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Simon Čopar 1,† , Miha Ravnik 1,2,† and Slobodan Žumer 2,1,*,†

����������
�������
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Abstract: In this brief review, we give an introduction to selected colloidal and microfluidic nematic
microstructures, as enabled by the inherent anisotropy and microscopic orientational ordering
in complex liquid crystalline materials. We give a brief overview of the mesoscopic theory, for
equilibrium and dynamics, of nematic fluids, that provides the framework for understanding,
characterization, and even prediction of such microstructures, with particular comment also on the
role of topology and topological defects. Three types of nematic microstructures are highlighted:
stable or metastable structures in nematic colloids based on spherical colloidal particles, stationary
nematic microfluidic structures, and ferromagnetic liquid crystal structures based on magnetic
colloidal particles. Finally, this paper is in honor of Noel A. Clark, as one of the world pioneers that
helped to shape this field of complex and functional soft matter, contributing at different levels to
works of various groups worldwide, including ours.
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1. Introduction

Liquid crystals, discovered in the late nineteenth century, attracted attention for a long
period as materials with fascinating optical textures. Much later, in the late fifties to early
seventies of the 20th century, liquid crystals started to attract physicists that developed basic
understanding of the related physics [1–5]. In parallel, application-oriented researchers
set the grounds for twisted nematic liquid crystal displays [6,7]. After a slow start, the
nematic-based displays became the dominant display technology in the last 20 years [8].
In the seventies, as a post-doc, Noel Clark was also attracted to the fast-growing field
devoted to the physics of liquid crystals. He started with light scattering and dynamics of
nematics [9] and thin smectic layers [10]. With his pioneering research of sub-microsecond
switching of smectic liquid crystals [11], that was also the base for the development of
the ferroelectric liquid crystal display [12], he became well known. Following his diverse
interests, Noel Clark spread the activities to a broad range of soft matter systems far beyond
smectic liquid crystals, and his lab became one of the leading places in the field of liquid
crystal related research. His research includes lyotropic lamellar phases [13], nematics
in random porous media [14], bent core liquid crystals [15], nematic colloidal crystals as
possible photonic crystals [16], DNA-based biological phases [17], helical nanofilament
phases [18], heliconical nematics [19], and, recently, colloidal nematic ferromagnets [20].

In our review, we introduce basic topological aspects of nematic defect structures
formed in colloidal and confined fluidic liquid crystal systems, where some segments of
Noel Clark’s research closely relate to the topics of our review. Topological aspects of
nematic liquid crystals were first set in a broader context nearly 50 years ago [21–24]. The
discovery of polymer dispersed liquid crystals [25] stimulated research of liquid crystals
in diverse geometries, ranging from spherical droplets to regular cylindrical pores and
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random porous networks [14,26,27]. Stimulated by Nelson [28], the interest also spread
for nematic shells [29–32]. Similarly, the interest in systems with inverse geometry—liquid
crystal colloids—with particle sizes ranging from few nanometers to several micrometers,
started to grow. The study of a single spherical particle inducing homeotropic anchoring
in a nematic host identified the Saturn ring structure with a −1/2 disclination loop, and,
in the case of planar anchoring, the structure with boojum defects on the two poles [33].
More detailed studies showed that, in the homeotropic case, an asymmetric structure
with a hyperbolic hedgehog can form, which widened the possibilities for different inter
particle interactions in such colloidal dispersions [34–37]. This stimulated the formation
of various 2D nematic colloidal lattices [38,39], 3D lattices [40], and structures in complex
confinement [41]. The discovery that disclination lines can entangle more than one supra
micrometer size colloidal particle [42] and the understanding of its topological descrip-
tion [43] led to the realization and understanding of the knotting and linking of large
2D assemblies of colloidal particles in thin nematic layers [44]. A similar approach also
explained disclination structures appearing in 3D interconnected system of pores infil-
trated by a nematic [45,46]. A system of densely packed colloidal spheres infiltrated by
a nematic, that had been introduced earlier by Noel A. Clark [16], was later explained
by the same topological approach [47]. Further broadening of the liquid crystal colloidal
research came with shaped particles and particles characterized by specific physical prop-
erties. The introduction of shaped platelets [48] allowed formation of quasi-crystalline
tilings [49]. The use of long cylindrical objects led to complex surface defect structures [50]
and dispersions of cylindrical particles, together with surface charges to triclinic colloidal
lattices [51]. Forming of colloidal particles in shapes of various handlebodies was used
as an example of a complex nematic defect topology [52]. Use of 3D printing allowed for
formation of knotted and linked colloidal particles on micron scale that, in the nematic host,
formed mutually tangled, linked particle–field knots and could also organize in a colloidal
lattice [53,54]. Another interesting example was gold particles in the form of mesoflowers
that, in a nematic host, induce elastic deformations of higher elastic multipoles [55]. Using
magnetism concepts, magnetic particles in the shape of platelets with nanoscale thickness
were demonstrated forming ferromagnetic nematic colloidal dispersions [56]. Noel Clark,
with coworkers, has recently shown that even a dispersion of magnetic platelets in an
isotropic fluid at certain concentrations leads to a colloidal nematic liquid crystal with
ferromagnetic properties [20].

The studies of dynamics of liquid crystals started with the development of physical
understanding of these phases. It soon became clear that reorientation of the director is
accompanied by flow and reversed coupling known as the backflow mechanism [57,58].
For fluctuations, reorientation angles are small, and flow effects can be neglected [5,9],
while they are crucial for switching of a nematic in displays [59,60]. Many studies are also
devoted to driven liquid crystalline systems, such as convection instabilities [61,62], and,
recently, to active systems that, for example, exhibit active nematic turbulence [63]. In this
review, we focus only on studies where microfluidics in certain confining geometries can
generate stationary topological defect structures [64].

Our selected review covering nematic colloidal assemblies, microfluidic structures,
and functionalized colloids, has the following structure: introduction, mesoscopic approach
to nematic complex fluids, Landau-de Gennes free energy approach, nematodynamics,
topological defects, nematic colloids, nematic colloidal assemblies, stationary nematic
microfluidic structures, ferromagnetic liquid crystal structures, and conclusions. Note that,
throughout the text, we give references to selected works by Clark that contributed to the
discussed topic.

2. Mesoscopic Approach to Nematic Complex Fluids

Nematic liquid crystal fluids exhibit orientational order with building molecules or
particles aligning along some common direction, usually referred to as the director n, a
vector-like order parameter with a head-tail equivalence. The director corresponds to
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the time or ensemble average of orientations of the building blocks (see Figure 1). Ne-
matic degree of order (scalar order parameter) S is introduced as another order parameter
which measures the local fluctuations in the orientation of the nematic building blocks.
The full orientational order of liquid crystals is described by the tensor order parameter
Qij, that contains the degree of order S, the director n, and also possible biaxiality P, as

Qij =
S
2
(
3ninj − δij

)
+ P

2

(
e(1)i e(1)j − e(2)i e(2)j

)
, where e(1) is the secondary director (perpen-

dicular to n) that characterizes the biaxial ordering, and e(2) = n× e(1) [5].

Figure 1. Schematic representation of complex nematic structures. Orange shows continuum liquid
crystal phase consisting from nematic building blocks with characteristic size a. Green indicates
general confinement which can be imposed either by different surfaces, such as particles and channel
or cell walls. A scheme of a topological defect is shown in black.

2.1. Landau-de Gennes Free Energy Approach

A strong theoretical and modeling mesoscopic approach to equilibrium properties of
nematic fluids is to use the minimization of the Landau-de Gennes free energy F =

∫
f dV,

with f being the free energy volume density written as a sum of effective ordering and
elastic terms f = fS + fE [65]. The first contribution fS accounts for the variability of the
nematic degree of order, whereas the second contribution fE accounts for the spatial elastic
deformations of the nematic ordering. They are written as:

fS =
1
2

AQijQji +
1
3

BQijQjkQki +
1
4

C(QijQji)
2, (1)

fE =
1
2

L1
∂Qij

∂xk

∂Qij

∂xk
+

1
2

L2
∂Qij

∂xj

∂Qik
∂xk

+
1
2

L3Qij
∂Qkl
∂xi

∂Qkl
∂xj

, (2)

where A, B, and C are nematic order material parameters, L1, L2, and L3 are tensorial
elastic constants, and xi are Cartesian coordinates and summation over repeated indices is
assumed. Parameter A governs the nematic to isotropic transition and usually contains
temperature dependence as A = a(T − T∗) but could also be density-dependent. Three
elastic constants are needed to quantify the three standard nematic elastic modes (splay,
twist, and bend). If one assumes uniaxial approximation of the order parameter tensor Q
(S = const. and P = 0), the free energy density fE can be rewritten into the Frank-Oseen
free energy form by mapping the tensorial constants Li to Frank elastic constants Ki (which
are usually measured in experiments) [66], as

K1 =
9S2

4
(2L1 + L2 − L3S), (3)

K2 =
9S2

4
(2L1 − L3S), (4)

K3 =
9S2

4
(2L1 + L2 + 2L3S). (5)
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The minimization of the total free energy F gives the –stable or metastable– equilib-
rium of the system and is usually performed using different numerical methods, such as
finite difference relaxation algorithms or finite elements [67–69]. The particular strength
of the free energy minimization approach is that other free energy contributions corre-
sponding to other material mechanisms or couplings can be directly added, such as surface
anchoring, deformable surfaces, coupling to electric or magnetic fields, flexoelectricity,
or ionic effects [62,65,70,71]. Formal formulation of nematic free energy minimization is
discussed in References [72,73].

2.2. Nematodynamics

Hydrodynamics of nematic liquid crystals is centrally determined by the coupling
between the nematic orientational ordering, given by the nematic order tensor Qij or
director ni, and the material flow, usually given by the material velocity flow field vi. The
flow field of nematic is given by the generalized Navier–Stokes equation

ρ

[
∂vi
∂t

+
(
vj∂j

)
vi

]
= ∂jσij, (6)

where ρ is the density, vi the velocity, and σij the stress tensor which also includes, besides
the standard pressure, the dependence on the anisotropic nematic order in the system. The
stress tensor can be written as a sum of the Ericksen stress tensor
σEr

ij = − δF
δ∂jQkl

∂iQkl − (p0 − f )δij, which includes the elasticity effects (p0 is the external

pressure), and viscous stress tensor σviscous
ij , which depends on the actual nematic order,

as well as its time derivative. Such dependence of the stress tensor directly implies that,
in principle, any time-variation of the nematic order induces materials flows, both in the
process of the relaxation towards equilibrium or if driven by the time-varying external
fields. As part of the mesoscopic approach to nematodynamics, the generalized Navier–
Stokes equation and incompressibility (∂jvj = 0) are complemented by the equation for the
evolution of the nematic order parameter, written either in the director or in the Q tensor
form. There are two established formulations of the nematic order parameter tensor-based
nematodynamic models: the Beris-Edwards model [74] and Qian-Sheng model [75]. The
nematodynamic theory can also be derived from variational principles [76,77].

Beris and Edwards formulate their equations for nematic hydrodynamics through
tensorial description of nematic order, where they utilize a generalization of the Poisson
bracket description of thermodynamics [74]. In a typical formulation, their equations are
written as [78,79]:

Q̇ij = Sij + ΓHij, (7)

Sij = (ζAik −Ωik)

(
Qkj +

δkj

3

)
+

(
Qik +

δik
3

)
(ζAkj + Ωkj)

− 2ζ

(
Qij +

δij

3

)
Qkl

∂vk
∂xl

,
(8)

σviscous
ij = −ζHik

(
Qkj +

δkj

3

)
− ζ

(
Qik +

δik
3

)
Hkj + 2ζ

(
Qij +

δij

3

)
Qkl Hkl

+ Qik Hkj − HikQkj + 2ηAij,
(9)

where Ωij =
(
∂ivj − ∂jvi

)
/2, and Hij is the molecular field defined as:

Hij = −
1
2

(
δF
δQij

+
δF
δQji

)
+

1
3

δF
δQkk

δij. (10)

The Beris-Edwards model as formulated above has three independent viscosity pa-
rameters, Γ, ζ, and η, which relate to the six Leslie viscosities (of which 5 are independent).
Rotational diffusion constant Γ sets up the typical timescale of the dynamical processes in
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the nematic at a given length scale, ζ is the alignment parameter and prescribes the Leslie
angle in the shear flow or tumbling nature of the nematic, and η determines the isotropic
viscosity of the system.

The nematodynamic model formulated by Qian and Sheng [75] follows the formalism
of thermodynamic fluxes and forces, within the description of the tensorial nematic order.
Viscous stress tensor is written as:

σviscous
ij = β1QijQkl Akl + β4 Aij + β5 AikQkj + β6Qik Akj

+
1
2

µ2Nij − µ1NikQkj + µ2Qik Nkj,
(11)

where Nij = Q̇ij + ΩikQkj − QikΩkj is the corotational derivative of the Q-tensor. Time
evolution of the Q-tensor is given by

Q̇ij =
Hij

µ1
−

µ2 Aij

2µ1
+ QikΩkj −ΩikQkj. (12)

The model is formulated with six viscosity coefficients β1, β4, β5, β6, µ1, and µ2,
linked by the relation β6 − β5 = µ2 The number of coefficients is exactly the same as in the
director-based Ericksen-Leslie nematodynamic model, and, at a constant degree of order,
coefficients can be exactly mapped between the two models.

A strong way for characterization of the nematic flow is to construct a relevant dimen-
sionless numbers, especially, to characterize the coupling between the flow and orienta-
tional order. In experiments and simulation involving nematic flow, Reynolds number is
typically much smaller than 1. Therefore, a better insight into nematic nature of flow is
given by the Ericksen number which compares the nematic elastic forces to the viscous
forces and is given as Er = γ1v/l

K/l2 = γ1vl
K , where v is a typical flow velocity in the system,

l is the typical length scale, and K is the single Frank elastic constant. At small Ericksen
numbers, the director dynamics is governed by the elastic terms, whereas, at large Ericksen
numbers, the dynamics is dictated by the velocity profile. Typical values for Ericksen num-
ber are Er ∼ 1 when considering annihilation of defect pairs [80,81], or moderately slow
flow in microchannels [82], and Er ∼ 20 for strong flow in microchannels [82]. These nema-
todynamic models–either Beris-Edwards or Qian-Sheng formulation–are usually solved
numerically by different numerical methods, such as Lattice Boltzmann methods [83,84],
finite elements [85], or multi-particle collision dynamics [86,87].

3. Topological Defects and Nematic Colloids

Elastic penalty for variations in the orientational order of the nematic liquid crystals
imposes the director to be a continuous, preferably a slowly varying function. However,
this is not always achievable as some boundary conditions or strong coupling to external
field or flow are incompatible with a continuously varying director across the entire domain.
Instead, defects must be present in the bulk, set by the topological constraints. Nematics can
feature two types of these topological defects: point defects and line defects. Being a line
field, i.e., a unit vector field with head-tail equivalence, each nematic sample is a function
mapping from the real space, occupied by the liquid crystal, to the real projective plane.
Defects can be labeled by the homotopy groups, which also provide the conservation laws
for the associated topological charges. The application of this formalism to understanding
of experimental behavior has been developed and studied by researchers, such as Mermin,
Kleman, and others [23,26,88,89].

Disclination lines are classified by encircling them with a virtual loop, as well as
measuring how many turns the director makes while moving along the loop, which gives
the winding number of the disclination. The fundamental group of the real projective plane,
π1 = Z2, only allows for two options: the case without disclinations and the half-integer
winding corresponding to defects with a singular core.
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Looking in three spatial dimensions, simple point defects, compound defects made
of one or more defect loops and point defects, or inclusions, such as colloidal particles
and droplets, can be assigned an integer called topological charge. This charge can be
determined by wrapping the object with a sphere and counting how many times the
director on the sphere points into each spatial direction. The second homotopy group of
the real projective plane, π2 = Z, dictates that these charges are additive.

The simplest object with a nonzero topological charge is a colloidal particle with
homeotropic (perpendicular) surface anchoring, for example, a silica microparticle with a
DMOAP surface treatment. In a nematic, the field immediately around this particle points
in every direction in space; hence, it has a topological charge of +1 (where the sign is by
agreement). In a nematic with a uniform far-field, for example, in a planar cell, such a
particle will be accompanied by topological defects, either a hyperbolic hedgehog, a point
defect with a topological charge of −1, or by a closed disclination loop, also called a Saturn
ring [33,34,36]. Based on the symmetry of the surrounding director field, these are also
called the elastic dipole and elastic quadrupole [35,90], respectively (see Figure 2).

Figure 2. Topological charge. (a) The simplest nematic point defects: the radial and hyperbolic
hedgehog. (b) A colloidal particle with an accompanying defect, forming an elastic dipole and an
elastic quadrupole. The image (b) is reprinted and adapted with permission from the reference [38]–
Copyright (2006) AAAS.

The spherical shape is topologically nontrivial with its nonzero Euler characteristic
and, thus, induces defects. In an inverted case of homeotropic nematic droplets (usually in
an aqueous host), the topological charge inside the droplet must total +1. Nematic drops
have been studied for a long time [91], but their rich behavior keeps yielding new interesting
results, especially when chirality is involved [92]. For example, in cholesteric droplets,
new higher-order point defects with topological charge different from ±1, previously
thought impossible, have been experimentally observed [93,94], opening new mathematical
questions in the process [95]. Spherical topology and curvature effects also reflect in defect
behavior on nematic and cholesteric shells. In this case, the confining dimension is thin,
and the resulting director patterns and defect structures can usually be well described in
two dimensions [31,93,96–100].

The homotopy formalism and topological charges are well applicable for most of
rather simple cases (geometries); however, for example, interactions of line and point
defects in the same medium lead to additional complications, as the first and second
homotopy group are not independent. This became increasingly important in nematic
emulsions and colloids [34] and, more recently, also in active nematics [63]. Inclusions in the
nematic host introduce a topologically nontrivial domain that induces a mixture of point
defects, and closed line defect loops, which may be linked or knotted. Closed disclination
loops also carry a point topological charge, and, conversely, disclination loops make the
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topological charges on individual point defects in the system no longer additive [101,102].
Description of such systems warrants a more complete description that takes into account
not only topological charges of individual defects but also considers the global topology of
the entire nematic sample [103,104].

Disclination lines can formally have any varying cross sectional profile, but elastic
free energy cost places energetic restrictions on them, especially in proximity of colloidal
particles. Therefore, in many cases, they have a constant profile of winding number,
such as the −1/2 winding number (Figure 3a). Such disclinations can be thought of as
framed curves, a kind of three-fold ribbon owing to the three-fold symmetry of their cross
section. When they are closed into loops, they can be assigned an additional topological
invariant, the self-linking number, which counts the total number of turns along the
loop [43] (Figure 3b). The three-fold symmetry allows self-linking in multiples of 1/3. Odd
multiples of 1/3 must be linked by an odd number of other disclination loops, and even
multiples of 1/3 can exist unlinked and alternate between even and odd topological point
charge. The complete conservation law, taking into account any number n of possibly
linked loops with linking numbers Lkij, can be written as

3
2

(
n

∑
i

Sl(Ai) +
n

∑
i 6=j

Lk(Ai, Aj)

)
+ n = q mod 2. (13)

Here, q is the topological charge of the entire system of disclination loops. The modulo
2 is there because the presence of disclination lines prevents consistent assignment of
arrows to the nematic director field; there is no well defined global topological charge
conversation apart from the parity.

The theory can be generalized to account for changes of disclination profile along the
loop [105], which is relevant, for example, for hybrid disclinations formed when connecting
Saturn-ring defects to defects around cylindrical inclusions [50], and in active nematics,
where disclination loops dynamically transform and stretch, with self-propulsion velocity
dependent on the local disclination profile [106]. More generally, in chiral liquid crystals
(cholesterics), classification of disclination lines is more complex, as their type depends on
whether the director, the helical axis, or both have a nonzero winding number [107].

Figure 3. Topology of disclination lines. (a) Disclinations with planar cross sections with winding
numbers +1/2 and −1/2. (b) Disclination lines with −1/2 can twist or writhe, accumulating self-
linking Sl when closed into a loop. (c) Disclinations can be reconfigured in three different ways at
possible selected rewiring sites, which can emerge in different nematic colloidal assemblies.

The three-fold ribbon description of disclination lines is well suited for describing
rewiring of disclinations [43,108]. Entangled and knotted disclination lines that span
multiple inclusions [42,44] can be difficult to understand, but noticing that each pair of
closely passing disclination line segments can be identified as a potential rewiring site
implies that many different disclination line configurations, together with the surrounding
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director field, are similar everywhere, except in the rewiring (tetrahedral) region. Rotating
the tetrahedron and the field inside it by 120◦ increments rewires the disclination network
and changes the cumulative self-linking number by ±2/3. Even with just two spheres,
we can observe entanglement and rewiring, which can be readily performed by targeted
application of optical tweezers [42] (Figure 3c). Tetrahedral rotations are natural moves
to describe the changes in topology of the loop itself, as they correspond to tangles in
planar knot diagrams, used in calculation of knot invariants [44,109]. The presence of a
surrounding nematic field imparts additional structure on the conventional knot theory,
which was explored later by Machon et al. [110].

4. Nematic Colloidal Assemblies

Topological defects can appear transiently after a quench or in flow, but, as approach-
ing equilibrium or steady state, they tend to annihilate to reduce the elastic deformations
and their free energy, unless stabilized by boundary conditions and geometry of the con-
fining space. This is readily seen in porous structures infused by a nematic. Branched
networks of channels, treated to enforce a particular boundary condition, provide a multi-
tude of places where defects are topologically required, leading to multistability and, thus,
switchability of the resulting composite material [14,45–47,111,112]. Surface topography,
such as holes or pillars, can be used either to induce uniform order at the surface [113]
or to stabilize defects and specific director patterns, which can act as optical devices or
sensors [114–117]. However, these cases all rely on static geometry to support a director
field. The possibilities greatly expand when the confinement is enforced by freely movable
particles, which themselves are guided and assembled by the director field around them,
i.e., the nematic colloids [38,44,52,53,118,119]. Due to the strong relevance of topology,
these composites can also be placed into the broader category of topological soft matter.

Monodisperse silica spheres treated with DMOAP to achieve homeotropic surface
anchoring can produce different defect conformations, depending on the type of the
nematic cell, confinement ratio between the sphere diameter and cell thickness, and the size
of the particles [119]. The topological defects act as force mediators and can assemble many
different arrangements based on the type of defects and the geometry of the confinement.
Particles with point defects and Saturn rings assemble loosely at a distance into dipolar,
quadrupolar [38], or mixed crystals [120] (Figure 4a–c). Particles entangled with a single-
stroke disclination line around them are more tightly bound because the disclination acts
as an elastic string with an approximately constant tension. In a twisted nematic cell, the
tetrahedral rewiring sites are positioned in a way that allows rewiring in two dimensions,
hence allowing for made-to-order of diverse knots or links [44] (Figure 4d). The particle
assembly via defects can be also extended into a full three dimensions [40] (Figure 4e).

Figure 4. Colloidal assemblies of spherical microparticles in a nematic under different confinement con-
ditions. Two-dimensional crystals can be formed from (a), (b) dipolar-quadrupolar, or (c) quadrupolar
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particle and defect units. (d) Assembly entangled with a knotted disclination loop. (e) Three-
dimensional nematic colloidal crystal assembled with laser tweezers, with (right) a 3D confocal image.
The images are reprinted and adapted with permission from the references: (a) [121]–Copyritht
(2007) APS, (b) [39]–Copyright (2008) APS, (c) [122]–Copyright (2008) APS, (d) [109]–Copyright
(2015) National Academy of Sciences, (e) [40]–Copyright (2013) Springer Nature.

Chirality supports creation of complex disclination geometries, as preferred discli-
nation direction varies along the helical axis, allowing formation of three-dimensional
curves while remaining consistent with surrounding director in elastic equilibrium. A few
examples of this complexity are shown in Figure 5. In chiral samples, linked or knotted
disclination lines can be observed without the stabilizing effect of particles. Transient
linked disclinations have been observed already by Y. Bouligand [123] during coarsen-
ing (Figure 5a). Later, stable knotted structures were created in cholesteric cells ([124],
Figure 5b), and predicted in cholesteric droplets [92], both relying on confinement to stabi-
lize the disclinations. A more versatile confinement is again achieved by including colloidal
particles with homeotropic surface anchoring. In contrast with the π/2 twisted nematic cell,
where creation of knots required a rather large number of colloidal particles (Figure 5e),
in a π-twisted cell, complex knots and links can be achieved around a smaller number of
particles [125] (Figure 5c,d). Even higher levels of chirality with respect to particle size,
increase the topological complexity even further, at expense of controllability.

Figure 5. Knotted and linked disclinations in cholesterics and nematics. (a) Transient linked
cholesteric disclinations, observed by Yves Bouligand. (b) A stable knotted cholesteric disclination,
by Tai et al. (c,d) Linked and knotted disclinations stabilized by silica microspheres in a π-twisted
cell. (e) A complex link stabilized in a π/2-cell on a nematic 2D colloidal crystal grid. The images
are reprinted and adapted with permission from the references: (a) [123]–Copyright (1974) EDP
Sciences, (b) [124]–Copyright (2019) AAAS, (c,d) [125]–Copyright (2011) APS. (e) [109]–Copyright
(2015) National Academy of Sciences.

Nematic colloidal inclusions with non-spherical particles have been well explored by
several research groups (Figure 6). Notable examples of non-spherical colloids are disper-
sions of rods [126], polygonal particles [127], handlebodies [52], knots and links [53,128],
irregular shapes [129–133], fractals [134], and particles that can change their shapes [54]. An
interesting application for suspensions of oddly shaped particles are optical metamaterials,
which need regular alignment and spacing. A nematic can provide this self-assembly
with its elasticity and topological defects [135,136], or the particles themselves can form a
nematic order owing to their shape [137].

To generalize, the field of nematic colloids can involve a multitude of interconnected
phenomena, which can be tuned and designed [138] to a certain need to produce a material
with desired function.
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Figure 6. Nematic colloids with different particle shapes. Structures show different assembly charac-
teristics, mediated by both the defects and the elastic deformation of the director field. Geometry
and topology of the particles play a strong role in the behavior of the nematic host and can be
tuned to achieve desired goals. Images are reprinted and adapted with permission from the refer-
ences: (a) [139]–Copyright (2010) National Academy of Sciences, (b) [129]–Copyright (2013) Springer
Nature, (c) [133]–Copyright (2013) Taylor & Francis, (d) [53]–Copyright (2009) AAAS, (e) [128]–
Copyright (2019) Springer Nature, (f) [52]–Copyright (2017) Springer Nature, (g) [126]–Copyright
(2014) Springer Nature.

5. Stationary Nematic Microfluidic Structures

Nematic microfluidic structures are crucially determined by the backflow coupling
between the material flow and the nematic orientational order. As a result of this coupling,
different transient, stationary, or static liquid crystal structures emerge with distinct spa-
tially varying nematic profiles. The may include topological defects of various types and
topological invariants, such as disclinations, points defects, and umbilic defects. More
generally, fluidity of nematics can have important consequences in applications, such as
in liquid crystal displays [59,60], or it can lead to complex pattern formation, for example,
in the process of electroconvection [62,140]. Rheological properties have been studied in
a variety of liquid crystalline materials, ranging from thermotropic liquid crystals [82]
to cholesterics [141] and suspensions of viruses [142]. A major recent interest is in the
development of nematic microfluidic concepts in active nematic systems [63].

5.1. Porous Nematic Microfluidics for Generation of Umbilic Defect Structures

Umbilic defects are observed to emerge when the nematic is pushed along the porous
microchannels with all surfaces imposing uniform planar anchoring along the direction
of the channel (see Figure 7) [143]. The porous channels are set up as rectangular micro-
channels with inserted cylindrical barriers, e.g., visualize long cylindrical fibres immersed
in the channels. The porous barriers change the effective landscape of the microfluidic
channel by introducing geometrical pores of various shapes and sizes, which cause the
flow velocity to obtain multiple flow peaks and flow saddle points, and it is the local flow
peaks and saddles which generate the umbilic defects via the backflow mechanism. The
director field in the umbilic defect is tilted towards its core and is, consequently, continuous
everywhere in space. A notable difference between regular singular defects in liquid
crystals and umbilic defects is that half integer (winding number) defect lines can occur in
disclinations but not in umbilic defects lines.
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Figure 7. Porous nematic microfluidics as generator for umbilic defect lattice structures. Porous mi-
crochannels with cylindrical barriers are arranged into (a,b) triangular, (c) square, and (d) hexagonal
lattices, creating: (a) a triangular lattice of +1 umbilics and a rectangular lattice of −1 umbilics form,
(b) a hexagonal lattice of +1 umbilics and a Kagome lattice of −1 umbilics, (c) a square lattice of both
+1 and −1 umbilics, and (d) a triangular lattice of +1 umbilics and Kagome lattice of −1 umbilic.
The bottom panels show generalization of the observed structures. (e) Generation of umbilic defects
of variable (high) umbilic strength by flow peaks and flow saddle points. A local peak in the velocity
field generates a +umbilic, and flow saddle generates a −umbilic. The image is reprinted and
adapted with permission from the reference [143]–Copyright (2016) Taylor & Francis.

Figure 7a–d show the rectangular microfluidic channel with inserted cylindrical
barriers of different-thickness and arranged in different lattices. Figure 7a,b show the
microchannel with triangular lattice of barriers where, depending on the barrier radius, we
observe formation of two different lattices of the umbilic defects. In thin barrier regime,
+1 umbilics form triangular lattice, and −1 umbilics form a square lattice. However, if the
barriers are thick compared to the interspaces between them, +1 umbilics form hexagonal
lattice, and −1 umbilics arrange into a Kagome lattice. Both types of umbilic defects in



Crystals 2021, 11, 956 12 of 21

porous microchannel with square lattice of barriers (Figure 7c) form lattices of the same
symmetry. If the barriers are arranged into a hexagonal lattice (Figure 7d), umbilic defects
of strength +1 form triangular, and −1 umbilics form a Kagome lattice.

In such channels, the deformation of the director field is a result of competition
between the surface alignment imposed by the channel surfaces and the flow shear, where
the flow shear turns the director away from the direction imposed by the surfaces. A local
maximum in the flow field yields an umbilic defect of positive strength, and a saddle point
gives an umbilic defect of negative strength. Actually, by designing flow profiles with
different symmetry beyond simple peaks and horse saddles, umbilic defects of higher
umbilic strength can be created. Indeed, a peak in the velocity field generates a +1 umbilic,
and a horse saddle generates a −1 umbilic. However, two peaks without a saddle point
(a minimum and a maximum) generate an umbilic of strength +2, whereas a three-valley
saddle (monkey saddle) and a four-valley saddle yield umbilics of strength −2 and −3,
respectively (see Figure 7e).

To generalize the results, the mutual–backflow–coupling between the flow field and
nematic orientational ordering is shown as an interesting way for creating birefringent
defect lattices in complex fluids via direct microfluidic approach. By controlling the sym-
metry and size of the porous barriers in the channels, one can design various umbilic
arrangements and lattices ranging from simple square, to triangular and even Kagome. As
objects, the umbilic defects are inherently birefringent and could be used for manipulating
the flow of light at various levels and frequency scales, or used as switchable and control-
lable objects for trapping and guiding inclusions, such as colloidal particles, relevant in
microtransport and mixing applications.

5.2. Stationary Singular Defect Structures in Junctions of Nematic Microfluidic Channels

Complex flow field profiles in nematic microchannels can be used to create nematic
microstructures with singular topological defects, such as disclinations, defect loops, or
topological points defects. Typically, singular defects emerge in microfluidic geometries,
where surfaces impose perpendicular (or tilted, but not in-plane) surface alignment, such
as in microfluidic channels with homeotropic anchoring, where energetic competition
between escaped and singular profiles lead to diverse microfluidic structures. For exam-
ple, in Reference [144], junctions of 4, 6, and 8 microchannels (treated for homeotropic
anchoring) are used to create nematic defects with different topological charge. The main
mechanism for the creation of such singular defects is the fact that, in the center of a
nematic microchannel, at sufficiently large Ericksen numbers, the director turns along the
channel. Actually, in nematic microfluidics, two topological structures can be present, i.e.,
the topological defects in the orientational field of the nematic and the stagnation points in
the velocity field, which, more generally, is an example of a cross-talk between topological
structures of different fields.

Nematic structures in microfluidic environments are of particular interest due to
their memory effects and switching possibilities, providing a route towards new optic
and photonic materials [16,45,46,145]. In Figure 8, we show flow-induced dynamics of a
defect structure inside a junction of six cylindrical capillaries. In a cylindrical confinement
with homeotropic anchoring and without flow, the nematic director prefers the escaped
alignment, in which case the director in the middle of the channel points along the channel
direction. This leads to a variety of equilibrium structures, depending on the direction of
the director escape in individual channels [46]. One of such structures is shown in the first
snapshot of Figure 8, where a −1 topological defect resides in the center of the junction.
Preferred nematic alignment in a capillary when flow is switched on is with the direction
of the director escape along the flow. This leads to the flow-induced reconfiguration of
the defect structure in a microjunction (Figure 8). Upon the director escape reversal in the
left and right channel, two +1 defects are created. They merge with the −1 defect in the
junction center, forming a defect structure with topological charge of +1. A similar process
is repeated as a −1 defect is created in the up and in the down channel, which merge with
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the preexisting +1 defect, leading to the formation of a −1 defect in the junction. The
position of the defect is slightly off-center since it is advected by the flow. Depending on
the geometry of the initial equilibrium structure and the arrangement of the flow towards
and away from the junction, a variety of switching processes and flow-stabilized structures
is possible [146]. This example shows how porous networks with microfluidic functionality
can be turned into an advanced platform for generation of various topological nematic
field structures.

Figure 8. Flow stabilized structures in junctions of nematic-filled channels. Defect dynamics are
shown in a junction with extensile flow (i.e., two outlet channels indicated by two blue arrows, and
four inlet channels). Initial director profile has 2 outward escaping profiles and 4 inward escaping
equilibrium configurations with a −1 defect at the channel junction center. Flow direction in top
and bottom channels is aligned with the direction of director escape. As the nematic undergoes a
flow-aligning transition in the left and right channel, a pair of +1 defects is created at open channel
boundaries. The pair coalesces with the previously residing −1 defect, forming a +1 defect and,
thus, preserving the bulk topological charge. Similarly, undergoing a flow alignment transition, −1
defects are created in the up and in the down channel. The defects interact and form a stationary
state, consisting of a single −1 bulk defect, which is displaced from the center of the junction in the
direction of one of the outgoing flows. Time is measured in units of nematic characteristic time scale

τN =
ξ2

N
ΓL . The image is reprinted and adapted with permission from the reference [146]–Copyright

(2016) Taylor & Francis.

5.3. Nematic Flow Past Microfluidic Obstacles

While flow might lead to the formation of stationary nematic structures, unstable
temporal behavior might also emerge. This was observed in the case of nematic flowing
past an obstacle in a shape of a pillar within a microchannel [147] (see Figure 9). In
equilibrium, homeotropic anchoring conditions on the surface of the pillar and on the
edges of the microchannel induce a defect loop surrounding the pillar. At low flow rates,
the defect loop aligns in the middle of the channel and stretches along the flow. At even
higher flow magnitudes, a flow aligning transition is reached, after which, sufficiently
far away from the micropillar, the director in the center of the channel points along the
channel and not perpendicular to it. This leads to the formation of a −1 point defect, which
is separated from the pillar by a wall-like region of high distortion. After the creation of
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the −1 defect, the length of the wall structure increases in time due to strong velocity field,
causing an instability, in which a pair of ±1 defects is created in the wall. This event splits
the wall in two. The part of the wall that is further along the flow consists of a +1 and a −1
defect with no net topological charge and is annihilated. The part of the wall closer to the
pillar gradually grows until the splitting event is repeated.

A B

C

Figure 9. Nematic flow past a cylindrical barrier in nematic microchannel. (A) Morphological
evolution of the defect structures in the presence of flow. Defects are drawn in red; black lines show
the corresponding director. (B) Extension of the singular loop (measured between the pillar center
and the leading end of the defect) shows a non-linear dependence with the Ericksen number Er. Insets
show extension of the semi-integer defect loop with increasing the flow speed, observed between
crossed-polarizers. Scale bar: 50 mm. (C) Time sequence of polarized micrographs representing
the flow-alignment of the nematic director in microchannel. A distinct birefringent domain (green
in appearance) with a parabolic boundary is observed upstream of the micro-pillar. The image is
reprinted and adapted with permission from the reference [147]–Copyright (2013) RSC.

The nematic microfluidic setups can be further advanced by using microchannels
with structured walls, such as in Ref. [148], where nematodynamic concepts are used
for manipulation and transport of colloidal particles. Using wavy walls of microfluidic
cells and channels, the authors are able to realize tunable colloid trajectories, leading to
distinct particle docking and lock-and-key interactions. The interactions are based on the
design of the alternating splay and bend distortions, which define a smoothly varying
elastic energy profile. These approaches of transport and microflow manipulation can be
further complemented by applying external mechanical, electric, and light fields, such
as in Reference [149], where driving pressure can be used to stabilize and manipulate
distinct topologically-protected intermediate states. More generally, nematofluidic setups,
in combination with external stimuli and fields, enable inducing of different flow state
transitions on demand through channel geometry, application of laser tweezers, and control
of the flow rate/pressure.

6. Functionalized Colloids: Ferromagnetic Liquid Crystal Structures

Design and different functionalization of liquid crystal agents, from molecules to
colloidal-type particles, can lead to realization of different liquid crystal structures, and
even new liquid crystal phases [150]. For the illustration, we chose an interesting example
of a distinct type of functionalization that led to the development of ferromagnetic liquid
crystal structures [20,56], either in diluted or dense suspensions, which leads to combined
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effects of liquid crystal ordering and ferromagnetism. Effectively, such systems perform as
liquid ferromagnets.

6.1. Suspensions of Magnetic Platelets in Liquid Crystals

A ferromagentic nematic colloidal suspension was realized, as based on nanosized
thin ferromagnetic colloidal platelets immersed in nematic liquid crystal [56]. The surfaces
of the platelets are functionalized to impose perpendicular (homeotropic) alignment of the
nematic, causing a stable nematic suspension with macroscopic spontaneous magnetization
along the nematic director. Upon quenching of the suspension from the isotropic phase,
the ferromagentic domains form, which can be aligned upon cooling into monodomains by
applying external magnetic fields. The material is an intriguing liquid that possesses two
order parameters, i.e., the nematic director and magnetization, which are mutually coupled.
The aggregation of the ferromagnetic platelets is prevented by the nematic mediated elastic
interactions between the platelets. More generally, this work is a demonstration of a novel
multi ferroic material and contributes to the development in the general field of anisotropic
magnetic nanoparticle materials [151] (Figure 10).

Figure 10. Ferromagnetic suspension of Ba hexaferrite nanoplates in NLC: (a) Magnetic nanoplates
(red and blue) orient with their magnetic moments along the average order of liquid-crystal molecules
(yellow ellipsoids). (b) Polarized-light microscopy images of two types of antiparallel magnetic
domains form with the magnetization along the NLC orientation (denoted by n). P and A indicate
the orientation of the polarizer and analyzer, respectively. The upper images show the suspension
in the absence of the field; in the right-hand side image, the domain walls are drawn. The bottom
images show the response of the domains to a magnetic field. The image is reprinted and adapted
with permission from the reference [151]–Copyright (2018) Elsevier B.V.

6.2. Dense Suspensions of Magnetic Platelets in Isotropic Fluids

Colloidal fluid with ferromagnetic building blocks that, at sufficiently high concen-
tration, exhibit liquid crystal ordering (i.e., without liquid crystal host, as in Section 6.1)
is realized to perform as liquid ferromagnets in the work led by N. A. Clark [20] (see
Figure 11). Distinctly, ferromagnetism in colloidal fluids is achieved by creating stable,
fluid suspensions of well-dispersed magnetic nanoparticles in isotropic solvent, and further
designing their mutual interactions to produce equilibrium, zero-field magnetization. In
the work by Clark et al, barium hexaferrite (BF) nanoplates were suspended in isotropic
n-butanol and surfactant-stabilized to produce a system of functionalized nanoplates
with weak electrostatic repulsion, strong and anisotropic steric repulsion, and magnetic
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interaction. Introducing the electrostatic repulsion prevented nanoparticle aggregation
and enabled stable suspensions at essentially any concentration, importantly including at
high volume fractions where spontaneous LC ordering of the platelets can emerge. The
demonstrated nematic liquid crystal colloidal fluid is distinctly ferromagnetic, also forming
birefringent interfacial spikes at the isotropic–nematic ferromagnet interface upon applying
external magnetic field perpendicular to the interface. Finally, the realized ferromagnetic
fluid produces distinctive magnetic self-interaction effects, such as fluid block domains
arranged in closed flux loops, and makes this material highly sensitive, even in the Earth’s
magnetic field.

Figure 11. Nematic ferrofluid from suspension of barium ferrite nanoplatelets in n-butanol.
(a) Nanoplatelet suspensions viewed in transmitted light with optical polarization conditions indi-
cated (Polarizer: magenta, P; analyzer: cyan, A). Low-volume fraction suspensions are isotropic (Iso),
appearing dark between crossed polarizers. The orange/red color is due to optical absorption by the
nanoplatelets. At higher concentrations (φ & 0.28), a birefringent ferromagnetic nematic (NF) phase
appears in the lower part of the cell. (b) An applied in-plane magnetic field induces birefringence
in the isotropic phase, with the principal axes of the optical dielectric tensor along and normal to
external magnetic field and the induced macroscopic magnetization density parallel to external
magnetic field. (c) The NF phase is separated gravitationally from the isotropic region by a sharp,
horizontal interface. Equilibrium Iso and NF structures deduced from birefringence and dichroism
measurements are illustrated. (d) The Iso phase is magnetized, and the Iso–NF interface becomes
continuous, under applied magnetic field. Samples are sealed in rectangular glass capillaries. The
boundaries of the cells are indicated by the solid thin white lines, and the air–liquid interfaces are
indicated by the dashed yellow lines. The image is reprinted and adapted with permission from the
reference [20]–Copyright (2016) Springer Nature.

7. Conclusions

Nematic fluids are characterized by the orientational order of their building blocks and
include different materials, from molecular fluids and colloidal liquid crystals to viruses.
The nematic orientational order is soft and responsive as an effective elastic medium to
external stimuli, including mechanical fields, pressure, light, electric and magnetic fields,
and dispersed colloidal particles. The strong susceptibility to external stimuli makes
nematic fluids potent materials in systems that require controllability and tuneablity, which
is today extensively used in display and optical applications, with strong development
also towards photonics and metamaterial applications.

In this brief and selected review, we introduce three chosen directions for realizing
topological liquid crystal structures: nematic colloids, nematic microfluidics, and ferromag-
netic liquid crystal structures. Notably, the selection of topics is from the motivation and in-
terest of the work from our group, but importantly as affected—directly and indirectly—by
the works by Noel Clark and collaborators. All these topics fundamentally use the distinct
liquid crystal ordering and its manipulation, either through the composition/structure of
the actual materials or through the external fields or frustration, to produce novel material
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behavior or material mechanisms. This complex soft matter naturally reaches towards
other fields of science and technology, notably including optics and photonics, biological
and active matter, topology, microfluidics, and fluid dynamics, sensing, and metamaterials.

Finally, Noel A. Clark is one of the world pioneers who contributed and is still shaping
this field of complex and functional soft matter and its applications, with his profound
ingenuity and wisdom.
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95. Pollard, J.; Posnjak, G.; Čopar, S.; Muševič, I.; Alexander, G.P. Point Defects, Topological Chirality, and Singularity Theory in
Cholesteric Liquid-Crystal Droplets. Phys. Rev. X 2019, 9, 1442. [CrossRef]

96. Vitelli, V.; Nelson, D. Nematic textures in spherical shells. Phys. Rev. E 2006, 74, 021711. [CrossRef]
97. Lopez-Leon, T.; Fernandez-Nieves, A. Drops and shells of liquid crystal. Colloid Polym. Sci. 2011, 289, 345. [CrossRef]
98. Zhou, Y.; Guo, A.; Zhang, R.; Armas-Perez, J.C.; Martínez-González, J.A.; Rahimi, M.; Sadati, M.; de Pablo, J.J. Mesoscale structure

of chiral nematic shells. Soft Matter 2016, 12, 8983. [CrossRef]
99. Urbanski, M.; Reyes, C.G.; Noh, J.; Sharma, A.; Geng, Y.; Jampani, V.S.R.; Lagerwall, J.P.F. Liquid crystals in micron-scale droplets,

shells and fibers. J. Phys. Condens. Matter 2017, 29, 133003. [CrossRef]
100. Tran, L.; Lavrentovich, M.O.; Durey, G.; Darmon, A.; Haase, M.F.; Li, N.; Lee, D.; Stebe, K.J.; Kamien, R.D.; Lopez-Leon, T. Change

in Stripes for Cholesteric Shells via Anchoring in Moderation. Phys. Rev. X 2017, 7, 167. [CrossRef]
101. Janich, K. Topological properties of ordinary nematics in 3-space. Acta Appl. Math. 1987, 8, 65. [CrossRef]
102. Alexander, G.P.; ge Chen, B.G.; Matsumoto, E.A.; Kamien, R.D. Colloquium: Disclination loops, point defects, and all that in

nematic liquid crystals. Rev. Mod. Phys. 2012, 84, 497. [CrossRef]
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nematic colloids. Phys. Rev. E 2008, 77, 31705. [CrossRef] [PubMed]
123. Bouligand, Y. Recherches sur les textures des états mésomorphes: Dislocations coins et signification des cloisons de Grandjean-

Cano dans les cholestériques. J. Phys. Fr. 1974, 35, 959. [CrossRef]
124. Tai, J.S.B.; Smalyukh, I.I. Three-dimensional crystals of adaptive knots. Science 2019, 365, 1449. [CrossRef] [PubMed]
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