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Abstract: Mechanochromic luminescent dyes change their luminescence color upon exposure to
external mechanical stimuli. In this study, we synthesized a liquid crystalline mechanochromic
luminescent dye containing a terminal cholesterol molecule. The dissolution of the dye in 1,4-dioxane
resulted in the formation of a gel. The luminescence of the xerogel obtained from the dioxane solution
changed from green to blue upon grinding, indicating mechanochromic luminescence behavior.
The anisotropic patterning of short-wavelength-shifted luminescence color change by directional
handwriting on surface layer of liquid crystal was successfully demonstrated. Furthermore, blue-
shifting mechanoresponsive polymer composite surface was fabricated by using the luminophore.

Keywords: mechanofluorochromic dye; liquid crystal; gel

1. Introduction

Mechanochromic luminescence (MCL) is a phenomenon in which the photolumi-
nescence (PL) color of a material changes in response to the mechanical stimuli (such
as compression, stretching, shearing, bending, impact, and friction). MCL compounds
utilize the macroscopic mechanical stimuli and result in microscopic optical properties
in a stimulated area without affecting the size or shape of the MCL object. Therefore,
MCL compounds can be introduced into various materials and can be applied in optical
recordings [1], security inks [2], memory devices [3,4], and novel diagnostic tools [5,6]. It
is a relatively new research field that has been actively studied over the last decade, and
a variety of materials have been investigated, including crystals, liquid crystals (LCs) [7],
gels [8,9], and polymers [10,11]. In the case of LCs, anisotropy and aggregation struc-
tures can be easily controlled by external stimuli. By combining these properties with the
functions of MCL, it is possible to develop special MCL materials that exhibit multicolor
emission [12–14], circularly polarized PL [15], and anisotropy. Previously, we studied MCL
materials based on liquid crystalline cyanostilbenes and detected the grinding direction
using the stress orientation of LCs [16,17] and emission color control using supramolecular
LC complexes [18,19]. Recently, rod-shaped tolane-terminated cyanostilbene was prepared,
and its mechanoresponsive change in luminescent behavior was evaluated. The lumi-
nescence color of the dye depended on the precipitation method, and the PL spectrum
shifted to either longer or shorter wavelengths upon grinding. When the solution was
recrystallized by removing the solvent, the color shifted from blue to green. In contrast,
when the solution was precipitated by dropping it into a poor solvent, the color shifted
from yellow to green indicating that multiple polishing responses can be induced from
a single material [20]. Since dyes with cyanostilbene as a luminescent backbone exhibit
various intra- and intermolecular interactions [21], it can be presumed that any or some of
them may act during the formation of solids.
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Since solids exhibiting short wavelength shifts can be obtained by precipitation, a
technique that preferentially produces solids with low crystallinity, we focused on low-
molecular-weight gels to stably produce thin films. Low-molecular-weight gels are materi-
als with a continuous structure of macroscopic dimensions composed of a low concentra-
tion of gelling agent and solvent and exhibit solid-like rheological behavior. Gels formed
by low-molecular-weight gelators can switch between flowing sols and solid-state gels
depending on the external stimuli. In addition, gels retain their internal structure even
after the solvent is dried; thus, thin films that inherit the solid structure on precipitation
are formed by depositing them as gels and forming films. Such low-molecular-weight
gels are developed by introducing long hydrophobic tails, such as cholesterol, alkyl, and
alkoxy chains. In particular, cholesterol can form stable gels by the synergistic effect of
cooperative non-covalent bonding. Thus, vigorous research has been conducted, and
application development aimed at optical function and collection performance has been
explored in materials with cholesterol molecule [22]. Conversely, cholesterol has a rigid
ring-fused structure and alkyl chain; therefore, it can be used as a substituent to introduce
LC properties, and gelation ability can be expected without impairing the LC properties.
Tolane-terminated cyanostilbene produces stable LCs [23], and the liquid crystallinity of
cholesterol can be effectively utilized, but no research has been conducted with regard
to liquid crystallinity. In this study, we prepared gelable liquid crystalline cyanostilbene
with terminal cholesterol molecule (2ECh) and investigated the change in the luminescence
color of the prepared mechanochromic dye upon gelation.

2. Materials and Methods

The synthesis of 2ECh is shown in Scheme 1. All starting materials and solvents were
used as-received from Tokyo Kasei Chemicals and Aldrich Co. The polymeric composite
was prepared using Poly (methyl methacrylate) purchased from Aldrich Co (182230-500G,
Mw: 120,000, Tg: 90 ◦C) without any purification.
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2.1. Synthesis of 1

Compound 1 was synthesized according to a previously reported procedure [20].
1H NMR (400 MHz, DMSO): δ (ppm) 8.18 (s, 1H), 8.05–7.99 (m, 5H), 7.81 (d, J = 5.9 Hz,

2H), 7.65 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 2.3 Hz, 2H), 7.25 (d, J = 5.9 Hz, 2H), 2.60 (q,
J = 6.4 Hz, 4H), and 1.15 (t, J = 7.5 Hz, 3H).

IR (KBr, cm−1): 2965, 2217, 1683, 1607, 1511, 1419, 1286, 1196, and 1125.

2.2. Synthesis of 2ECh

Compound 1 (1.1 g, 3 mmol), cholesterol (1.2 g, 3 mmol), and a trace amount of 4-
dimethylaminopyridine were dissolved in tetrahydrofuran (30 mL). N, N’-dicyclohexylcarbo-
diimide (0.6 g, 3 mmol) was added dropwise to the solution while stirring, and the reaction
mixture was stirred at room temperature (20–25 ◦C) for 16 h. The resulting suspension
was evaporated, and the residue was dissolved in dichloromethane. The suspension
was filtered to remove urea crystals. After the solvent was evaporated, the residue was
purified by column chromatography (silica gel, eluent: chloroform). The resulting solid
was recrystallized from chloroform/hexane to obtain 2ECh as a yellowish-green solid
(0.23 g, M.p. 217 ◦C, 6.3% yield).

1H NMR (400 MHz, CDCl3): δ (ppm) 8.14-8.12 (m, 2H), 7.93 (d, J = 8.7 Hz, 2H), 7.69–7.67
(m, 2H), 7.59 (m, 3H), 7.47-7.45 (m, 2H), 7.19 (d, J = 8.7 Hz, 2H), 5.42 (d, J = 3.2 Hz, 1H), 4.88
(s, 1H), 2.67 (q, J = 7.6 Hz, 2H), 2.47 (d, J = 7.8 Hz, 2H), 2.04-0.85 (m, 46H), 0.68 (s, 3H).
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13C NMR (101 MHz, CDCl3): δ (ppm) 145.3, 140.9, 139.6, 137.5, 133.4, 132.4, 132.3,
131.8, 130.2, 129.2, 128.1, 126.1, 125.1, 123.0, 120.0, 113.4, 88.1, 75.1, 56.8, 56.2, 50.1, 42.4, 39.8,
39.6, 38.3, 37.1, 36.7, 36.3, 35.9, 32.0, 32.0, 29.0, 28.3, 28.1, 27.9, 24.4, 23.9, 22.9, 22.7, 21.1, 19.5,
18.8, 15.4, 12.0

IR (KBr, cm−1): 3412, 2936, 2220, 1715, 1467, 1496, 1415, 1370, 1277, 1187, and 1112.

2.3. Equipment

The synthesized compounds were characterized using Fourier-transform nuclear mag-
netic resonance (FT-NMR; JEOL JNM-ECZ 400 MHz) (Tokyo, Japan) and infrared (FT-IR;
JASCO FT-IR 6000) (Tokyo, Japan) spectroscopies. 1H and 13C NMR spectra were recorded
for CDCl3 and DMSO-d6 at room temperature using tetramethylsilane (TMS; δ 0.00) as an
internal standard. The mesomorphic properties were evaluated using a polarizing optical
microscope (Olympus, BH50) (Tokyo, Japan) and differential scanning calorimetry (DSC,
Hitachi High-Tech Science DSC7020) (Tokyo, Japan). PL spectra were collected using a
luminescence spectrometer (Hitachi, F-4500) (Tokyo, Japan). The solid-state quantum yield
of the luminophore was measured using a fluorescence spectrometer equipped with an
integrating sphere (JASCO FP-6600) (Tokyo, Japan) with an excitation at 360 nm. The PL
lifetimes of the composite films were measured using a nanosecond spectrofluorometer
(Horiba, FluoroCube) (Kyoto, Japan) and an excitation wavelength of 370 nm. Powder
X-ray diffraction (XRD) measurements were performed using a diffractometer (Rigaku
SmartLab 3 kW) (Tokyo, Japan) with a standard parallel beam setup. The microscopic
images of the xerogel were observed using a scanning electron microscope (Keyence V8800)
(Osaka, Japan). The surface profile of the films was evaluated with an interferometric
surface profiler (Ryoka Systems, VertScan R3300H) (Osaka, Japan). Thin layers for spec-
troscopy and XRD were prepared from dioxane solution on glass substrates using spin
casting method. Thin layer of luminophore or polymer composite was ground by pen and
the luminophore powder was ground using agate mortar.

3. Results and Discussion

The chemical structure of 2ECh is shown in Figure 1. Cyanostilbene, a typical MCL
substituent, has a rod-like molecular shape with a high affinity for LC materials. In addition,
the π-conjugated structure was extended by introducing tolane, which is widely used as a
photoemissive mesogen substituent. The same structure has been used for the mechanore-
sponsive parts and tends to form antiparallel molecular pairs in crystals. The presence
of cholesterol introduces intermolecular interactions; thus, one-dimensional bonds are
expected to contribute to gel formation [24]. The DSC thermograph and polarized optical
micrograph obtained at 260 ◦C are shown in Figure 2a. The polarized light micrograph
shows typical oily stripes, indicating that the compound exhibits a chiral nematic phase
from 217 ◦C to >300 ◦C. The LC properties were maintained at temperatures above 300 ◦C,
and no clearing point was observed before decomposition. However, the compound in
the LC phase showed a yellow melt and no obvious selective reflection was observed
(Figure 2b).

The gelation ability of the dye was examined at room temperature. The mixture of
2ECh and solvent was heated up to the boiling point of the solvent (101 ◦C) to obtain a
homogeneous solution. Then, the solution was cooled to room temperature, and the gela-
tion ability of the dye was examined using an inversion test. The results are summarized
in Table 1. Cholesterol-incorporated compounds can gel with a wide range of materials,
but 2ECh gelled only at a high concentration of 10 mg/mL 2ECh in dioxane. It has been
reported that intermolecular interactions between the alkyl groups (van der Waals forces)
and hydrogen bonds are important for the formation of molecular assemblies [25]. 2ECh
has a short alkyl chain, and thus, it is assumed that its gelation ability is not high.
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Table 1. Gel-formation tests for 2ECh in various solvents.

1,4-Dioxane Ethyl Acetate Hexane Methanol Tetrahydrofuran

5 mg/mL PG I I I S
10 mg/mL G I I I S

PG: Partially Gelled; G: Gelled; I: Insoluble; S: Solution at 20 ◦C.

The gels formed by dioxane were air-dried, and the mechanoresponsive behavior was
examined in the thin-film state. The PL spectrum and fluorescence lifetime changes are
shown in Figure 3a and b, respectively. It has been reported that materials whose color
changed by gelation retained their luminescent color even in xerogels after the solvent was
removed and showed a grinding response [26]. The powder in its initial state exhibited
blue luminescence and no response to grinding. When the dioxane solution was heated to
a sol state and a thin film was formed by spin coating, a uniform green-emitting thin layer
was obtained.
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In the initial state, the thin layer of the luminophore showed a maximum emission
wavelength, fluorescence lifetime, and quantum yield of 500 nm, 35.0 ns, and 4%, re-
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spectively, and after mechanical grinding, the values shifted to 470 nm, 1.3 ns, and 2%,
respectively. The fluorescence lifetime was longer (~10 ns) than that of the conventional
tolane-terminated cyanostilbene, suggesting the formation of an excimer. Figure 4a shows
the XRD patterns of the initial and ground glass substrate coated with the luminophore.
The initial film had no diffraction peaks and was amorphous before and after grinding. The
xerogel showed the same mechanical response when obtained as a powder and ground
using agate mortar. However, no obvious change such as size and structure were observed
by mechanical grinding (Figure 4b). Accordingly, the microstructures of the xerogels were
observed by scanning electron microscopy (SEM, Figure 4c). SEM demonstrated that the
xerogel had micrometer-scale fibrous aggregates, whereas the grinding powder showed
no such structure. From the changes in the SEM images, it can be presumed that the
amorphous fibrous structure on the solid surface derived from the xerogel induces the
green luminescence, and that the luminescence color changes when these are destroyed by
mechanical grinding.
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Figure 4. (a) X-ray diffraction (XRD) spectrum (b) optical image (c) and scanning electron microscopy
(SEM) images of 2ECh before and after mechanical grinding. The black line in (b) is scalebar for
0.8 mm.

The directional mechanochromic behavior of the 2ECh film was studied. As shown
in Figure 5a, “T” was written on the film with a pen, and when MCL was induced, blue
luminescence in the shape of the letter was observed. This letter was formed by applying
mechanical pressure in two orthogonal directions. Figure 5(b) shows a photographic
image of the film obtained using the linear polarizer. When the polarization direction
of the polarizer is parallel to the grinding direction, the grinding area shows a high PL
intensity. Furthermore, the maximum wavelength of the PL spectrum was larger in the
parallel direction than in the perpendicular direction, indicating that the wavelength was
blue-shifted. Figure 5c shows the polarized PL spectrum of the polished film. The PL
parallel to the grinding direction was larger than that in the perpendicular direction. The
polarization ratio P was calculated using the equation, P||/P⊥, is up to 2.5, where P|| and
P⊥ are the PL intensity at the respective maximum PL wavelengths measured with light
polarized parallel and perpendicular to the grinding direction. The optical anisotropy was
also observed by polarizing optical microscopy. As shown in Figure 5d, distinct bright
lines are seen at 45◦ with respect to the analyzer by rotating the film, which confirms the
polarized emission due to grinding. Figure 5e displays Surface profile of the luminophore
layer. The xerogels were found to be aggregated and distributed in a speckled pattern to
form chunks and approximate height of them are over 0.1 µm. These chunks were broken
down and leveled out at ground area (upper green part of the figure). Since anisotropy is
observed in the dye stretched into a paste at the ground area, it can be presumed that the
stress orientation is partially inherited from the characteristics of liquid crystal.
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Figure 5. (a) Photograph of the patterned photoemission of a 2ECh film following directional grinding. (b) Photographs
obtained using a linear polarizer, (c) polarized PL spectra, (d) polarizing optical micrograph and (e) surface profile of the
ground thin layer. The black arrows in (b) indicate the polarization direction. The subscripts in (c) designate the directions
parallel (||) and perpendicular (⊥) to the grinding direction.

The blue-shifted photoluminescence was maintained even when the glass substrate
coated with the grinding luminophore was heated to 220 ◦C or lower. On the other
hand, when heated above that temperature, green luminescence was again observed, and
the luminescence color change could be repeated by additional grinding. As shown in
Figure 6a, the maximum fluorescence wavelengths of the glass substrate coated with
annealed and ground luminophore were 500 and 490 nm, respectively. Figure 6b shows
the diffraction patterns of the annealed and post-grinding luminophore on glass substrate.
The ground and heated thin films exhibited numerous diffraction peaks, indicating that
they were crystalline. XRD results showed strong peaks in the 2θ = 3–30◦ region at 3.91,
4.71, 5.26, 8.50, 10.70, 13.43, 17.24, 18.61, 19.86, and 25.24◦. These reflections were found
to correspond to surface spacings of 22.6, 18.6, 16.8, 10.4, 8.3, 6.6, 5.1, 4.8, 4.5, and 3.5 Å,
respectively. Among these spacings, the reflection at 3.5 Å is attributed to the distance
between two π-stacked stilbene units in the self-assembled state. Further, the reflections
at 4.8 and 4.5 Å are attributed to the presence of hydrogen-bonded β-sheet-like arrays of
gelling agent molecules in the assembled gel state [24]. Grinding of this thin film resulted
in a significant decrease in the diffraction intensity, but not a complete disappearance.
However, the fluorescence lifetimes of the annealed and ground luminophore were 10 and
3 ns, respectively (Figure 6c). These results reveal that the color change was induced by
heating, but the luminescent species were altered, and the color change in the thin film of
the dye was irreversible for the dye alone.

Finally, to overcome the reproducibility drawback, a polymer composite film con-
sisting of a gelling agent and a non-photoluminescent polymer was prepared. We have
previously reported that thin films made of polymers induce area-selective grinding re-
sponses. Composites with polymers allow for easy preparation of thin films and acquisition
of repeatable properties [16,17] however, the materials that could be thinned were lim-
ited to those that shifted to the long-wavelength side by grinding, as well as those that
shifted to the short-wavelength side could not be fabricated. A blue-shifting MCL polymer
composite film using an immiscible polymer matrix has been reported by Pucci et al. [27],
but a grinding-responsive polymer composite using a miscible polymer has not been re-
ported. A dioxane solution of a 1:1 (w/w) mixture of PMMA and dye was prepared and
spincasted. Initially, the composite layer showed green luminescence with a maximum
emission wavelength of 500 nm, and after grinding, it showed blue luminescence with
a maximum emission wavelength of 470 nm. The ground film returned to its original
wavelength when heated above 180 ◦C (Figure 7a). Figure 7b shows change in XRD profile
after grinding and annealing. No new peaks were observed in the XRD patterns after
grinding, suggesting that the film remained in the amorphous state. Upon heat treatment,
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a slight increase in the peak at 4.71 and 5.26◦ was observed, but no clear crystal peak was
observed. It was presumed that the dye dissolved in the polymer became sol-like, and then
gelled again. Figure 7c shows surface profile of the composite layer with partial grinding.
It was found that the layer was composed of the similar structure to the luminophore. The
height of dispersed chunks is over 0.1µm and no PMMA surface was found on the surface,
indicating the composite did not form a film. It can be presumed that the gelation of the
luminophore with the polymer inhibited the film formation. The composite succeeded in
inhibiting crystallization, but failed to form a film, so further investigation of the material
is needed. Gelation in the coexistence of a gel and polymer is expected to result in a
film with excellent mechanical stability, processability, and formability, and is capable of
withstanding bulk loads, such as stretching and compression.
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4. Conclusions

We synthesized a liquid crystalline mechano-fluorochromic dye containing a terminal
cholesterol molecule and explored its mechanoresponsive behavior. Film formation was
improved by gelation, and the processability and responsiveness were also improved when
thin film was mixed with polymer. Cholesterol, a typical biocompatible functional group,



Crystals 2021, 11, 950 8 of 9

can be used to mimic lipid bilayers and interact with various functional materials in living
organisms. In addition, cholesterol has many optically active sites; thus, it is expected
to have extended functions beyond its use as a gelator, such as circularly polarized light
emission and higher order LCs [28,29]. However, these functions are still under study.
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