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Abstract: Ultra-stable optical cavities (USOCs) as fragile precision instruments have many impor-
tant applications in space. In order to protect them from being damaged during a rocket launch,
we analyzed a USOC by means of finite element methodology. The shock acceleration limits that the
USOC can withstand in different directions and under various conditions are given. To increase the
shock acceleration limit, the midplane thickness and the fixed hole diameter should be selected to
be as high as possible. It is worth noting that the launch direction of the USOC should be selected
as the horizontal direction, for which the shock acceleration limit that the USOC can withstand is
approximately two times that of the vertical direction. In this paper, results provide guidance for the
design of USOCs for space applications, especially the design to prevent the damage caused by a
shock. The method could then be applied to other space optical cavities, providing a tool to improve
the effect of shock at high accelerations.

Keywords: ultra-stable laser; ultra-stable optical cavity; shock acceleration; space applications; finite
element analysis

1. Introduction

Ultra-stable lasers are key elements in many domains, including frequency metrol-
ogy [1–5], gravitational wave detection [6], fundamental physics tests [7,8], and coherent op-
tical links [9,10]. Ultra-stable lasers can be produced by locking lasers onto USOCs with the
Pound–Drever–Hall (PDH) technique, and the instability of an ultra-stable laser frequency
can be defined with the stability of the optical length of a USOC [11–14], which is gener-
ally machined with ultra-low-expansion glass (ULE). However, most ultra-stable lasers
have been constrained to operate in well-controlled laboratory environments. There is
growing interest in frequency-stable lasers capable of operating outside a laboratory for
applications such as space optical clocks, geodesy, tests of fundamental physics in space,
and the generation of ultra-stable microwaves for radar [15–18]. Hence, it is important to
investigate transportable USOCs to determine whether an ultra-stable laser can operate in
a non-laboratory environment [17–19].

To this end, different groups have designed a variety of shapes and support modes
for USOCs [15–36]. In 2011, Leibrandt et al. designed a spherical USOC that was rigidly sup-
ported at two points on a diameter with a squeeze-insensitive angle [15,16,20].
Acceleration sensitivities below 3 × 10−10/g were achieved. In the same year, Webster et al.
constructed a cubic USOC with four supports placed in a tetrahedral configuration [18].
An acceleration sensitivity better than 2.5 × 10−11/g was achieved. In 2012, Argence et al.
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reported a cylinder USOC rigidly held at its mid-plane [19]. Acceleration sensitivities
below 4 × 10−10/g were achieved. In 2014, Chen et al. constructed a cylinder USOC rigidly
held at ten pairs of points on the cavity spacer [21] and acceleration sensitivities below
4 × 10−10/g were achieved. In 2018, a similar cuboid USOC was mounted rigidly and
tested by dropping from a height of 25 cm, corresponding to an acceleration of 100 g [28].
In 2020, Chen et al. [31] designed and developed a cubic optical cavity with a side length of
100 mm based on the 50 mm cubic cavity designed by Webster et al. [18]. The vibration
sensitivity of the three orthogonal directions was 10−10/g.

Compared with lab applications, USOCs with low vibration sensitivity used in the
space face challenges, such as being rigidly held for transport, enduring larger vibration,
and shock acceleration [15–22,27,28,31–36]. In the rocket launching stage, the shock accel-
eration loaded on a USOC can be hundreds of times greater than gravitational acceleration
(9.8 m/s2) [19,28,37,38]. Due to this, as a fragile precision instrument, the USOC may
have unrecoverable structural failures and fractures [28,35,39–41]. To realize the space
applications of the USOC, it must withstand the large shock of the rocket launching stage
without damage. However, there is no in-depth study on this at present. In this paper, we
focus on the effect of shock acceleration on USOCs for space applications, including Space
Optical Clocks (SOCs) in Europe [18,19,25] and China [29]. It can provide design guidance
for preventing damage caused by a shock in the space applications of USOCs.

The objective of this work was to protect the USOCs from being damaged by shock
vibration during the rocket launching stage by giving the limit of shock acceleration. In
this paper, we considered the cylindrical optical cavity rigidly mounted at its mid-plane
designed by Argence et al. [19] and used finite element analysis (FEA) to study the effect
of shock acceleration on the USOC for space applications. Firstly, the elastic deformation
induced by the shock acceleration with frequency variation is simplified as the quasi-
static elastic deformation based on the vibration dispersion relationship of the USOC. The
failure criterion of the USOC, based on the maximum von Mises stress and the maximum
tensile strength of the material was presented. Secondly, to calculate the maximum von
Mises stress of the USOC induced by the shock acceleration, the FEA model of quasi-static
mechanics was established. Thirdly, we calculated the maximum acceleration that the
USOC could bear under different conditions, including the thickness T of the mid-plane
(used for fixing the optical cavity), the diameter ϕ1 of the fixed hole, the shock acceleration
directions, and the positions of the constraint.

The paper was organized as follows. In Section 2, the fundamental theories were
presented, including the vibration dispersion relationship and failure criterion of the USOC.
The FEA model of quasi-static mechanics is established in Section 3. The simulation
results and the discussion are presented in Section 4. Finally, in Section 5, we present our
discussions and conclusions.

2. Fundamental Principle
2.1. Duasi-Static Mechanics

The geometry model of the USOC (Ref. [19]) is described in Figure 1a, and the cylin-
drical USOC is rigidly mounted at its mid-plane by the fixed holes. The USOC can be
simplified as a one-dimensional elastic molecular chain. Then, based on the vibration
dispersion relationship of the solid materials, the vibration dispersion relationship of the
USOC can be expressed by Equation (1) [14]:

λ =

√
E
ρ

1
f

(1)

where E and ρ are the elastic modulus and the density of the USOC, respectively, while f
and λ are the vibration frequency and the wavelength, respectively. For the ULE USOC,
according to Equation (1) and Table 1, when the frequency is f < 5000 Hz, the wavelength
is λ > 1100 mm (which is ten times the length of the USOC). In this work, the wavelength
in the USOC is 100 mm, which is larger than the size of the cavity, and all the particles in
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the USOC vibrate in the same phase, so the quasi-static mechanic analysis is sufficient to
study its motion.
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Figure 1. Geometrical and FEA models of the USOC (Ref. [19]). (a) The geometry model of the cavity: T is the thickness of
the midplane of the USOC, and A and B represent two kinds of constraints in the FEA simulation. The diameter of the
midplane is 140 mm. ϕ1 represents the diameters of the holes used to fix the cavity. (b) The FEA model of the USOC meshed
with tetrahedron elements.

Table 1. Material properties of ULE.

Parameters Density (kg/m3) Young’s Modulus (GPa) Poisson’s Ratio Ultimate Tensile Stress (MPa)

Value 2210 67.6 0.17 49.8

2.2. Failure Criterion of the Ultra-Stable Optical Cavity

According to the widely used shape-change strength ratio theory (the fourth strength
theory) in mechanical design [42], we checked the strength of the USOC, as shown in
Figure 1. The failure criterion of the USOC can be expressed as Equation (2) [42]:

σmax

K
≥ σvon−Mises (2)

where σvon-Mises is the maximum von Mises stress, σmax is the ultimate tensile stress of the
material, and K is the safety coefficient. As a matter of convenience, K = 1 in this work.
Based on Equation (2), when σvon-Mises is larger than σmax, the failure criterion of the USOC
is met and it is thought to have fractured.

3. Model of the Finite Element Analysis

Figure 1a shows the USOC described in [19], that was mounted at its midplane with
a mechanical interface and with a complex design involving vibration. The geometrical
dimensions of the USOC are described (Figure 1a) in detail. The spacer was made of
Ultra-Low Expansion (ULE) glass. To reduce the thermal noise, Fused Silica (FS) was used
to make two mirror substrates with 25.4 mm diameters and 6.3 mm thicknesses.

In Table 1, the material properties of the ULE and FS are listed, including the elastic
properties and the ultimate tensile stress of the structural failure. As described in Figure 1a,
three out of six holes located at the midplane are used to fix the USOC, and these three
holes are symmetrical at 120 degrees. In the FEA model, there are two kinds of positions of
constraint (A and B), which are presented in Figure 1a. Constraint A: six degrees freedoms
of the inner surface of the three holes are fully constrained. Constraint B: six degrees
freedoms of the surface of the six pads for the three holes are fully constrained. As shown
in Figure 2b, the USOC meshes have approximately 200,000 tetrahedral elements, for
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which each tetrahedron has four nodes. In this work, it was assumed that there was only
elastic deformation and no plastic deformation. The shock acceleration loaded on the
USOC varied between 10 g (9.8 m/s2) and 600 g (9.8 m/s2). The directions of the shock
acceleration included the vertical direction (Z-axis), horizontal direction (X-axis or Y-axis),
and three orthogonal directions (X-axis, Y-axis, and Z-axis).
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Figure 2. Deformation and von Mises stress of the USOC (Ref. [19]) loaded by the 100 g shock accel-
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Figure 2. Deformation and von Mises stress of the USOC (Ref. [19]) loaded by the 100 g shock acceleration along different
directions: (a) Vertical direction (Z-axis). (b) Horizontal direction (Y-axis). (c) Three orthogonal directions (X-axis, Y-axis,
and Z-axis) (the deformation has been amplified by a factor of 5 × 103 for demonstration).

4. Results and Discussion
4.1. Deformation and Von Mises Stress Characteristics

The deformations and the von Mises stress of the USOC (Ref. [19]) are shown in
Figure 2, which is loaded by a 100 g shock acceleration following by the three previously
mentioned different directions. In general, the maximum von Mises stress is located at the
three holes that fix the cavity and at the edge between the midplane and the spacer. The
main reason for this may be that these locations are prone to stress concentration. The von
Mises stresses that were located at the spacer and the two mirrors were approximately zero.
Moreover, the deformation direction is almost the same as that of the shock acceleration.
In that sense, and under the same conditions, it was determined that σvon-Mises along the
vertical direction (Z-axis) was greater than that along the horizontal direction (Y-axis).
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4.2. Effect of the Thickness T of the Mid-Plane on the Maximum von Mises Stress

Figure 3 shows the variation of σvon-Mises in the three directions of loading as a function
of the shock acceleration and the thickness T of the mid-plane. Generally, for different
thicknesses T of the midplane, a linear relationship will exist between σvon-Mises of the
USOC and the shock acceleration with the different shock directions. As the thickness
T of the mid-plane increases, σvon-Mises decreases. To protect the ULE USOC from being
damaged during a rocket launch, the results show that the thickness T of the mid-plane
should be the largest possible without affecting the performance of the USOC. The σvon-Mises
loaded by the shock acceleration along the three orthogonal directions (X-axis, Y-axis, and
Z-axis) was the largest, compared to the other two directions of loading. The main reason
for this may be that the equivalent shock acceleration is the maximum under the same
conditions. The σvon-Mises loaded by the shock along the vertical direction was three times
that along the horizontal direction under the same conditions, therefore indicating that the
launch direction of the USOC should be horizontal.
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Figure 3. Variation of σvon-Mises as a function of the shock acceleration and the thickness T of the mid-plane as well as
loading along the three directions: (a) Vertical direction (Z-axis). (b) Horizontal direction (Y-axis). (c) Three orthogonal
directions (X-axis, Y-axis, and Z-axis). The black solid line with circles, red dashed line with squares, green dotted line with
stars, and blue dash-dot line with triangles correspond to T equal 7 mm, 8 mm, 9 mm, and 10 mm, respectively. The red line
represents the ultimate tensile stress σmax of the material ULE of the USOC.

4.3. Effect of the Diameter ϕ1 of the Fixed Hole on the Maximum von Mises Stress

Figure 4 shows the variation of the σvon-Mises in the three directions of loading as a
function of the shock acceleration as well as the diameter ϕ1 of the holes. Generally, the
relationship between σvon-Mises and the shock acceleration with different shock directions
with different ϕ1 is linear, similar to the relationship found when the T of the mid-plane
was varied. The σvon-Mises with ϕ1 = 4.1 mm is larger than that with ϕ1 = 6.1 mm. To protect
the ULE USOC from being fractured during a rocket launch with a large shock acceleration,
the diameter ϕ1 = 4.1 mm of the holes should be as high as possible. The σvon-Mises loaded
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by the shock acceleration along the three orthogonal directions (X-axis, Y-axis, and Z-axis)
was also the largest, compared to the other two directions. We believe that the main reason
for this is similar to that of the thickness T of the mid-plane. The σvon-Mises loaded by the
shock along the horizontal direction is about one-third of that along the vertical direction
under the same condition, which also indicates that the launch direction of the USOC
should be horizontal.
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Figure 4. Variation of σvon-Mises as a function of the shock acceleration and the diameter ϕ1 of the holes used to fix the cavity
(Figure 1) as well as a loading along the three directions: (a) Vertical direction (Z-axis). (b) Horizontal direction (Y-axis).
(c) Three orthogonal directions (X-axis, Y-axis, and Z-axis). The cyan dashed line with circles and the magenta dashed line
with stars represent σvon-Mises corresponding to diameters of 4.1 mm and 6.1 mm, respectively. The red line represents the
ultimate tensile stress σmax of the material ULE of the USOC.

4.4. Effect of the Positions of Constraint on the Maximum von Mises Stress

Two kinds of positional constraints were investigated, and the results of the σvon-Mises
loaded with different directions are shown in Figure 5. Generally, for constraints A and
B, there was also a linear relationship between σvon-Mises and the shock acceleration with
different shock directions, and this relationship was similar to that of the thickness T of
the mid-plane and the diameter ϕ1. When the shock direction is vertical (Z-axis), σvon-Mises
of constraint A is larger than that of constraint B. For the horizontal direction (Y-axis),
the opposite is true. However, when the shock directions are along the three orthogonal
directions (X-axis, Y-axis, and Z-axis), the gap between constraints A and B can be almost
negligible. The σvon-Mises loaded by the shock accelerations along the three orthogonal
directions (X-axis, Y-axis, and Z-axis) was also the largest, compared to the other two
directions. The main reason for this was the similarity to the thickness T of the mid-plane
and the diameter ϕ1. For constraint A, σvon-Mises loaded by the shock along the horizontal
direction was about one-third than along the vertical direction under the same conditions.
However, for constraint A, the σvon-Mises loaded by the shock along the horizontal direction
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was almost equal to that along the vertical direction under the same conditions. Overall,
this also indicates that the launch direction of the USOC should be horizontal.
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dashed line with stars represent σvon-Mises corresponding to constraints A and B, respectively. The red line represents the
ultimate tensile stress σmax of the material ULE of the USOC.

4.5. Shock Acceleration Limit

The maximum shock acceleration that the USOC could withstand is presented in
Table 2, where the safety factor is defined as K = 1. Generally, the maximum shock
acceleration along the horizontal direction (X-axis or Y-axis) that the USOC can withstand
is about two times that of the vertical direction (Z-axis) and three times that of the three
orthogonal directions (X-axis, Y-axis, and Z-axis). As the thickness T of the mid-plane and
the diameters of the holes increase, the maximum shock accelerations also increase. When
T = 10 mm, ϕ1 = 6.1 mm, and K = 1, the maximum shock acceleration that the optical cavity
can withstand is 508 g along the horizontal direction. In summary, for a USOC designed for
space applications, based on the results of this work, the optimal launch direction should
be the horizontal direction, and the values of T and ϕ1 should be selected to be as high
as possible.
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Table 2. Maximum shock acceleration that the ultra-stable optical cavity can withstand.

Shock Direction
T (mm) ϕ1 (mm) Constraint

7 8 9 10 4.1 6.1 A B

Vertical (g) 119 158 185 220 102 119 119 178
Horizontal (g) 374 440 488 508 290 374 374 224

Three orthogonal (g) 99 125 138 167 78 99 99 94

5. Discussions and Conclusions

USOCs as fragile precision instruments are important elements in many domains of
space applications. To protect the USOCs from being damaged by shock vibration during
the rocket launching stage, this research investigates the effect of the shock on a USOC for
space applications in detail through FEA. Compared with previous studies, we give the
shock acceleration limit that the USOC can withstand and methods to improve the shock
resistance for the first time.

The maximum von Mises stresses of the optical cavity under different conditions were
studied, including the thickness T of the mid-plane, the constraint positions, the shock
acceleration directions, and the diameter ϕ1 of the holes. Results show that there is a linear
relationship between σvon-Mises and the shock acceleration along different directions. As
the thickness T and the diameter ϕ1 increase, σvon-Mises decreases. The different constraint
positions affect σvon-Mises along the vertical direction and the horizontal direction. However,
the gap for the three orthogonal directions can be ignored. Results of FEA simulations
also showed that the optimal rocket launch direction of the USOC is horizontal, for which
the maximum shock acceleration that the USOC can withstand is about two times that
of a launch along the vertical direction and three times that of a launch along the three
orthogonal directions.

When T = 10 mm, ϕ1 = 6.1 mm, and K = 1, the maximum shock acceleration that the
optical cavity can withstand is about 508 g along the horizontal direction. To protect the
USOC in the rocket launch stage, the thickness T and the diameter ϕ1 should be selected to
be as high as possible. Noting that the results of our research show that changing the launch
direction is also one of the effective methods to improve the shock resistance, which has
not been reported in previous studies. Our method can be readily extended to other space
optical cavities, thus providing a powerful tool for improving the robustness for shock,
which is particularly important for space environments with larger shock accelerations.
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