiO2 catalyst, presumably due to Mg and Ti,
which are doped in the α-cristobalite SiO2. These ions can inhibit incorporating Na/W/Mn
compounds into the α-cristobalite SiO2 structure. As a result, Na/W/Mn compounds are
exposed to the catalyst’s surface, which is more accountable for the higher C2 selectivity and
yield in the OCM reaction. The catalytic results of Mn-NaWO4/SiO2 indicate synergistic
interactions between the various catalyst components (Na, Mn and W), as displayed in
Figure 5.
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If the catalyst contains only Na or W-oxide, it is inactive and unselective. However,
catalysts consisting only of Mn-oxide are quite active towards methane combustion. Na
and W-oxide catalysts doping enhance their conversion and C2 selectivity, presumably due
to synergy between Na and W components with structural effects and the introduction of
surface basic sites. The addition of Na makes it easy to reduce the W-oxide component,
which has a positive impact on OCM. Catalysts having both Mn and W oxides showed
better C2 selectivity but were slightly less active. The bi-component system (Na and Mn
oxide) is 100% selective but has poor conversion, while, the three-component system (Mn-
Na-W oxide supported on SiO2) shows significantly higher selectivity than bi-component
(Na-W, Na-Mn and, and Mn-W) catalysts, although it is slightly less active than the Na-W
oxide catalyst. Each component has a specific role in the reaction, and the Na species are
generally known to convert SiO2 support from its primary amorphous phase to crystalline
SiO2 (α-cristobalite) phase, which plays an important role in the OCM reaction and also
favors in the migration of Mn and W species to the surface of the catalyst [55,56,63]. The
common role of Mn is promoting oxygen mobility between surface-adsorbed and lattice
oxygen atoms. The surface Mn sites are responsible for OCM activity and C2 hydrocar-
bon selectivity [53]. OCM reaction mechanism for the supported Mn2O3/Na2WO4/SiO2
catalyst is shown in Figure 6.

Ortiz-Bravo et al. [64] systematically elucidate the electronic and molecular structure
of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst of the corresponding OCM
reaction temperature by using different analytical techniques. The Mn-Na2WO4/SiO2
catalyst’s structure is highly temperature-dependent; thus, the association of any OCM
activity with crystalline phases observed at room temperature is inadequate. In situ TPO-
XRD technique clearly displays that the crystalline phases presented at room temperature
in the Mn-Na2WO4/SiO2, Na2WO4/SiO2 and WO3/SiO2 catalysts are absent at OCM
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temperatures (>700 ◦C). Upon heating in oxidizing conditions, Na and W-oxide’s crystalline
phases altered to α to β then γ-WO3; cubic to orthorhombic, then molten Na2WO4; and
the support SiO2 phase can be changed α to β-cristobalite. TPO-Raman spectra clearly
validate that the bond order of W sites with tetrahedral (Td) and octahedral (Oh) symmetry
varies during the phase transformation. Because all samples retain essentially W6+ valence
and Oh-Mn3+ sites are always present on Mn-Na2WO4/SiO2 catalyst, TPO-XANES spectra
expose that bond order differences are due to distortion degree variations. Finally, they
established that Oh-W6+ sites are inactive in the steady-state OCM tests, but Td-W6+ sites
are more active in the presence of Oh-Mn3+ sites, which can be helpful for the activation of
methane. Table 2 lists the available data in the literature on MnOx-Na2WO4/SiO2 catalysts
for OCM.
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Table 2. OCM reaction over various Mn-Na2WO4 supported catalysts.

Year Catalyst Reaction Condition CH4 Conv. (%) C2 Select. (%) C2 Yield (%) Ref.

1989 Na/Mn/MgO N2/CH4/air, P(CH4) = 0.5 atm; T = 825–925 ◦C,
GHSV = 9600 h−1 11.3−22.4 67−70 - [63]

1992 5 wt% Mn/1.9 wt.%
Na2WO4/SiO2

CH4/O2/N2 = 3/1/2.6, T = 800 ◦C, *WHSV =
36,000 mL g−1 h−1 36.8 64.9 23.9 [65]

2013 Na2WO4/Mn/SiO2 (powder) CH4/O2 = 3.5, 60 mol% N2, T = 850 ◦C, WHSV =
10,000 h−1 32.0 45.0 14.4 [66]

2013 20%TiO2/Na2WO4/Mn/SiO2
CH4/O2 = 3.5, 60 mol% N2, T = 850 ◦C, WHSV =

10,000 h−1 41.0 60.0 24.6 [66]

2014 10% Na2WO4–5% Mn/SiO2 CH4:O2 = 32:8, 10% N2, T = 800 ◦C, 1 g catalyst - - 24.0 [54]

2014 MnxOy–Na2WO4/SBA-15 CH4:O2:N2 = 4:1:4, flow—60 mL/min, T = 750
◦C, 50 mg catalyst 14.0 70.0 9.8 [60]

2014 MnxOy–Na2WO4/SiO2
CH4:O2:N2 = 4:1:4, flow—60 mL/min, T = 750

◦C, 50 mg catalyst 7.0 58.0 4.06 [60]

2015 Mn–Na2WO4/n-SiO2
CH4:O2 = 4:1, flow—100 mL with N2, T-800 ◦C,

50 mg catalyst 28.5 73.3 18.5 [56]

2015 Mn–Na2WO4/n-MgO CH4:O2 = 4:1, flow —100 mL with N2, T-800 ◦C,
50 mg catalyst 5.4 64.9 3.2 [56]

2019 MnOx-Na2WO4/SiO2
CH4:O2:N2:Ar = 4:1:1:4, T = 770 ◦C, GHSV

60,000 cm3 h−1g−1 17.6 70.4 12.4 [67]

2019 MnOx-Na2WO4/SiO2
CH4:O2:N2:Ar = 4:1:1:4, T = 770 ◦C, GHSV

60,000 cm3 h−1g−1 23.2 70.7 16.4 [67]

*WHSV—Weight hourly space velocity.
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Due to their excellent reaction and thermal stability, various supports such as Mg-
Ti mixed oxides, SiC, COK-12, SBA-15 were used instead of SiO2 support to improve
the catalyst’s performance [60,68–70]. In addition, the promotion of Mn/Na2WO4/SiO2
with other metal oxides such as La2O3, SnO2, and CeO2 have also been conducted in
OCM [71–73]. Aimed to optimize the catalytic material for OCM, Sun et al. [74] prepared
a series of CexZr1−xO2 catalysts using a sol-gel method with varied Ce/Zr molar ratios
and then modified with Mn2O3-Na2WO4 doping. Among them, Ce0.15Zr0.85O2 containing
catalyst exhibited better conversion (25%) and selectivity (67%) even at 660 ◦C due to
generate more O2

− species, which are responsible for enhanced activity and selectivity at a
lower reaction temperature. Moreover, this catalyst showed stable catalytic performance up
to 100 h at 660 ◦C without decreasing the methane conversion (25%) and C2-C3 selectivity
(67%). Recently, Geo Jong Kim et al. proved that TiO2 support showed better performance
than SiO2 in Mn/Na2WO4-based catalysts. The authors have modified the conventional
OCM catalyst (Mn-NaWO4/SiO2, MNWSi) with TiO2 (MNWTi) as support and CeO2
(MNWCeTi) as a promoter. Here they varied the reaction parameters and compared the
activities with conventional catalyst. They found that MNWTi catalyst improved methane
conversion and C2 yield. The methane conversion and C2 yield of this catalyst enhanced
from 28.5 to 46.0% and from 12.1 to 25.9% at 775 ◦C, respectively, as compared to with
conventional OCM catalyst, presumably due to having MnTiO3 and Mn2O3, with higher
Mn species on the surface which are helpful to activate the O2 at low temperature [75].
Temperatures higher than 700 ◦C are usually required to initiate this reaction, and higher C2
yields could be achieved around 800 ◦C [52,76]. Therefore, catalyst stability and selectivity
of hydrocarbons are limited due to the suppression of active sites at very high temperatures
and increased non-selective oxidation products. Therefore, there is still a strong motivation
to explore novel catalysts with high reaction performance, particularly at low temperatures,
to execute this reaction industrially.

2.3. Pyrochlore Catalysts

Pyrochlore (A2B2O7) catalysts are promising catalysts for OCM reaction due to their
high melting points, thermal stability, tunable M-O bonding, surface alkalinity, and oxygen
vacancies [77–82]. The crystal structure of A2B2O7 compounds can be tuned with the ionic
radius ratio of rA and rB sites cations. In detail, pyrochlore structure exists when rA/rB is
between 1.46 and 1.78, where A and B are distributed in order. The disordered defective
fluorite phase formed when rA/rB is less than 1.46 and the arrangement of A and B ions
are disordered; if rA/rB is higher than 1.78, the monoclinic phase will be formed [77,78].
The crystal structure diagram of pyrochlore and defective fluorite can be seen in Figure 7.
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The ideal pyrochlore (A2B2O7) structure belongs to the space group Fd-3m. It can be
written as A2B2O6 O’ form, and the formula denotes the existence of two different types
of lattice oxygen ions in its crystal structure. Each lattice oxygen ion (O) is coordinated
to two A and B sites cations, and the left lattice oxygen ion (O’) is coordinated to four A
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sites cation. Compared to the ordered cubic fluorite structure, the pyrochlore compounds
contain less of a lattice oxygen ion thus forming inherent oxygen vacancies, which increases
the oxygen mobility of the pyrochlore catalysts [80,83,84]. Moreover, a typical pyrochlore
(A2B2O7) compound containing rare-earth A- and B-site can offer surface alkalinity. In
addition, all the characteristics such as thermal stability, surface alkalinity and inherent
oxygen vacancies can be altered by replacing or partly substituting of the A and B sites
with alkali or alkaline earth metals [85].

Based on these properties, the A2B2O7 type of materials has shown some promising
catalytic properties in OCM reaction. Petit et al. [81] reported that the catalytic activity of
pyrochlore (A2B2O7; A—rare earth metal, B—Ti, Sn, Zr) on OCM mainly depended on the
B-O bond strength. They found that lower B-O binding energy compounds provided higher
C2 yield. C. A. Mims et al., [86] prepared Bi-Sn pyrochlore catalysts and then expanded
the series of Bi2Sn2−xBixO7−x/2 (0 ≤ x ≤ 0.86) with substitution of Bi cation in the B site of
the pyrochlore. These catalysts were used for OCM and have shown improvement in C2
selectivity as the number of Bi cations at B sites increased. In addition, A. C. Roger et al. [87]
synthesized Sn-deficient pyrochlore (Sm2Sn2O7) catalysts by using a sol-gel method, and
these catalysts improved the C2 yield in the OCM reaction.

Recently, Wang and co-workers have developed different types of pyrochlore catalysts
and examined their properties’, such as rA/rB ratios, effect on crystalline structures, surface
active oxygen sites, intrinsic oxygen vacancies and surface alkaline sites, being essential
for OCM reaction [77,78,85]. A series of Ln2Ce2O7 (Ln = La, Pr, Sm and Y) catalysts have
been developed and demonstrated as the defective cubic fluorite phase. Among them,
La2Ce2O7 exhibited the highest C2 yield of 16.6% at 750 ◦C due to the moderated alkaline
sites and surface active oxygen species [77]. To examine the relationship between phase
structure and reactivity of pyrochlore catalysts for the OCM, three model La2B2O7 (B-Ti,
Zr and Ce) pyrochlore compounds with different crystal phases have been prepared. The
crystalline phase of La2B2O7 differs from monoclinic layered perovskite (La2Ti2O7) to
ordered cubic pyrochlore (La2Zr2O7) and defective cubic fluorite (La2Ce2O7) by declining
the rA/rB ratios. These catalytic activities and C2 yields follow the order of La2Ce2O7
> La2Zr2O7 > La2Ti2O7, being consistent with higher surface active oxygen species and
moderate surface alkaline sites [78]. Aimed to optimize the La2Ce2O7 catalytic material
for OCM, a series of catalysts were fabricated by a sol-gel method with varied La/Ce
molar ratios and being doped with Ca, which had a close ionic radius with La and Ce ions.
Among them, La2Ce1.5Ca0.5O7 showed better yields (22.5%) at 750 ◦C due to its enhanced
surface alkalinity and oxygen mobility with doping of Ca additive [85]. Table 3 lists the
available data in the literature on pyrochlore catalysts for OCM.

Table 3. OCM reaction over various pyrochlore catalysts.

Year Catalyst Reaction Condition CH4 Conv. (%) C2 Select. (%) C2 Yield (%) Ref.

1989 La2Sn2O7 CH4:O2 = 2:1 and flow rate = 27 mL/min., T = 727 ◦C 29.7 15 4.4 [88]
1989 Dy2Sn2O7 CH4:O2 = 2:1 and flow rate = 27 mL/min., T = 727 ◦C 30.4 21.9 6.6 [88]
1992 Sm2Sn2O7 CH4/O2 = 2, T = 750 ◦C, 67 mg catalyst, flow = 4.51 g h−1 40.4 48.8 19.7 [81]
1992 Sm2Zr2O7 CH4/O2 = 2, T = 750 ◦C, 67 mg catalyst, flow = 4.51 g h−1 28.4 10 2.8 [81]
1992 Sm2Ti2O7 CH4/O2 = 2, T = 750 ◦C, 67 mg catalyst, flow = 4.51 g h−1 31.9 22.1 7.04 [81]
2018 La2Ce2O7 CH4/O2 = 4:1, T = 800 ◦C, WHSV = 18,000 mL h−1 g−1 28.3 58.5 16.6 [77]
2018 Pr2Ce2O7 CH4/O2 = 4:1, T = 800 ◦C, WHSV = 18,000 mL h−1 g−1 15 32.6 4.9 [77]
2018 Sm2Ce2O7 CH4/O2 = 4:1, T = 800 ◦C, WHSV = 18,000 mL h−1 g−1 22.6 51 11.5 [77]
2018 Y2Ce2O7 CH4/O2 = 4:1, T = 800 ◦C, WHSV = 18,000 mL h−1 g−1 23.3 52.4 12.2 [77]
2019 La2Zr2O7 CH4:O2:N2 = 4:1:5, T = 800 ◦C, WHSV = 18,000 mL h−1 g−1 24.2 50.4 12.2 [78]
2019 La2Ti2O7 CH4:O2:N2 = 4:1:5, T = 800 ◦C, WHSV = 18,000 mL h−1 g−1 18 32.3 5.8 [78]
2019 La2Ce1.5Ca0.5O7 CH4:O2:N2 = 4:1:5, T = 800 ◦C, WHSV = 18,000 mL h−1 g−1 32 70 22.4 [85]
2019 La1.5Ca0.5Ce2O7 CH4:O2:N2 = 4:1:5, T = 800 ◦C, WHSV = 18,000 mL h−1 g−1 28 47 13.2 [85]

La2Ce2O7 pyrochlore catalysts have been synthesized in our group using the sol-
gel method and further doped with Sr through optimization on Sr loading [89]. The
defective cubic fluorite phase remained after Sr doping. Introduction of Sr in La2Ce2O7,
especially allowing strontium to enter into the crystal lattice (La1.5Sr0.5Ce2O7), significantly
improved the mobility of lattice oxygen compared to the undoped pyrochlore (La2Ce2O7)
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and impregnated Sr sample (8% Sr/La2Ce2O7) (Figure 8). The relative contents of O2−

lattice oxygen of the three prepared catalysts, i.e., doped, impregnated and undoped,
followed the order of La1.5Sr0.5Ce2O7 > 8% Sr/La2Ce2O7 > La2Ce2O7 as shown in XPS
results (see Figure 9, Table 4); these obtained results were in line with H2-TPR results and
the OCM reaction performance. A sample containing a large amount of lattice oxygen
sites showed better reaction performance (see Figure 11). CO2-TPD results (see Figure 10,
Table 5) revealed that introduction of Sr enhanced the ratio of strong basic sites, which
is usually considered as a beneficial factor for producing C2 products. As a result, the
selectivity and yield of C2-based products could reach 57% and 14%, respectively, over
La1.5Sr0.5Ce2O7 catalysts at 800 ◦C (see Figure 11). Moreover, this catalyst showed stable
catalytic performance up to 30 h without deactivation (see Figure 12).
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Table 4. H2-TPR and XPS results of the catalysts [89].

Catalysts
Hydrogen Consumption/(mL·g−1)

R1/% R2/%
O 1s/eV

R3/%
>500 ◦C Total O2− CO32− O2−

La2Ce2O7 6.31 7.76 3.3 81.4 528.5 531.2 533.1 37.4
8% Sr/La2Ce2O7 14.82 16.77 7.1 88.4 528.5 531.1 533.0 40.2
La1.5Sr0.5Ce2O7 18.11 20.10 8.3 90.1 528.6 531.2 533.2 43.6

R1 refers to the percentage of actual hydrogen consumption to theoretical hydrogen consumption (calculated by the stoichiometric ratio).
R2 refers to the percentage of hydrogen consumption above 500 ◦C to the total hydrogen consumption. R3 refers to the relative ratio of
O2−/(O2− + CO3

2− + O2
−).
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Figure 10. CO2-TPD profile of the indicated catalysts [89].

Table 5. CO2-TPD quantification results of the catalysts [89].

Catalysts
CO2 Desorption Ratio/%

50–350 ◦C 350–600 ◦C 600–900 ◦C

La2Ce2O7 47.8 18.2 34.0
8% Sr/La2Ce2O7 27.0 8.3 64.7
La1.5Sr0.5Ce2O7 20.8 0.9 78.3
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Figure 11. OCM reaction over the indicated catalysts: (a) CH4 conversion, (b) C2 selectivity, (c) C2

yield. Reaction condition: CH4:O2:N2 = 4:1:5, WHSV = 72,000 mL·g−1·h−1 [89].
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Figure 12. Stability test at 800 ◦C with the La1.5Sr0.5Ce2O7 catalyst. Reaction condition: CH4:O2:N2

= 4:1:5, WHSV = 72,000 mL·g−1·h−1 [89].

In another study, we substitute the B site of La2Ce2O7 by Ca2+ (0.1 nm) and Sr2+

(0.126 nm), respectively, which have an identical atomic radius to Ce4+ (0.097 nm). These
catalysts showed better selectivity and yield than host compounds. XRD results (Figure 13)
reveal that all doped samples presented well-resolved peaks analogous to their host py-
rochlore materials with only a slight shift of the 2θ values, signifying those doped com-
pounds have similar phase structures to their host compounds. The quantitative analysis
of H2-TPR results (see Figure 14, Table 6) revealed that the reduction temperature and
reducible lattice oxygen species of doped samples were significantly enhanced than the
un-doped sample; consequently, this rise in the reduction temperature indicated higher
M-O bonding strength. Among these doped catalysts, La2Ce1.5Sr0.5O7 showed a higher
reduction temperature and contained a larger amount of lattice oxygen, which was primar-
ily responsible for the higher C2 selectivity in the OCM reaction. Therefore, this catalyst
exhibited better yield at 800 ◦C (see Figure 15).
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Table 6. H2-TPR results of the catalysts.

Catalysts Hydrogen Consumption/(mL·g−1)
R1/%>500 ◦C Total

La2Ce2O7 6.31 7.76 81.4
La2Ce1.5Ca0.5O7 10.55 11.43 92.30
La2Ce1.5Sr0.5O7 11.99 12.64 94.85

R1 refers to the percentage of hydrogen consumption above 500 ◦C to the total hydrogen consumption.
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Figure 14. H2-TPR profile of the indicated catalysts.
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Figure 15. OCM reaction over the La2Ce2O7 and B site substitution catalysts at 800 ◦C. Reaction
condition: CH4:O2:N2 = 4:1:5, WHSV = 72,000 mL·g−1·h−1.

3. Conclusions and Perspective

Natural gas has attracted considerable attention because of fluctuating fuel prices
around the world and continuous depletion of energy reserves of crude oil, and also due
to its unique features such as a clean source of fossil energy and as a feedstock of various
other chemicals including ethylene. Methane is a major component of natural gas, and
its deposits are expected to be higher than crude oil in the coming future. Ethylene is
considered as a key building block in the field of industrial chemical production. Therefore,
a strong economic interest is developing in the processes that allow the conversion of
methane to high value-added products such as numerous intermediate products such as
polymers, i.e., polyethylene, polystyrene; and hydrocarbons i.e., ethylene. In this regard,
oxidative coupling methane (OCM) is an important reaction process for the catalytic
upgrading of methane in natural gas and/or shale gas to ethylene for meeting its industrial
production demand. This review article mainly consolidated recent literature that captured
and evaluated the modifications during the catalyst development progress made regarding
the OCM reaction.

The development of commercially viable catalysts for OCM reaction is still a crucial
challenge for researchers. In order to obtain the desired goal, recently, various catalysts
have been used based on the metal oxides such as reducible metal oxides, rare earth oxides,
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alkaline earth oxides, alkali-promoted metal oxides or mixed oxides, and pyrochlore
compounds individually or in various combinations. In the current review, we have
explored a variety of catalysts such as alkali/alkaline earth metals-based catalysts viz.,
Li supported catalysts, Mn-NaWO4/SiO2 and pyrochlore catalysts. It has been reviewed
that catalyst performance depends on several factors such as their preparation method,
structural composition and the basicity of catalyst. From the reports, we have understood
that active sites, facile oxygen abundance, surface alkalinity and metal-support interactions
are crucial for catalytic performance. However, by using these catalysts, a low yield of C2
products still was achieved (<30%) and could not match the commercial requirement.

4. Perspective

Li-based catalysts have shown higher activity and selectivity in OCM reaction due
to strong basicity and M-O bond. However, the catalysts suffer deactivation during the
reaction, being related to the loss of Li at high operation temperatures. Therefore, how
to stabilize Li and restrain its evaporation at high temperatures by forming strong metal
support interactions might be a possible solution for this. Meanwhile, it is noted that
pyrochlore (A2B2O7) catalysts have shown some promising properties for OCM reaction
due to high melting points, thermal stability, tunable M-O bonding and moderate surface
alkalinity. Using pyrochlore as the stable support to load Li might generate strong interac-
tions between Li and pyrochlore, forming new phases of Li compounds, such as Li2SnO3
and LiLaO2, which provides a feasible way to stabilize Li. Some preliminary results have
been obtained in our group to show its promising perspectives. In addition, optimization
of experimental conditions for the synthesis of pyrochlore catalysts, especially for those
with specific morphology, might improve the catalytic performance at lower temperatures.
Discrimination of the key factors caused by A/B regulation or substitution and their inter-
actions with the doped Li give the opportunity to further enhance the catalytic activity and
selectivity as well as the stability by stabilizing Li with optimized pyrochlore.
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