
crystals

Article

Beam Shaping for Wireless Optical Charging with
Improved Efficiency

Lei Tian, Jiewen Nie and Haining Yang *

����������
�������

Citation: Tian, L.; Nie, J.; Yang, H.

Beam Shaping for Wireless Optical

Charging with Improved Efficiency.

Crystals 2021, 11, 970. https://

doi.org/10.3390/cryst11080970

Academic Editors: Akihiko

Mochizuki, Kohki Takatoh

and Jun Xu

Received: 15 July 2021

Accepted: 15 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronic Science and Engineering, Southeast University, 2 Sipailou, Xuanwu District,
Nanjing 210018, China; 220201570@seu.edu.cn (L.T.); 220201566@seu.edu.cn (J.N.)
* Correspondence: h.yang@seu.edu.cn

Abstract: Optical wireless charging is a nonradiative long-distance power transfer method. It may
potentially play an important role in certain scenarios where access is challenging, and the radio
frequency power transfer is less efficient. The divergence of the optical beam over distances is a key
limiting factor for the efficiency of any wireless optical charging system. In this work, we propose
and experimentally demonstrate a holographic optical beam shaping system that can restrict the
divergence of the optical beam. Our experimental results showed up to 354.88% improvement in the
charging efficiency over a 10 m distance.

Keywords: optical wireless power transfer; beam shaping; phase modulation

1. Introduction

Wireless charging [1–4] has attracted considerable attention in recent years due to its
operational flexibility; this is especially true for underwater environments as the design of
the charging cable and sockets can be complicated and often impractical. Wireless charging
can be implemented in various ways. Magnetic coupling charging [5,6] can transmit energy
at the kilowatt level with high efficiency. However, it only supports wireless charging
within 1 m as the power declines rapidly with the increasing charging distance [7,8]. The
transmission distance of microwave charging is much longer [9]. However, its charging
efficiency is limited due to the quick divergence of the microwave beams. The propagation
loss of microwaves is also extremely high in the water. Therefore, it is not suitable for
underwater applications [3,10]. Wireless optical charging has gained considerable interest
in recent years due to its flexibility, strong directivity, and support for long transmission
ranges [11]. It is also free of electromagnetic interference. In addition, blue and green
wavelengths correspond to the low attenuation window of the seawater, which make them
suitable for underwater applications [12]. The sources for wireless optical charging are
laser diode [13,14], light-emitting diodes (LED) [15,16], vertical-cavity surface-emitting
laser (VCSEL) [17], etc. The performance of the wireless optical charging system has been
optimised in previous works. Most of these works mainly focused on fully exploiting the
power processing capacity and conversion efficiency of laser and PV cells. The operating
point of the laser can be tuned to improve the electrical-to-optical efficiency [18,19]. The
material and temperature of the photovoltaic (PV) cell can also be optimised for higher
efficiency [20]. However, the divergence of the optical beam over distances [21] may be a
key factor for the system’s overall efficiency. To our knowledge, this issue has not been
properly addressed so far.

In this work, we designed and demonstrated a holographic optical beam shaping
system that could improve the overall charging efficiency. In our demonstration, the
divergence of the optical beam was restricted for different charging distances. The power
on the PV cell significantly increased in both free space and water compared with the
conventional system. Our results showed that this technique has great potential for the
application of underwater wireless charging.
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2. System Setup

Figure 1 shows the design of our proposed optical launching unit with the beam
shaping capability. A pigtailed single-mode laser diode (Thorlabs LP450-SF15, Newton, NJ,
USA) operating at 450 nm was used as the light source. Then a fibre-coupled collimator
(Thorlabs F671FC-405, Newton, NJ, USA) was used to slow the divergence of the laser
beam. The wavefront of the collimated beam was spatially modulated by a phase-only
liquid crystal on silicon (LCOS) device (CamOptics COVIS-2K, Cambridge, UK). This
LCOS device has a bit depth of 8 bit, i.e., 256 unique phase levels between 0 and 2.5π. The
phase flicker of the LCOS was optimised [22,23]. The reflectance of the LCOS device was
~80%; however, it can be improved by applying a dielectric mirror coating on the LCOS
backplane [24]. The desired beam can be generated with the Fourier transform lens (L1,
f1 = 500 mm) in the system. A 4f magnification system based on L2 (f2 = 250 mm) and
L3 (f3 = 500 mm) were used to further enlarge the shaped beam. For the proof-of-concept
demonstration, a beam splitter (BS) was used in the current system; this can be replaced
with a prism to further increase the energy efficiency of this optical launching unit [25].
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Two types of beam shaping techniques were investigated in this work. The first one
uses holograms that exhibit radially symmetric cubic phase profiles, which is described by
the following equation [26,27]:

P = angle
(

e−ib|r|3
)

(1)

where r is the radial distance and b is a coefficient optimised for different charging distances.
The second type utilises holograms that follow the Fresnel lens shape [28,29], which is

described by:
P = angle

(
e−ibr2

)
(2)

where r is the radial distance and b is related to focal length of the Fresnel lens. Again, the
value of b can be optimised for different charging distances.

Figure 2 shows the general architecture of our testbed. A pigtailed single-mode laser
diode (Thorlabs LP450-SF15, Newton, NJ, USA) operating at 450 nm was driven by Thorlabs
LDM9LP to provide a constant DC of 35 mA with an output power of approximately
4.37 mW. This driver unit also integrated a thermoelectric cooler module to maintain the
laser performance during the experiment. Then the laser was fed from the single-mode
fibre into an optical launching unit for collimation and beam shaping before entering the
channel. At the receiver side, a low-cost PV cell was used to collect the incident optical
power. In this way, the received optical power was converted into electric power to charge
a target device. A source meter (KEITHLEY-2400, Portland, OR, United States) was used to
collect the voltage and current passing through the cell. In this work, we tested wireless
optical charging in both free spaces and water environments.
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Figure 2. General architecture of the testbed.

3. Results

First, simulations based on the Fourier optics theory [30] were conducted to investigate
the performance of the optical launching unit. It should be noted that a 4f system of L2
and L3 had a magnification factor of 2. The transmission medium was assumed to be
homogeneous and had a refractive index of 1. The results were shown in Figure 3. Figure 3a
corresponded to the beam propagation behaviour when the optical beam shaping was not
applied. It diverged with a fixed angle while propagating through the medium. Figure 3b
corresponded to the case when a radially symmetric cubic phase modulation applied with
b = 4.95× 1011. The beam showed a strong self-focusing characteristic within the first
~20 m before diverging. The highest intensity of the modulated beam was 7.8 dB higher
than the Gaussian beam at the same distance. This simulation results when the Fresnel lens
phase hologram with a b value of 1.25× 108 was illustrated in Figure 3c. In this case, the
position of the maximum light intensity was similar to Figure 3b. A further improvement
of 4.01 dB was achieved. After passing through the focal point, the light field diverged
as a Gaussian beam. The simulation results showed that the Fresnel phase hologram was
more effective than the radially symmetric cubic phase hologram.
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Figure 3. The phase holograms and simulated characteristics of the launched beams (a) without beam
shaping; (b) with the cubic modulation beam shaping when b = 4.95× 1011; (c) with the Fresnel
modulation beam shaping when b = 1.25× 108.

Subsequently, the impact of b values on the system of beam propagation characteristics
was analysed. As shown in Figure 4, the focusing position of the beam increased with the
value of b when the cubic modulation was implemented. Although the peak light intensity
decreased for the longer transmission distances, it was always significantly higher than the
standard Gaussian beam without beam shaping.



Crystals 2021, 11, 970 4 of 8

Crystals 2021, 11, x FOR PEER REVIEW 4 of 8 
 

 

intensity decreased for the longer transmission distances, it was always significantly 
higher than the standard Gaussian beam without beam shaping.  

 
Figure 4. The trend of focusing distance and intensity with b value when loading the cubic modu-
lation hologram. 

Figure 5 showed corresponding results when the Fresnel modulation was used. The 
trend was similar to that observed in Figure 4. The notable difference was that the inten-
sity attenuation was very small at different focusing distances with Fresnel modulation. 
Compared with cubic modulation, Fresnel modulation can increase the light intensity 
more significantly. 

 
Figure 5. The trend of focusing distance and intensity with b value when loading the Fresnel mod-
ulation hologram. 

In our experiment, the voltage-current curve of the PV cell was measured by a source 
metre. The measurement was conducted when the PV cell was placed 10 m away from 
our launching unit and the beam shaping was not applied. The results were plotted in 

0 5 10 15 20 25 30
The b value/*e11

0

10

20

30

40

50

60

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6
Focusing distance
Peak intensity with cubic modulation
Peak intensity of the Gaussian beam

0 0.5 1 1.5 2 2.5 3 3.5 4
The b value/*e8

0

10

20

30

40

50

60

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6
Focusing distance
Peak intensity with Fresnel modulation
Peak intensity of the Gaussian beam

Figure 4. The trend of focusing distance and intensity with b value when loading the cubic modula-
tion hologram.

Figure 5 showed corresponding results when the Fresnel modulation was used. The
trend was similar to that observed in Figure 4. The notable difference was that the inten-
sity attenuation was very small at different focusing distances with Fresnel modulation.
Compared with cubic modulation, Fresnel modulation can increase the light intensity
more significantly.
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In our experiment, the voltage-current curve of the PV cell was measured by a source
metre. The measurement was conducted when the PV cell was placed 10 m away from our
launching unit and the beam shaping was not applied. The results were plotted in Figure 6.
The maximum power generated in this specific setting was 1.91 µW with a load resistance
of 5250 Ω.

Subsequently, we measured the maximum electrical power generated by the PV cell
under different beam shaping configurations. The experiment was first conducted in the
free space between 4 m and 10 m. The value of b was optimised for each transmission
distance. Figure 7 illustrated the maximum power generated at each plane. It can be
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seen that the generated power decreased over the distance. However, the drop was most
significant when no beam shaping was applied. When the Fresnel phase modulation was
used, the decrease in power was the slowest. The value of b used in each measurement
was listed in Table 1.
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Table 1. The values of b used in the experiments.

Focusing Distance/m Cubic Modulation/(×1011) Fresnel Modulation/(×108)

4 0.7324 0.4189
5 1.1719 0.6981
6 1.7578 0.9774
7 2.4902 1.2566
8 3.8086 1.5359
9 5.2734 1.8151
10 8.2031 2.0944



Crystals 2021, 11, 970 6 of 8

Figure 8 showed the relative improvement in the charging efficiency at each plane
when compared with the results measured without beam shaping. At 10 m, the charging
efficiency increased by 246% when the Fresnel modulation was used.
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We then conducted the same experiment in a water tank. The attenuation coefficient
of water in the tank was measured as ~0.25/m, which was similar to the Jerlov II water
conditions. The experimental results underwater were nearly the same as those in free
space. Since the tank was 5 m long, only the situations at 5 m and 10 m were tested. At
5 m, the radially symmetric cubic phase modulation increased power by 21.33% over the
Gaussian and the Fresnel phase modulation by 26.22%. At 10 m, the former increased by
176.24% and the latter by 354.88%. At a longer distance, the beam size without shaping
became significantly larger. The beam shaping techniques were able to concentrate the
optical power at an arbitrary receiver plane. Therefore, its effect became more apparent at
a longer distance, improving the overall system efficiency.

4. Conclusions

In this work, we demonstrated two holographic optical beam shaping techniques
that could improve the optical energy transfer efficiency in free spaces and underwater
environments. In a proof-of-concept experiment, both techniques demonstrated focusing
capability at different distances. The beam shaping based on the Fresnel lens modulation
performed better than the radially symmetric cubic phase modulation. We believe the
holographic optical beam shaping technique has the potential for application in underwater
wireless optical charging systems, where the accessibility is poor, and the RF transmission
is inefficient. Although the power currently generated in this work is low, it could be
significantly improved by using more powerful laser sources and more efficient PV cells.
Using the beam splitter in our current configuration also limited the overall efficiency of
the system. However, it can be easily solved by replacing the beam splitter with a prism, as
previously mentioned. Alternatively, transmissive phase-only spatial light modulators can
also be used.
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