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Abstract: This study aimed to explore the effects of trace amounts of Mn, Zr, and Sc on the recrystal-
lization behavior and corrosion resistance of Al-5Mg alloys after process annealing by means of alloy
design and microstructure analysis of electron backscatter diffraction (EBSD), electron microprobe
(EPMA), and electron microscopes (TEM and SEM). The main objective was to obtain alloys with
better corrosion resistance. The results show that the fine Al3Zr and Al3Sc precipitated particles
were both superior to the MnAl6 particles in inhibiting grain and sub-grain boundary migrations.
Therefore, the Zr-containing and Sc-containing alloys were better than the Mn-containing alloy in
inhibiting recrystallization. For further comparison, the thermal stability of the Al3Sc particles was
better than that of the Al3Zr particles, so the Sc-containing alloy at the high temperature above
350 ◦C inhibited grain growth better than the Zr-containing alloy. During the recovery stage of the
alloy in the recrystallization process, the β-Mg2Al3 phase precipitated on the sub-grain boundary,
thus reducing the occurrence of intergranular corrosion. However, in the initial stage of recrystal-
lization, the β-Mg2Al3 phase continuously precipitated on the grain boundary, causing obvious
intergranular corrosion. For the Sc-containing alloy, because there was no obvious grain growth stage,
the β-Mg2Al3 phase continuously precipitated on the grain boundary, and thereby intergranular
corrosion occurred. Therefore, its corrosion resistance was greatly reduced. By contrast, for the alloy
containing Mn or Zr, because of obvious grain growth, magnesium atoms aggregated. As a result,
the β-Mg2Al3 phase discontinuously precipitated on the grain boundary. The corrosion morphology
was local pitting corrosion rather than intergranular corrosion, and thus the corrosion resistance
of the alloy was enhanced. As a novelty, this study clearly observed the sensitized precipitation
and corrosion morphology of the β-Mg2Al3 phase of Al-5Mg alloy under different recrystallization
methods. This will be of benefit to the design of anti-corrosion measures for the future manufacturing
and application of Al-5Mg alloy.

Keywords: Al-Mg alloy; microstructure; process annealing; recrystallization; corrosion resistance

1. Introduction

The 5000 series aluminum-magnesium alloy with the magnesium atom as the main
alloying element is a forged non-heat-treated aluminum alloy with good corrosion resis-
tance and weldability [1]. It has been widely used in ship structures, vehicle skeletons,
storage tanks, and other materials [1]. The Al-Mg alloy has good solid solution strength-
ening and processing strengthening characteristics, and its strength increases with the
increasing content of magnesium [1]. The shapes of Al-Mg alloys are mainly produced
by cold working (such as H18, H38) in the industry. Because of the high amount of cold
working, the β-Mg2Al3 phase of the alloy starts to precipitate along the sub-grain bound-
ary, grain boundary and dislocation with high energy when the working temperature is
40~50 ◦C [2,3]. This phenomenon is also called sensitization [3]. The more the magnesium
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content and the longer the exposure time increase, the higher the density of the phase
precipitation becomes [4,5]. Because the potential of the phase corrosion (−1.24 V) is lower
than that of the aluminum matrix (−0.87 V) [1], the β-Mg2Al3 phase becomes the sacrificial
anode in a corrosive environment and is preferably corroded. When the phase precipitates
on the grain boundary more densely and tends to be continuous in the form of a network,
the 5000 series Al-Mg alloy, which is originally corrosion resistant, becomes sensitive to
the corrosive environment. The precipitated phase on the grain boundary causes serious
intergranular corrosion [1,3,6]. In the subsequent storage, transportation, and molding,
the alloy is subject to serious loss. Therefore, in the industry, the processed shapes need
to be subjected to stabilizing treatment or process annealing [7]. However, the annealing
temperature of the process has a significant impact on the recrystallization and corrosion
properties. When the process annealing is lower than 350 ◦C, the corrosion resistance of
the alloy will be greatly reduced [7,8]. On the contrary, when the annealing temperature is
too high, the recrystallized grains will start to grow abnormally and have an adverse effect
on the subsequent formability [9,10]. Methods to achieve the best combination between the
corrosion properties and microstructure of the Al-Mg alloy shapes are worthy of research.

In addition, in the new additive manufacturing [11] and welding [12], the heat-affected
zone (HAZ) affects the recrystallization behavior of the alloy and the precipitation of
β-Mg2Al3 phase. It has become a major research topic. How to improve the new process
to obtain stable mechanical properties and corrosion resistance is also worthy of research.

Because the partition ratio of either Zr or Sc transition element in the alloy is greater
than 1, the peritectic reaction is prone to occur during the casting process, causing these ele-
ments to segregate in the grains [1]. During the homogenization heat treatment, dispersed
phase grains such as Al3Zr and Al3Sc will be precipitated in the crystal grains. These
dispersed phase grains are dense and fine coherent precipitates with high temperature
thermal stability [13,14], which can effectively inhibit alloy dislocation and grain boundary
migration. Compared with the traditional aluminum alloy with Mn added, a trace amount
of Zr or Sc in the aluminum alloy can not only increase the recrystallization temperature of
the alloy [1,14], but also significantly inhibit the growth of grains [15–17].

In this study, the effects of different recrystallizations on the microstructure and corro-
sion properties of 5000 series Al-Mg alloys were evaluated by adding trace amounts of Mn,
Zr, and Sc after process annealing at different temperatures. This study clearly observed
the sensitized precipitation and corrosion morphology of the β-Mg2Al3 phase of Al-5Mg
alloy under different recrystallization methods. It is helpful for further understanding the
development of alloy corrosion to obtain alloys with excellent corrosion resistance, and for
the future application of 5000 series Al-Mg alloys [4,18–20].

2. Materials and Methods

After the pure aluminum ingot (99.7%) was melted in a resistance crucible furnace at
750 ◦C, pure Mg (99.9%), Al-75Mn master alloy, Al-10Zr master alloy, and Al-2Sc master
alloy were added as planned. After dissolving and stirring uniformly, it was degassed
with argon gas for 20 min, and left to stand for 10 min. After the slag was removed, the
solution was cast in a preheated (300 ◦C) metal mold (size: 125 × 100 × 25 mm3). The OES
(spectrometer) analysis showed its composition as listed in Table 1. There were three kinds
of alloys tested, which are marked as alloy A(0.1Mn: commercial AA5356), alloy B(0.1Zr),
and alloy C(0.05Sc).

After homogenization treatment at 470 ◦C for 12 h, the cast alloys were hot rolled
at 400 ◦C, then underwent 35% hot working (processed from a thickness of 20 mm to
12.5 mm), annealing treatment at 450 ◦C for 1 h, and H18 cold rolling processing (processed
from a thickness of 12.5 mm to 3 mm). After the processing was completed, the annealing
process was carried out at three different temperatures of 250 ◦C, 350 ◦C, and 450 ◦C for
1 h respectively to explore the recrystallization of the alloys. Subsequently, a sensitization
treatment of 150 ◦C for 100 h was applied, and then the alloys were immersed in the
nitric acid solution (70 Vol.%) at 30 ◦C for 24 h. Afterwards, the ASTM-G67 nitric acid
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mass loss test (NAMLT) [3] was utilized to measure the degrees of intergranular corrosion
sensitization of the alloys. The size of the G67 test bar is 3 × 6 × 50 mm3.

Table 1. Analysis of alloy composition (wt%).

Alloy
Com. Mg Mn Zr Sc Fe Si Al

A(0.1Mn) 5.22 0.09 N.D. N.D. 0.07 0.06 Rem.
B(0.1Zr) 5.10 N.D. 0.11 N.D. 0.08 0.04 Rem.

C(0.05Sc) 5.23 N.D. N.D. 0.05 0.08 0.03 Rem.
N.D.: Non-detectable; Rem.: Remainder; Com.: Composition.

The polished alloys were anodized with Barker’s reagent and etched with phos-
phoric acid (40 mL H3PO4 + 60 mL H2O at 35 ◦C) solution to make metallographic test
pieces. An optical microscope (OM, Olympus BX60M, Japan) and a field emission scanning
electron microscope (SEM, FEI-SEM, Nova NanoSEM 230, USA) were used to observe
the crystal grains, β phase distribution and G67 surface morphology of corrosion. An
electron backscatter diffraction (EBSD, JEOL JXA-iHP200F, Japan) was utilized to scan
the specimens.

Subsequently, the alloy grain size, aspect ratio, and recrystallization ratio were quan-
titatively analyzed with a MATLAB™ (MathWorks, USA) open source toolbox software
MTEX to quantitatively analyze the alloy grain size, aspect ratio, and recrystallization ratio.
It is defined here that if the grain boundary angle is greater than 15◦, it is regarded as a
recrystallized grain. The recrystallization rate is defined as the area fraction occupied by
recrystallized grains. When the recrystallization rate reaches 90% it is regarded as complete
recrystallization. Aspect ratio is defined as ratio of the minor axis to major axis of the
elliptical grain.

The field emission transmission electron microscope (TEM, JEOL JEM-ARM200FTH,
Japan) and the high-resolution field emission electron probe microanalyzer (EPMA, JEOL
JXA-iHP200F, Japan) were used to observe and analyze the microstructure and composition
of the precipitated phases. The equipment used in this study is as shown in Figure 1.
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3. Results and Discussion
3.1. Microstructure Observation
3.1.1. Optical Metallographic Observations

The casting microstructure of alloy A(0.1Mn) containing Mn is as shown in Figure 2a.
The average grain diameter was about 200 µm. The casting microstructures of alloy B(0.1Zr)
containing Zr and alloy C(0.05Sc) containing Sc were similar to that of alloy A(0.1Mn),
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except that the grains were relatively coarser, about 300 µm and 600 µm in diameter, as
shown in Figure 2b and Figure 2c respectively. This result showed that the heterogeneous
nucleation produced by manganese and zirconium significantly refined the grains [21].
The microstructure of A(0.1Mn) after H18 cold rolling is as shown in Figure 2d. It can be
observed that after processing, the alloy exhibited a Lamellar rolling structure [22,23]. Its
crystal grains were elongated along the rolling direction with fibrous texture. The H18
microstructures of alloy B(0.1Zr) and alloy C(0.05Sc) were not significantly different from
that of alloy A(0.1Mn) as shown in Figure 2e and Figure 2f respectively.
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3.1.2. Recrystallization Analysis

Alloy A(0.1Mn) began to somewhat recrystallized when the annealing temperature of
the process was 250 ◦C, as shown in Figure 3a. By means of EBSD analysis software, Table 2
shows that the recrystallization rate was 28%. However, most of its grain morphology was
a textured crystal structure, so the grain size and aspect ratio could not be effectively calcu-
lated. As the annealing temperature reached 350 ◦C, as shown in Figure 3b, alloy A(0.1Mn)
was nearly completely recrystallized, and its recrystallization rate was 88.3%. The grain
size and aspect ratio were 243.5 µm2 and 1.44, respectively. When the process annealing
temperature rose to 450 ◦C, as shown in Figure 3c, the grain size increased to 1037.1 µm2

and grew by 325.9%. Apparently, the grains of alloy A(0.1Mn) grew tremendously. The
aspect ratio analysis revealed that the aspect ratio rose to 1.56 and its rate of change was
8.3%, indicating that the grain growth was anisotropic growth.
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Figure 3. Grain orientation micrographs and the grain boundary angle bar graph under different annealing processes:
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Table 2. Recrystallization fraction and microstructures of Al-Mg alloys with various annealing.

State Alloy

250 ◦C 350 ◦C 450 ◦C

Grain Size
(µm2) Aspect R.R. Result Grain Size

(µm2) Aspect R.R. Result Grain Size
(µm2) Aspect R.R. Result

A(0.1Mn) N.D. 3.11 28% Reco. 243.4 1.44 88.3% C. Recry 1034.1 1.56 91.9% A. growth

B(0.1Zr) N.D. 4.50 26.5% Reco. 221.2 1.61 67.3% P. Recry 1005.3 1.51 89.4% I. growth

C(0.05Sc) N.D. 3.23 19.7% Reco. 152.9 1.64 41.3% P. Recry 201.2 1.55 90.8% C. Recry

N.D.: Non-detectable; R.R.: Recrystallization rate. Reco.: recovery; P.Recry: partially recrystallized; C.Recry: completely recrystallized; I.
growth: isotropic growth; A. growth: anisotropic growth.

Alloy B(0.1Zr) had no obvious recrystallization when the annealing temperature of
the process was 250 ◦C, which was similar to alloy A(0.1Mn). As shown in Figure 3a, most
of its grain morphology was a textured crystal structure, so the grain size and aspect ratio
could not be effectively calculated. As the annealing temperature reached 350 ◦C, as shown
in Figure 4a, alloy B(0.1Zr) was partially recrystallized. However, there was still some
textured crystal structure. Its recrystallization rate was 67.1%. The grain size and aspect
ratio were 221.2 µm2 and 1.61, respectively. When the annealing temperature of the process
rose to 450 ◦C, as shown in Figure 4b, the grain size increased to 1005.3 µm2, and the grain
size grew by 354.5%. The result showed that alloy B(0.1Zr) had obvious grain growth, and
the growth rate was even higher than that of alloy A(0.1Mn). According to the aspect ratio
analysis, it can be seen that the alloy aspect ratio dropped to 1.51. The rate of change was
about −6.2%, indicating that the grain growth was isotropic growth. Compared with that
of alloy A, the aspect ratio of alloy B increased by 8.3%, which was obviously different.
This phenomenon showed that the crystal grains of Zr-added alloy B had better isotropic
growth than Mn-added alloy A.

The microstructure of alloy C(0.05Sc) was similar to that of alloy A(0.1Mn) when the
process was annealed at 250 ◦C, as shown in Figure 3a. As the temperature rose to 350 ◦C,
most of its grain morphology was still textured crystal structure, as shown in Figure 4c,
which contained a large number of sub-grain boundaries and only a few recrystallized
grains. Table 2 shows that the recrystallization rate was only 41.3%, and the recrystallized
grain size was 125.9 µm2. When the annealing temperature reached 450 ◦C, as shown
in Figure 4d, alloy C was close to complete recrystallization (~90.5%) without significant
grain growth. This phenomenon explained the fact that the grains of alloy C inhibited
recrystallization better than those of alloys A and B.
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3.2. TEM Precipitation Analysis

Figure 5a shows the TEM image of alloy A(0.1Mn) annealed at 350 ◦C, indicating
that there was no intermediate phase in the grains to hinder the dislocation migration.
As a result, a new grain boundary occurred. Figure 5b shows the Al6Mn mesophase
of alloy A annealed at 450 ◦C. Their size exceeded 200 nm and most of them were dis-
tributed on the grain boundary. Thus, it was difficult to hinder the dislocation or sub-grain
boundary migration. In other words, Manganese was not a good element to use to inhibit
recrystallization.

Figure 5c shows the TEM image of alloy B(0.1Zr) annealed at 350 ◦C, indicating
that Al3Zr particles were fine (size: 10–20 nm) and densely distributed inside the crystal
grains. Al3Zr particles were pinning the newly formed sub-grain boundary (TEM shows
as diagonal lines), thereby inhibiting recrystallization. When the annealing temperature
rose to 450 ◦C, as shown in Figure 5d, there were still Al3Zr particles inside the grown
crystal grains, entangling the dislocation. However, no Al3Zr particles were found on the
grain boundary, because Al3Zr particles began to dissolve on the grain boundary after
the annealing temperature exceeded 450 ◦C [21]. This phenomenon indicated that during
the recrystallization stage, Al3Zr particles effectively hindered the dislocation, pinning
the sub-grains to postpone recrystallization. However, when the annealing temperature
rose above 450 ◦C, the grain growth occurred, because Al3Zr had dissolved on the grain
boundary and could not suppress the grain growth.

Figure 5e is the TEM image of alloy C(0.05Sc) annealed at 350 ◦C, indicating that Al3Sc
particles were pinning the sub-grain boundary, thus hindering recrystallization. When
the annealing temperature rose to 450 ◦C, Al3Sc particles were still found on the grain
boundary of the recrystallized grains, as shown in Figure 5f. This phenomenon indicated
that when the alloy started to recrystallize, the Al3Sc particles persisted in pinning the
sub-grain, thereby postponing recrystallization. Even when the annealing temperature of
the process rose and grain growth was going to occur, Al3Sc particles were still pinning
the grain boundary, restricting grain growth. Therefore, in both Figures 3 and 5, it can be
found that alloy C(0.05Sc) not only inhibited recrystallization but was also the only alloy
with no obvious grain growth among the three kinds of alloys.
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3.3. Corrosion Pproperties
3.3.1. Surface Morphology

Figure 6 shows the SEM images of the β phase morphology of alloy A(0.1Mn) after
sensitization. The β phase morphology of alloy A(0.1Mn) annealed at 250 ◦C is as shown
in Figure 6a. From the EBSD images in Figure 3, it can be seen that the three kinds of
alloys were not recrystallized, so the β phase mainly precipitated on the sub-grain bound-
ary. As the annealing temperature of the alloy A rose to 350 ◦C, as shown in Figure 6b,
the β phase continuously precipitated on the recrystallized grain boundary. When the
annealing temperature continued to rise to 450 ◦C, the recrystallized grains of alloy A
began to grow coarser and the β phase began to become discontinuous precipitation on
the grain boundary, as shown in Figure 6c. The morphology of the β phase changed from
continuous precipitation to discontinuous precipitation, which had a significant effect on
the improvement of anti-corrosion properties.
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The β phase images of alloy B(0.1Zr) and alloy C(0.05Sc) after being annealed at 250 ◦C
were similar to that of alloy A. As shown in Figure 6a, the β phase mainly precipitated
on the sub-grain boundary. Figure 7 shows the SEM β phase images of alloy B(0.1Zr) and
alloy C(0.05Sc) after sensitization. As the annealing temperature of the process increased
to 350 ◦C for alloy A, as shown in Figure 7a, the β phase continuously precipitated on
the recrystallized grain boundary. When the annealing temperature continued to rise to
450 ◦C, the recrystallized grains of alloy A began to coarsen. At this time, the β phase began
to become discontinuously precipitated on the grain boundary. As shown in Figure 7b,
the morphology of the β phase changed from continuous precipitation to discontinuous
precipitation, which had a significant effect on the improvement of corrosion resistance.

The EBSD analysis of Figure 3 shows the images of the fine recrystallized grains of
alloy C(0.05Sc) under the annealing conditions of 350 ◦C and 450 ◦C. The precipitation
images of the β phase, as indicted in Figure 7c,d, show continuous precipitation on the
recrystallized grain boundaries.
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3.3.2. ASTM G67 NAMLT (Nitric Acid Mass Loss Test)

The results of ASTM G67 mass loss test of Al-Mg alloys are summarized as shown in
Table 3. The data show that as long as the alloy were not sensitized, the corrosion mass loss
of the alloy at any annealing temperature was far below 15 mg/cm2 without intergranular
corrosion sensitivity (ICS, over 25 mg/cm2).

When the annealing temperature of alloy A(0.1Mn) was 350 ◦C in the process, the alloy
began to recrystallize. The corrosion mass loss of the alloy after sensitization was as high as
65.2 mg/cm2. The precipitation morphology of the β-Mg2Al3 phase in Figure 6 shows that
the β-Mg2Al3 phase continuously precipitated on the recrystallized grain boundary, which
greatly increased the corrosion mass loss. As the annealing temperature rose to 450 ◦C,
recrystallized grains grew. The β-Mg2Al3 phase changed from continuous precipitation
to discontinuous precipitation, which reduced the corrosion mass loss of the alloy to 23.0
mg/cm2.

The precipitation images of the β-Mg2Al3 phase in Figure 7 show the results of the
G67 mass loss of alloy B(0.1Zr). Its corrosion mass loss trend was the same as that of alloy
A(0.1Mn). The corrosion properties were worst at the beginning of recrystallization, but
gradually became better as the recrystallized grains grew. Figure 4 and Table 2 show that,
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because of the excellent ability of Al3Sc phase in alloy C(0.05Sc) to inhibit recrystallization,
the recrystallized grains of alloy C(0.05Sc) did not grow when the process was annealed at
350 ◦C to 450 ◦C. However, this inhibition of recrystallization caused the β-Mg2Al3 phase
of the alloy to continuously precipitate after sensitization, resulting in corrosion mass loss
that was higher than the standard of intergranular corrosion sensitivity. Thus we found
that when the recrystallized grains of the alloy grew, the corrosion mass loss was effectively
reduced.

Table 3. ASTM G67 mass loss test of Al-5Mg alloys in annealing and sensitization treatments (mg/cm2).

State Alloy

250 ◦C 350 ◦C 450 ◦C

Annealing Sensitization ICS * Annealing Sensitization after
Annealing ICS Annealing Sensitization after

Annealing ICS

A(0.1Mn) 1.8 (0.2) 24.9 (0.9) No 1.9 (0.3) 65.2 (2.3) YES 1.5 (0.2) 23.0 (0.8) NO

B(0.1Zr) 2.8 (0.3) 22.0 (1.2) No 2.3 (0.2) 50.3 (1.8) YES 3.1 (0.3) 21.5 (1.0) NO

C(0.05Sc) 3.2 (0.5) 23.6 (1.1) No 3.8 (0.4) 58.8 (2.2) YES 3.4 (0.2) 59.2 (2.5) YES

* ICS: intergranular corrosion sensitivity.

3.3.3. Corrosion Morphology Analysis

Figure 8 shows the corrosion morphology of the alloy surface. The corrosion images of
alloy A(0.1Mn) and alloy B(0.1Zr) that began to recrystallize during the process annealing
at 350 ◦C were mainly intergranular corrosion. Because of severe corrosion damage, the
crystal grains obviously peeled off and produced delamination, as shown in Figure 8a,b.
As the annealing temperature rose to 450 ◦C, the corrosion images of alloy A(0.1Mn) and
alloy B(0.1Zr) showed mainly pitting corrosion and some intergranular corrosion after the
recrystallized grain growth, as shown in Figure 8c,d. However, alloy C(0.05Sc) persisted in
the recrystallization stage when the annealing temperature went from 350 ◦C to 450 ◦C.
Therefore, its corrosion morphology was mainly intergranular corrosion with lamellar
spalling, as shown in Figure 9a,b.

Figure 10 shows an enlarged view of the corrosion surface of alloy B(0.1Zr) after
sensitization and EPMA mapping. Figure 10a shows the corrosion morphology of alloy
B(0.1Zr) with serious laminar spalling after annealing at 350 ◦C. Figure 10b shows the
EPMA mapping of alloy B after sensitization; it can be seen that the Mg element distribution
was quite uniform. β-Mg2Al3 phase was widely distributed in the grains and on the grain
boundary. Therefore, after the G67 test, the densely and continuously precipitated β-
Mg2Al3 phase was completely corroded. As a result, the surface microstructure had severe
intergranular corrosion and lamellar spalling. Figure 10c shows the corrosion morphology
after annealing at 450 ◦C. The microstructure shows that there was local pitting corrosion
on the corroded grains. The EPMA mapping in Figure 10d shows the Mg clusters. This
phenomenon indicated that the β-Mg2Al3 phase of the recrystallized grains aggregated
and precipitated discontinuously. As a result, the surface microstructure showed local
pitting corrosion.
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at 450 ◦C, (d) EPMA mapping of Mg element annealed at 450 ◦C.

4. Conclusions

In this study, trace amounts of manganese, zirconium, and scandium were added to of
Al-5Mg alloys investigate their effects on the microstructure and corrosion resistance of the
alloys under different recrystallization processes. The results of the study are summarized
as follows:

1. After individual process annealing, the high temperature thermally stable dispersed
Al3Zr and Al3Sc phases in the boundary matrices of the Al-5Mg alloys inhibited
recrystallization and grain growth. Although Al3Zr particles were smaller and denser
than Al3Sc particles, the dispersed Al3Sc particle phase was still better than the Al3Zr
particle phase in inhibiting the recrystallization and thermal stability.

2. In the initial stage of recrystallization of alloy A(0.1Mn) and alloy B(0.1Zr), the ASTM
G67 mass losses of the two alloys were the most serious. They had serious susceptibil-
ity (larger than 25 mg/cm2) to intergranular corrosion. However, as the temperature
of the process annealing rose to 450 ◦C, the recrystallized grains began to grow,
and the G67 susceptibility to intergranular corrosion obviously decreased (less than
25 mg/cm2). By contrast, though alloy C(0.05Sc) could excellently inhibit recrystal-
lization, the ASTM G67 mass loss of alloy C was over 25 mg/cm2, and it became
susceptible to intergranular corrosion.
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3. As the temperature of the process annealing rose, The β-Mg2Al3 phase precipitation
images of alloy A(0.1Mn, AA5356) and alloy B(0.1Zr) changed from continuous
precipitation to local aggregation. In consequence, the corrosion images of the alloys
transformed from intergranular corrosion to local pitting corrosion, thereby improving
the corrosion resistance of the alloys.

Whether the recrystallization behavior of Al-5Mg alloy was isotropic grain growth or
anisotropic grain growth, its β-Mg2Al3 phase precipitation morphology became discontin-
uous after sensitization. Therefore, the corrosion morphology of the alloy was local pitting,
which had better corrosion resistance. However, if the recrystallization of Al-5Mg alloy
was inhibited, grain growth would not occur. As a result, after sensitization, its β-Mg2Al3
phase precipitation morphology was continuous, which caused intergranular corrosion
and greatly reduced the corrosion resistance of the alloy.
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