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Abstract: In order to study the anisotropy of fracture toughness and fracture mechanism of single-
crystal sapphire, the three-point bending tests and the single-edge V-notch beam (SEVNB) were used
to test the fracture toughness of A-plane, C-plane, and M-plane sapphire, which are widely used in
the semiconductor, aerospace, and other high-tech fields. Fracture morphology was investigated by
a scanning electron microscope and three-dimensional video microscopy. The fracture toughness
and fracture morphology of different crystal planes of sapphire showed obvious anisotropy and
were related to the loading surfaces. C-plane sapphire showed the maximal fracture toughness of
4.24 MPa-m'/2, and fracture toughness decreases in the order of C-plane, M-plane, and A-plane.
The surface roughness is related to the dissipation of fracture energy. The surface roughness of the
fracture surface is in the same order as C-plane > M-plane > A-plane. The fracture behavior and
morphology of experiments were consistent with the theoretical analysis. C-plane sapphire cleavages
along the R-plane with an angle of 57.6 degrees and the rhombohedral twin were activated. M-plane
and A-plane sapphire cleavages along their cross-section.

Keywords: single crystal sapphire; fracture toughness; three-point bending test; single-edge V-notch
beam; cleavage

1. Introduction

Due to their ultra-high hardness, wear resistance, corrosion resistance, and excellent
light transmittance, sapphire materials are widely used in the aerospace industry, national
defense [1], optical industry, substrate manufacturing, etc. [2]. However, it is difficult to
process the precision sapphire parts with complex structures or high surface quality, due to
the high brittleness of sapphire materials. As one of the intrinsic mechanical properties of
sapphire materials, fracture toughness is the only indicator of characterization materials to
resist crack extension and material brittleness. The fracture toughness of brittle material
(single crystal, glass, polycrystalline ceramic) can greatly affect the removal processing of
the material and subsurface damage. Optimizing the processing of brittle materials, it was
essential to control fracture (crack propagation) to reduce the depth of harmful surface
damage [3]. Single crystal sapphires with different crystal plane orientations have different
uses in the industry. In this paper, the fracture toughness and mechanism of different crystal
plane orientations were studied, which can be used as the basis for industrial material
selection and machining to avoid the great harm caused by brittle fracture at low stress.
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There are many ways to test the fracture toughness of brittle materials. Prefabricating
the initial cracks of the appropriate length, can be used to accurately evaluate the fracture
toughness of the material [4-6]. Zhao et al. used a femtosecond laser to prefabricate super
sharp V-notch in the single-edge V-notch beam (SEVNB) method to obtain the fracture
toughness of structural ceramics accurately and reliably [7]. Quinn et al. used the surface
crack in flexure (SCF) method and the single-edged pre-cracked beam (SEPB) method to
test the fracture toughness of glass. The accuracy of the test results was largely determined
by the quality of the prefabricated cracks [8]. Yanaba et al. discussed the relationship
between fracture toughness and flexural fracture area of WC-10 mass% Co cemented
carbide and silicon nitride ceramics. The experimental results of the SEPB method were in
good agreement with the results of theoretical calculation [9].

However, many researchers focus on the fracture mechanism of anisotropic materials,
such as ceramics, glass, and cemented carbide. Due to anisotropy, the physical, chemi-
cal, and optical properties of materials with different crystal orientations show obvious
differences, which have a great impact on the processing performance of materials, and
seriously affect the material removal and the surface quality of processing. The optimal
machining direction can be obtained by defining the fracture behavior of these materials. In
the ultra-precision machining of KDP crystal, Zhao et al. found that the change of cutting
force was caused by the anisotropy of crystal, and the change of roughness was also related
to the anisotropy [10].

Due to the characteristic hexagonal crystal structure and obvious anisotropy mate-
rial of single-crystal sapphire, the processing of sapphire is challenging. Studying the
fracture and removal mechanisms of sapphire is very essential for the optimization of
processing parameters.

In order to study the material removal rate (MRR) and workability of sapphire with
different crystal orientations, Wen et al. performed focused ion beam (FIB) milling on
single-crystal sapphire with A-, C-, and M-orientations. The experimental results show
that: The MRR of A-plane sapphire is slightly higher than that of C-plane and M-plane
sapphires; and the Sa of A-plane sapphire, after FIB treatment, is the smallest among the
three different crystal orientations [11]. In addition, Wen et al. irradiated sapphire with
different crystal orientations by the femtosecond laser, and the damage threshold of C-plane
< M-plane < A-plane < R-plane was obtained. The damage accumulation of sapphire with
M-plane was the largest, and it was easier to form cracks under multi-pulse irradiation [12].
Wang et al. revealed the removal mechanism for each orientation of single-crystal sapphire
by double-sided planetary grinding experiments. The R-plane was removed in the form of
large pieces of spalled material and had the highest MRR and the largest surface roughness
(Sa) of approximately 780 nm among the orientations studied. The C-plane was mainly
removed in the form of unique large step-like pieces of spalled material, had the lowest
MRR among the orientations observed, and exhibited an Sa of approximately 430 nm [13].
Luo et al. used the sol-gel (SG) polishing pad to machine the C-plane, A-plane, and M-plane
sapphires. The polishing results showed that the C-orientation, with a surface roughness
of about 2 nm, is smoother than the A- and M-orientations and the MRR of C-orientation
is higher than that of them [14]. Wang et al. used a diamond wire saw to cut A-plane
sapphire in different cutting directions to explore its machinability. It was concluded that
the cutting direction along the M-plane was the best, considering the minimum cutting
force and the minimum material volume removal could be obtained [15].

To study the mechanism of crack propagation and fracture damage evolution of
sapphire with different crystal orientations, Luan et al. performed dynamic and quasi-
static indentation tests on the c-plane and a-plane of sapphires by Hopkinson pressure bar
tester and continuous indentation tester, respectively. It was found that the bearing capacity
of sapphire is related to the loading velocity, while the crack propagation is affected by the
crystal orientation. The R-planes of sapphire are weaker than other crystal planes and are
prone to crack propagation [16]. Jiang et al. tested the dynamic mechanical properties of C-
plane sapphire by also using the Hopkinson pressure bar tester. The true stress-strain curve
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of sapphire has been obtained at different velocities. It was found that the crystal orientation
influences the crack path and crack pattern, which leads to different energy consumption
during crack propagation [17]. Wang et al. used a Vickers indenter on a micrometer scale
to study crack propagation that is induced by sequential indentation was investigated
on the A-plane and C-plane of sapphire. Due to the different slip systems induced by an
indentation on the different crystal planes of sapphire, increasing the indentation depth
obviously increases the rate of crack propagation on the A-plane, but this effect is not so
obvious on the C-plane. Moreover, some parallel linear traces along the A-plane, which
fracture with increasing indentation depth, are observed from the residual indentation
on the A-plane [18]. Wang et al. performed impact and static load tests on the A-plane,
C-plane, M-plane, and R-plane of sapphire by the high-frequency cyclic impact test device,
respectively. It was found that the crack propagation is affected by the crystal orientation,
which leads to different characteristics of the surface morphology of the different crystal
orientations sapphire after a fracture. Moreover, four different models of the crack system
are proposed for A-plane, C-plane, M-plane, and R-plane, respectively [19]. Wan et al.
found that the surface damage depth of the A-plane sapphire was greater than that of C-
plane sapphire by precision grinding. The subsurface cracks of A-plane sapphire included
transverse and radial cracks, while the subsurface cracks of C-plane sapphire were mainly
transverse [20].

The occurrence of pop-in events at micro-scale always presents ductile-brittle transi-
tion. Wang et al. developed a mechanical model for pop-in events of sapphire based on
indentation test results obtained by a Rockwell indenter with a tip radius of 4.5 um. The
predicted pop-in loads showed good agreement with experimental values for sapphires
with different crystal orientations. The pop-in load for the C-plane sapphire was the largest,
followed in the order of M-plane, A-plane, and R-plane sapphires under the same load
conditions [21].

To study the relationship between plastic deformation and fracture of sapphire, Lin
et al. used the molecular dynamics method to simulate the nanoindentation process of
sapphire. The results showed that the activation of the twin/slip system has an important
influence on the sapphire indentation morphology [22]. Besides, Lin et al. studied the influ-
ence of the scratching direction on surface morphology, stress distribution, and subsurface
defects. The scratching surface morphology of sapphire is affected by the activation of slip
systems. A smaller thickness of the subsurface damage layer was resulted by scratching
along (1-010) and (1-100) directions [23].

The fracture mechanism and fracture toughness of single-crystal sapphire was studied
by fracture mechanics experiments. Azhdari et al. prepared notched samples of sapphire
with different crystal orientations. Through the compression fracture test, it was found
that most of the samples fractured along the weak cleavage plane, and the two weakest
families of cleavage planes were (-1012) and (10-11), especially, plane (-1102), plane (-1100)
and plane (1-102) were the preferred fracture planes [24]. Konstantiniuk et al. used
chemical vapor deposition to deposit single crystal and polycrystalline a-Al,O3 coatings
on sapphire substrates with different crystal orientations, and prepared unnotched and
notched microcantilevers. The (11-20) single crystalline coating which was aligned for
fracture on the C-plane, exhibited the highest fracture stress and fracture toughness [25].
Graca et al. used the SEVNB method to explore the fracture resistance of single-crystal
sapphire with different crystal orientations prepared by two processes. Estimation of the
mosaic block boundary energy and application of the Griffith criterion for intergranular
crack propagation allows the critical deflection angle below which intergranular fracture
can take place to be determined [26].

Many researchers have tested the fracture toughness of sapphire with different crystal
orientations, but there are still few reports on the relationship between the anisotropic
fracture mechanism and fracture toughness of sapphire.

In this paper, the fracture toughness of single-crystal sapphire with different crystal
orientations was tested by three-point bending tests. Single crystal sapphire samples were
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prepared by the single-edge V-notch beam (SEVNB) method, including C-plane (0001),
A-plane (11-20), and M-plane (10-10) sapphires. In addition, this paper further considered
the influence of the loaded surface during the three-point bending tests. Microscopic
morphology of the fracture surface was studied by a scanning electron microscope (SEM),
three-dimensional video microscopy. In addition, the roughness of the fracture surface was
tested by a three-dimensional optical profiler. To study the anisotropy of single-crystal
sapphire with different crystal orientations, the result of fracture toughness, displacement-
load curves, and fracture surface roughness were compared. The fracture mechanism was
studied by the microscopic surface morphology of the fracture surface and the activation
of the twin/slip system.

2. Design of Experiments
2.1. Sample Preparation and Orientation

Single-crystal sapphire is a simple coordination type oxide crystal, belonging to
the hexagonal crystal system, with lattice parameters a = b = 0.4758 nm, ¢ = 1.2991 nm,
a=p=90° v =120° Itis a typical anisotropic material, and Figure 1 shows the crystal
structure of the single-crystal sapphire [1].

C
RPN 61.2°

/N

Figure 1. Crystal structure of the single-crystal sapphire.

Cleavage fracture is a kind of transgranular fracture under normal stress. The fracture
surface is separated along a certain crystal plane (cleavage plane). Low temperature,
impact load, and stress concentration often promote cleavage fracture. Sapphire has been
considered completely uncleavable for a long time. In theory, it has nine cleavage surfaces.
Six planes are parallel to the facets {11-20} and {10-10}, and to the C-axis; three planes
are parallel to the facets {10-11}, the normal vectors to them make an angle of 57° with
the C-axis. The cleavage in sapphire occurs at the intersection of a pair of parallel nets
formed by anions. The larger the distance between the nets, the more vividly the cleavage
manifests itself. In a perfect crystal, the plane of chipping must pass between these nets.
In the basal plane with interchanging O-Al-Al-O-Al-O layers, there are no conditions for
cleavage, whereas in the plane (10-11) with interchanging O-O-AI-O-Al-O-O-O-Al-O-Al-O
layers the bonds between the layers O-O located at a distance of 1.06 A are weakened. So,
the crystals with a small number of dislocations and which do not contain blocks may have
perfect cleavage in the plane of the morphological rhombohedron {10-11} [27].

Due to the sapphire plastic deformation scale is relatively small, material removal is
multi-manifestation in actual processing. It is formed by the development of the brittle-
ductile transition of sapphire. The plastic deformation of sapphire is mainly twin and slip,
as shown in Table 1, which was summarized by Nowak et al. at room temperature [28]. The
critical resolved shear stress (CRSS) of rhombohedral twin and basal twin is the smallest,
and far less than other twin and slip systems. The second is cylinder slip and rhombic
slip. Due to the CRSS required for base plane slip is the largest, it is more difficult to occur
than other twin and slip systems. Two major twins are the foundation (C-plane) twins and
rhombohedronal plane (R-plane) twins. Twinning in the planes {1011} is characterized by a
lesser specific shear and is observed even at cryogenic temperatures.
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Table 1. The twin and slip systems of sapphire at room temperature [28].

Critical Resolved

Number Twin & Slip Systems  Plastic Deformation Type Shear Stress (GPa)
1 <01-11> {01-12} Rhombohedral twin (RT) 0.111
2 <1-100> {0001} Basal twin (BT) 0.148
3 <2-1-10> {01-12} Rhombohedral slip (RS) 3
4 <2-1-10> {0001} Basal slip (BS) 17
5 <1-210> {10-10} Prismatic slip (PRS) 1.2

In this paper, three sapphire samples with different crystal orientations were produced
by Jiangsu Ruibo Optoelectronics Technology Co., Ltd. The raw materials were cut into
35 mm x 3 mm x 4 mm rectangular bars, and then polished by CMP to reach the surface
roughness Ra lower than 0.3 nm, as shown in Figure 2.

C-plane A-plane

A-plane (0001) C-plane (1210)
~ ~
M-plane M-plane

o

\I;pl;xnc
A-plane (1100)

4mm
—

| 35 mm

C-plane

Figure 2. Three different crystal orientations of sapphire samples.

2.2. Three-Point Bending Test and SEVNB

There are several testing methods for fracture toughness. The single edge notched
bend bar (SENB) method is simple to prepare samples, and the test system is easy to
operate. However, the width of the incision is limited by the thickness of the diamond
blade, and a passivation effect will occur at the root of the incision, causing the measured
fracture toughness to be higher than the true value [29]. The single edge pre-cracked beam
(SEPB) method, also known as the bridge compression method, is the most reliable and
accurate test method [30]. The test results of the indentation method (IM) are related to the
smoothness of sample surface, crack form, and calculation formula, and the results under
different conditions have large deviation [31]. The single-edge V-notch beam (SEVNB)
method was adopted in this work, due to its good repeatability [32].

In this study, the three-point bending test and SEVNB method were based on
ISO 23146 [33]. The three-point bending tests were performed by the universal testing
machine typed Sans 5305, and the sample fixture was shown in Figure 3a. The sample was
placed horizontally on the two bearing rollers. The height of the two bearing rollers was
consistent. The two bearing rollers were parallel and perpendicular to the length direction
of the sample. Their spacing is 30mm. The radius of the pressure head and bearing rollers
is 1.6 mm. The symmetrical center line intersected the centerline of the main shaft of the
universal testing machine vertically.
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Figure 3. (a) Sample fixture for the three-point bending test, where F is the loading force, R is the
radius of pressure head and bearing rollers, and Sy is the span of three-point bending. (b) Diamond

wire saw.

A sudden pre-crack in the middle of the sample was prepared by two steps. In the
first step, the U-notch groove was processed by a diamond wire saw in the middle of the
loading plane. The wire diameter of diamond wire saw is 280 um, the diameter of diamond
particles is 80-90 um, as shown in Figure 3b. In the second step, the V-notch was processed
by a laser at the bottom of the U-notch groove. The details of processing parameters were
shown in Table 2. The cutting depth was 2 mm. Due to the wire diameter, the actual cutting
depth was about 1 mm. The cutting depth of the laser was about 0.5 mm.

Table 2. Preparing the standard sample.

Steps Machine Parameter Result
Step 1: Preparing the Di;.imond wire Cutting. ch =1.8m/ s.
U-notch groove machine of Shenyang kejing V¢ =0.3 mm/min 0
STX-402 ap =2 mm
A=355nm
7=15ns
Step 2: Preparing the Laser machine of SCABNLAB Vs=1mm/s
V-notch BasiCubel0 SN:545393 f=50kHz A
d=10 pm
n=10

Where V. is the linear velocity of diamond wire, Vf is the feed rate of diamond wire, ap is the cutting depth, W is the pulse width of laser,
Vs is the scanning speed, f is the laser frequency, d is the spot diameter of laser, and 7 is the repetition times of laser scanning.

Single-crystal sapphire samples with different crystal orientations have one cross-
section and two side-faces. In addition to the cross-section, different side-faces in its
length will be loaded separately in this study. Therefore, the test groups were named
as “Number-Cross-section-Loaded surface”, with a total of six test groups, as shown in
Table 3. For example, the test “1-M-A" is the first test group, “M” is the cross-section of
the sapphire sample, and “A” is the loaded surface of the sapphire sample. Each group
prepared 7 samples and repeated the independent test seven times.

Table 3. Testing groups.

Test Groups Cross-Section Loaded Surface Test Groups Cross-Section Loaded Surface
1 M A 4 C A
2 M C 5 A C
3 C M 6 A M

Where M is the crystal orientation of (10-10), C is the crystal orientation of (0001), and A is the crystal orientation of (11-20).
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This test was in the air and at room temperature. The pressure head of the testing
machine was set to a load at a constant rate of V = 0.05 mm/min, and the direction was
vertical down. The loading time, loading force, and displacement were recorded.

After the samples are fractured, according to ISO 23146 [33], the ideal fracture morphol-
ogy is shown in Figure 4, where part 1 is the fracture surface, part 2 is the processing surface
of the pre-fabricated crack. On the fracture surface, the V-notch depths at B/4, B/2, and 3B/4
along the width of the sample were selected for measurement and denoted as a1, ay, a3.

B
1
-
E S
g §| 8 2
v-_,..-'_‘-"-'
B4 | B4 | B4 | B4

Figure 4. Ideal fracture surface.

The average depth of the V-notch is calculated using Formula (1), denoted as 4, and
must satisfy the Formula (2) to lower the calculation error. The average relative V-notch
depth is calculated using Formula (3) and denoted as «.

a=(ay+ax+as3)/3 @
(amax - amin)/” <01 )
a=a/W 3)

The fracture toughness Kjc was calculated as follows:

Kic

_ mexsoxlo_(’}[ 3><(a/W)3/2 ] )

B x W3/2 2 x (1—a/W)*/?

where F;; is the maximum applied load at fracture, Sy is the span of three-point bending,
B is the sample width, and W is the sample thickness; Y is the dimensionless shape factor
for average V-notch depth to the thickness of the sample W ratio [5]:

199 — (a/W) x (1 —a/W) x [2.15 —3.93 x (a/W) +2.7 x (a/W)?]

Y 1+2x (a/W)

©)

3. Results and Discussion
3.1. Displace-Loading Curves

The displacement-load curves of each test group are shown in Figure 5, and the repeata-
bility of the tests was good. The fracture critical load of C-plane sapphire was significantly
higher than that of other test groups. While the displacement of C-plane sapphire before
fracture was also larger than that of the other test groups. The difference between the M-plane
and A-plane sapphire was not obvious, the average value of fracture critical load was about
28 N and the average displacement with peak load was about 0.008 mm.
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Figure 5. Displacement-load curves of each test group. (a) Test 1-M-A; (b) Test 2-M-C; (c) Test 3-C-M;
(d) Test 4-C-A; (e) Test 5-A-C; (f) Test 6-A-M.

3.2. Calculation of K¢

The results calculated according to Formulas (4) and (5) are shown in Table 4.

Table 4. Fracture toughness K;c of each test group. (Unit: MPa-m'/?).

Test Groups Kqc-1 Kqc-2 Kqc-3 Kic-4 Kic-5 Kic-6 Kqc-7 Average K¢
1-M-A 239 2.03 235 222 221 219 236 225
2-M-C 247 2.60 2,56 267 310 270 251 259 242
3.C-M 404 426 445 444+ 427 413 412 421
4C-A 437 436 428 253 430 3.95 436 427 424
5-A-C 239 251 237 258 * 247 % 241 224 238
6-A-M 228 217 219 234 223 2.62* 232 226 2.32

Where the results marked * were not satisfied with Formula (2), and shall be removed. The experimental fracture toughness was consistent
with the previous studies.

The comparison of fracture toughness calculation results of sapphire with different
crystal orientations is shown in Figure 6. The fracture toughness of C-plane sapphire
was about 4.24 MPa-m'/2, and that of the other sapphires were close, with an average of
2.37 MPa-m!/2. The fracture toughness of C-plane sapphire was significantly higher than
others, about 77%. In tests with M-plane sapphire, the fracture toughness of pressuring
C-plane was about 0.34 MPa-m!/2 higher than that of pressuring A-plane. In tests with
A-plane sapphire, the fracture toughness of pressuring the C-plane was close to that of
pressuring M-plane. In general, the experimental fracture toughness of different crystal
planes decreases in the order of C-plane > M-plane > A-plane.



Crystals 2021, 11, 930

9o0f 16

.......

I?}

Fracture toughness(MPa-m
L]
T
N
>
-2

M-A M-C C-M C-A A-C A-M
Test groups

Figure 6. The average fracture toughness of each group.

As a result, from the displacement-load curves and fracture toughness K¢, the frac-
ture resistance of C-plane sapphire was much greater than that of sapphire with other
orientations. Different crystal orientations showed anisotropy, and this was related to the
loading plane.

3.3. Morphology of the Fractured Surface

The results of the compressive fracture of three different sapphire samples are shown
in Figure 7. The test results of the same type of sapphire have relatively consistent surface
morphology. Assuming that the sapphire samples tested have a perfect crystal structure,
this paper makes the following analysis.

;’_ M-A f

Figure 7. Fractured specimens. (a) Fracture of M-plane sapphire, where “M” is the cross-section of
the sapphire sample, “A” and “C” are the loaded surfaces of the sapphire sample. (b) Fracture of
A-plane sapphire, where “A” is the cross-section of the sapphire sample, “C” and “M” are the loaded
surfaces of the sapphire sample. (c) Fracture of C-plane sapphire when loading M-plane. (d) Fracture
of C-plane sapphire, where “C” is the cross-section of the sapphire sample, “M” and “A” are the
loaded surfaces of the sapphire sample. (e) Fracture of C-plane sapphire when loading A-plane.
(f) Fracture morphology with (i)-fracture zone, (ii)-V-notch zone, (iii)-U-notch groove zone.

The cleavage direction of M-plane and A-plane sapphires are parallel to the cross-
section. It is obvious that the cleavage direction of C-plane sapphire is deflected, it is
not along the cross-section of the sample. In addition, the fracture toughness of C-plane
sapphire is the highest. According to the crystal structure of sapphire and the bond strength
between different atoms, the results of experience are consistent with the expectation. In the
C-plane sapphire tests, the angle between the cleavage direction and the cross-section (C-
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plane) is 33 degrees when the M-plane is used as the loading surface. When the A-plane is
used as the loading surface, the angle between the cleavage direction and the cross-section
(C-plane) is 42 degrees. Theoretically, along the c-direction, there are only interchanging
O-Al layers and hence cleavage is not favored. On the other hand, along the r-direction,
weaker O-O layers are present and so cleavage is favored [27]. In fact, measurements
of the fracture surface energy previously performed by Wiederhorn et al. [34], using the
double-cantilever technique, showed that a crack propagating along the C-plane requires
over six times more energy than along the R-plane. In the tests of C-plane sapphire, the
pre-crack was on the C-plane, and it was predicted that the crack would propagate along
the R-plane and cleavage would occur. If the cleavage along the R-plane occurs when
the M-plane is used as the loading surface, the fracture surface forms 32.4 degrees with
the m-direction. When the A-plane is the loading surface, the angle between the fracture
surface and a-direction is 47 degrees. The experimental results are very close to the results
of the crystallographic analysis, so it can be considered that the cleavage plane of C-plane
sapphire is R-plane. This result is consistent with a study by Graga et al., and previous
research [26]. Besides, the results of the M-plane and A-plane sapphire are similar, and
cleavage was along the cross-section.

The morphology of the fractured surface was studied by a scanning electron micro-
scope and three-dimensional video microscopy, as shown in Figure 7f. The fracture surface
cracks of single-crystal sapphire with different crystal orientations also showed obvious
anisotropy, with different degrees of crack propagation and surface fracture.

In the M-plane sapphire tests, when the A-plane was used as the loading surface, the
cracks propagated vertically along a-direction, and then cleavage with long cracks. The
cracks were large and very obvious, as shown in Figure 8a. At both sides of the section,
the main cracks were about 30 degrees with a-direction. In addition, along the long cracks,
there were many small transverse steps, as shown in Figure 8b. Swain et al. have explained
this cleavage step deformation in brittle solids. Their occurrence could be satisfactorily
explained in terms of a deflection in the base fracture of the near-symmetrical connecting
sliver from one end to the other. Such a deflection would require only a small disturbance
in stress conditions at the advancing crack front [35].

Figure 8. Morphology of the fractured surface in M-plane sapphire tests. (a) Fractured surface of
M-A tests, “M” is the cross-section of the sapphire sample, “A” is the loaded surfaces. (b) Small
transverse steps along cracks. (c) Fractured surface of M-C tests, “M” is the cross-section of the
sapphire sample, “C” is the loaded surfaces. (d) Local cracks.

When the C-plane was used as the loading surface, cleavage was along the c-direction.
The fractured surface was smooth and flat with short pre-crack propagation, as shown in
Figure 8c. The crack propagation in the middle of the section was along the c-direction. At
both sides of the section, the main cracks were about 60 degrees with a-direction, as shown
in Figure 8d.

In C-plane sapphire tests, when the M-plane was used as the loading surface, initially,
there were thick and short triangular cracks along the m-direction, and when the cracks
disappeared, the section became smooth and flat, as shown in Figure 9a,b. Earlier, it can be
confirmed that the cleavage of C-plane sapphire is along the R-plane in Figure 7d. Due
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to the crystal structure being symmetrical along the m-direction in C-plane sapphire, the
trend of crack propagation along the r-direction is counteracted. So, the length of the initial
cracks was short, and the section was smooth and flat. When the A-plane was used as
the loading surface, the whole fracture surface showed inclined long and thin cracks, as
shown in Figure 9¢,d. Cracks were formed at an angle of 57 degrees with m-direction. It
was very close to the angle of 57.6 degrees between the M-plane and r-direction from the
crystal structure. It also confirmed that the cleavage of the C-plane sapphire is along the
R-plane; however, due to the crystal structure was not symmetrical along the a-direction,
and CR-cracks were formed.

[1010] [1210]

[1210] § [1010)
[0001] i [0001]

CUR-crack

Figure 9. Morphology of the fractured surface in C-plane sapphire tests. (a) Fractured surface of C-M
tests, “C” is the cross-section of the sapphire sample, “M” is the loaded surfaces. (b) Local cracks.
(c) Fractured surface of C-A tests, “C” is the cross-section of the sapphire sample, “A” is the loaded
surfaces. (d) Local cracks.

In the A-plane sapphire tests, the fracture direction was parallel to the section. No
matter loading C-plane or M-plane, the section was smooth without crack, as shown in
Figure 10a,c. It is considered that the cleavage direction is along the A-plane. Cleavage
is along the c-direction when loading the C-plane, as shown in Figure 10b. On the other
hand, cleavage is along the m-direction when loading the M-plane, as shown in Figure 10d.

[0001] ! ¢ [1010]

[1010] N * B 10001]
[1210] i i [1210]

Figure 10. Morphology of the fractured surface in A-plane sapphire tests. (a) Fractured surface of
A-C tests, “A” is the cross-section of the sapphire sample, “C” is the loaded surfaces. (b) Local cracks.
(c) Fractured surface of A-M tests, “A” is the cross-section of the sapphire sample, “M” is the loaded
surfaces. (d) Local cracks.

The fracture characteristics of the specimens are summarized in Table 5. The M-plane
sapphire and A-plane sapphire are cleaved along the cross-section, which showed lower
fracture toughness. The cleavage of C-plane sapphire is along the R-plane, and it showed
the highest fracture toughness.
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Table 5. Summary of the fracture characteristics of the specimens.
Sample Loaded Surface Cleavage Direction Morphology of the Fractured Surface
M-Plane sapphire A-plane a-direction Long large cracks with small transverse steps
M-Plane sapphire C-plane c-direction Flat and smooth with short crack growth
C-Plane sapphire M-plane r-direction Flat with thick and short triangular cracks
C-Plane sapphire A-plane r-direction Very rough surface with 57° cracks
A-Plane sapphire C-plane c-direction Flat and smooth without cracks
A-Plane sapphire M-plane m-direction Flat and smooth without cracks

In addition, the formation and propagation of cracks must also be considered. Low-
mobility dislocations, impurities, grain boundaries, and residual stresses are potential
factors for crack nucleation and propagation. The high density and low mobility growth
dislocations in the material lead to a decrease in fracture resistance. Due to not enough
moving dislocations, the energy introduced cannot be dissipated by the classical plastic
deformation mechanism, so it must be dissipated by fracture. In addition, impurities and
crystal defects in the material lead to a decrease in fracture resistance. Besides, due to the
grain boundary, crack propagation is restricted. For example, the grain boundary will lead
to crack deflection to decrease the stress intensity at the crack tip, and the driving force of
crack propagation is reduced [26]. The cracks formed and the propagation of single-crystal
sapphire is complex, which needs further study in this paper.

3.4. Roughness of the Fractured Surface

The surface roughness of the fracture section was measured by the three-dimensional
optical profiler. The measured results are shown in Figure 11. The single-crystal sapphire
with different crystal orientations still showed obvious anisotropic. The roughness of
different crystal planes decreased in the order of C-plane > M-plane > A-plane, the same as
the order of fracture toughness. Roughness affects the dissipation of fracture energy and
fracture toughness, the rougher the fracture surface is, the higher the fracture toughness is.

Ra =22.748 nm
o U

Ra =16.413 nm

Ra4=2460.223 nm

Figure 11. The roughness of the fracture section. (a) Test 1-M-A; (b) Test 2-M-C; (c) Test 3-C-M;
(d) Test 4-C-A; (e) Test 5-A-C; (f) Test 6-A-M.
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The fracture surfaces of “1-M-A”, “2-M-C”, “5-A-C”, and “6-A-M" test groups were
very smooth, because of the intergranular fracture [36]. Even though the fracture section of
“1-M-A” test has many long cracks, other zones were also very smooth. Due to the inclined
fracture of the C-plane sapphire, the fracture surface was very rough, and it showed a
strong ability to resist fracture. With the obvious oblique cracks, the “4-C-A" test showed
the largest surface roughness.

4. The Critical Resolved Shear Stress for Fracture Opening

Above this paper, the C-plane sapphire cleaves along the R-plane by crystallography
analysis, and M-, A-plane sapphires cleave along their cross-section. Does sapphire un-
dergo plastic deformation before dissociation fracture? Mizumoto et al. have conducted
plunge-cut tests to deeply analyze the brittle-ductile transition on the basal (0001) plane.
The anisotropic deformation behavior of sapphire is discussed in terms of slip system,
cleavage, and twinning [37].

The tendency for plastic deformation can be expressed by the resolved shear stress on
a specific slip system. Schmid’s law describes the relationship between the resolved shear
stress and slip system [38] by

T = 04m (6)

m = cos@cosA (7)

where 7 is the resolved shear stress, 0, is the applied stress, m is the Schmid-factor, ¢ is
the angle between the applied stress and slip plane, A is the angle between the applied
stress and slip direction, as shown in Figure 12. If the resolved shear stress surpasses the
CRSS, the slip system will be activated. The Schmid-factor m quantifies how easily the slip
system is activated, and so is the twinning system. The CRSS value in possible slip and
twin systems of single-crystal sapphire is shown in Table 1.

F | Cross section

Slip plane
normal
j’ ‘\¢
Slip ™ _
direction - Slip plane

»

F

Figure 12. Slip deformation of a single-crystal specimen under uniaxial tension.

In this study, we have obtained Kj¢ of single-crystal sapphire with different orienta-
tions, as seen in Table 4. The applied stress can be calculated by:

_ Kic
0p = NG 8)

where r is the cutting depth of laser about 0.5 mm.
The resolved shear stress was calculated by Formulas (6)—(8). The result was showed
in Table 6.
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Table 6. Calculation of the resolved shear stress [28].

Sample Kic (MPa-m'?)  7(mm) o, (MPa) Plastic Deformation CRSS (GPa) ) A0 m T(Gpa) _ Activation
Slip/Twin Slip/Twin

M-plane Rhombohedral plane 3/0.111 57.6 324 0.45 0.087 N/N
sapphire 242 05 193 Basal plane 17/0.148 0 90 0 0 N/N

Prism plane 1.2/- 90 0 0 0 N/-
C-plane Rhombohedral plane 3/0.111 324 576 045 0.152 N/Y
sapphire 424 05 338 Basal plane 17/0.148 0 0 0 0 N/N

Prism plane 12/- 0 90 0 0 N/-
A-plane Rhombohedral plane 3/0.111 57.6 324 0.45 0.083 N/N
sapphire 232 05 185 Basal plane 17/0.148 o 9% 0 0 N/N

Prism plane 12/- 90 0 0 0 N/-

Where “N” means that plastic deformation is not activated, “Y” means that plastic deformation is activated.

Only in C-plane sapphire tests, cleavage is along the R-plane with 57.6 degrees. The
resolved shear stress (0.152 GPa) surpasses the CRSS (0.111 GPa), so the rhombohedral
twin is activated probably before dissociation fracture. In other sample tests, the resolved
shear stress did not surpass the CRSS of plastic deformation, and the plastic degeneration
would not be activated before dissociation fracture.

5. Conclusions

(1) The fracture toughness of single-crystal sapphire with different crystal planes showed
anisotropy. The fracture toughness of C-plane sapphire was highest than other
orientations. Fracture toughness of different crystal planes decreases in the order of
C-plane > M-plane > A-plane.

(2) The fracture morphology of single-crystal sapphire with different crystal faces shows
obvious anisotropy, different cracks growth, and morphology. In M-plane sapphire,
there are many long cracks on the fracture when loading A-plane. In C-plane sapphire,
the whole fracture presents inclined cracks with 57 degrees when loading A-plane.
The fracture surfaces of other samples are smooth. The roughness of different crystal
planes decreased in the order of C-plane > M-plane > A-plane, the same as the order
of fracture toughness. The surface roughness will affect the dissipation of fracture
energy. With a larger the fracture toughness value, the ability of sapphire to resist
fracture is stronger.

(3) C-plane sapphire cleavages along the R-plane with an angle of 57.6 degrees. M-plane
and A-plane sapphire cleavages along their cross-section. The cleavage fracture of
C-plane sapphire seems to be related to the rhombohedral twin. The rhombohedral twin
promotes crack propagation and forms the fracture morphology of inclined cracks.
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