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Abstract: The Ni-based IN792 superalloy is widely applied as a component in industrial turbines
and aircraft engines due to its good high-temperature properties and excellent corrosion resistance.
Since these components have to suffer from cyclic thermal and mechanical stresses during service,
the high-temperature fatigue failure becomes one of the major factors affecting their service lives.
Grain refinement has been considered as an effective way to improve the mechanical performance of
superalloys. However, due to the complexity of alloy composition, microstructure and service condi-
tion, there is no unified theory about the influence of grain refinement on the fatigue performance
and fracture mechanism of superalloys. In the present research, the IN792 superalloy with different
grain sizes was manufactured. Then, fully reversed, strain-controlled, low-cycle fatigue (LCF) tests
with four different total strain amplitudes were carried out on the alloy at 700 ◦C and 800 ◦C to
clarify the effects of grain refinement on its LCF behavior. The results show that grain refinement
improved the fatigue life significantly, which is mainly attributed to increasing the grain boundary
content and refining MC carbides, eutectic structures and dendritic structures. During fatigue test
under lower strain amplitude, the alloy exhibits a pronounced initial fatigue hardening followed by
a continuous well-defined stability stage, which is caused by the formation of dislocation networks
and coarsening of primary γ’ phases. However, during fatigue test under higher strain amplitude,
the alloy exhibits continuous hardening response because the dislocations could shear primary γ’
phases, which could give rise to resistance to dislocation movement. In addition, the fracture surface
observation shows that the fatigue fracture mode is mainly affected by the total strain amplitude.
Under lower total strain amplitude, the fatigue microcracks mainly initiate at the porosities near the
specimen surface, while under higher total strain amplitude, the fatigue microcracks tend to form at
the interior of the specimen.

Keywords: Ni-based superalloy; grain refinement; low-cycle fatigue; fracture; dislocation

1. Introduction

Ni-based polycrystalline cast superalloys have relatively low manufacturing costs,
excellent mechanical properties and microstructure stability in the range of 600–900 ◦C,
and they are widely used in aeroengines, gas turbines and automobiles components [1–4].
It has been regarded that the service performance of polycrystalline superalloys is closely
related to their grain size, and the refining of grains is always considered as an effective
means to improve the mechanical properties and retard their failure [5–7].

However, extensive studies [8–12] have shown that the influence of grain size on the
mechanical properties of superalloys is closely related to the experimental conditions. It
is generally believed that [9,11,13–19] with the increase in temperature, the strengthening
effect of grain refinement on polycrystalline superalloys gradually decreases, because the
grain boundary strength drops faster than grain interior strength as the temperature in-
creases. The authors have investigated the tensile properties of Ni-based K417G superalloys
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with different grain sizes [11], and found that grain refinement could improve the tensile
strength but decrease the ductility at 700 ◦C. At 900 ◦C, grain refinement has little influence
on the tensile strength but would decrease the ductility. Wei [8] manufactured IN713LC
superalloys with different grain sizes by adjusting the pouring temperature and the results
show that the room temperature yield strength increases along with grain refinement.
However, when the grains are refined to 25 µm, the elongation drops significantly, which
may be attributed to the existence of porosities. Moreover, studies [4,16–19] have proved
that grain refinement would reduce the creep property of superalloys at high tempera-
ture, because the grain boundaries would slide and produce intergranular cracks. The
creep performance of K417G superalloys with different grain sizes is also studied by the
authors of [20], who found that with the refining of grains, the creep life is improved under
760 ◦C/645 MPa. The creep life under 900 ◦C/315 MPa first increases and then decreases,
while the creep life under 950 ◦C/235 MPa continuously decreases.

Aeroengine components often suffer from fatigue damages, including high-cycle
fatigue (HCF) and low-cycle fatigue (LCF). Kobayashi [21] has investigated the influence
of grain size on the HCF properties of an IN718 superalloy, and found that the HCF
strength of fine-grain alloys is higher than coarse-grain alloys beyond 105 cycles. The
research of Chan [22] reveals that HCF crack initiation is favored in coarse-grained alloy
compared to fine-grained alloys. The previous investigation of the authors of [10] on the
HCF behavior of an IN792 superalloy found that through grain refinement, the “fatigue
hot spots” would tend to transfer from specimen subsurface to the center gradually, and
the initiation and propagation of fatigue cracks would be impeded. In addition, during
the start and stop process of the aeroengine, the components would bear cyclic stress with
high stress amplitude and low loading frequency, causing LCF fracture. Morrison [12]
has conducted LCF tests on polycrystalline nickel of two grain sizes, and found that the
alloy with a fine grain has a longer fatigue life, especially at low strain amplitude, because
the refining of grains changed the crack initiation characteristics. Consequently, it can be
found that the effect of grain refinement on the fatigue performance and fatigue fracture
mechanism of superalloys is closely related to the alloy composition, microstructure,
experimental conditions and other factors, and the existing studies have not obtained
unified conclusions. Based on our previous research on the HCF properties of IN792
superalloys, in order to clarify the effects of grain refinement on the LCF performance of an
IN792 superalloy, different melting and pouring temperatures are applied to this alloy to
obtain different grain sizes, and then the microstructures are characterized and LCF tests at
different temperatures and total strain amplitudes are conducted. The LCF fracture mode
and deformation mechanism are analyzed, and the effects of grain refinement on the LCF
performance of IN792 superalloy are discussed.

2. Materials and Methods
2.1. IN792 Superalloy Preparation

An IN792 superalloy, the nominal composition of which is shown in Table 1, was
melted in a vacuum induction furnace. The alloy melt was poured into the mold, which was
preheated at 850 ◦C. As it is known that grain refinement could be achieved by reducing the
melting and pouring temperature, two different casting parameters were used to obtain two
different grain sizes. The first casting parameters adopt a melting temperature of 1540 ◦C
and a pouring temperature of 1480 ◦C to obtain a coarse-grain alloy, and the secondary
casting parameters adopt a melting temperature of 1510 ◦C and a pouring temperature of
1360 ◦C to obtain a fine-grain alloy. Then, LCF bars of IN792 superalloy with two different
grain sizes was acquired. After that, these fatigue bars were heat treated according to
the following procedure: 1120 ◦C/2 h AC + 1080 ◦C/4 h AC + 845 ◦C/24 h AC. (AC:
air cooling.)
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Table 1. Nominal composition of IN792 superalloy (wt. %).

C Cr Co Mo W Ta Al Ti B Zr Ni

0.089 12.60 8.99 1.97 3.98 4.25 3.43 3.92 0.014 0.030 Balance

2.2. Microstructure Observation

A cylindrical specimen was cut from the heat-treated fatigue bars, and then mechani-
cally ground, polished and chemically etched in a solution of 5 g CuSO4 + 20 mL HCl +
25 mL H2O for microstructure observation. The microstructures of the IN792 superalloy,
including grain size and precipitates, were observed through optical microscope (OM)
and S3400N scanning electron microscope (SEM). An Image-Pro Plus (IPP) software was
used to measure the volume fraction and average size of the grains and precipitates. The
casting defects were observed through OM. Thin slices were cut for γ’ phase observation
on transmission electron microscope (TEM). The slices were first mechanically ground to
50 µm thick, then twin-jet thinned in a solution of 10% perchloric acid and 90% alcohol
at −20 ◦C; the twin-jet current is maintained at 40 mA. TEM observation was performed
on JEM2100.

2.3. LCF Tests

The heat-treated bars were machined into standard LCF specimens, as shown in
Figure 1. The LCF tests were conducted on a PLG-100C testing machine. All the speci-
mens were tested under strain control at a strain ratio R = Emin/Emax = −1. The testing
temperatures were 700 ◦C and 800 ◦C. A tensile-compressive loading mode was adopted
and sinusoidal waveform was performed on the specimens. Four different total strain
amplitudes (∆Et), 0.4%, 0.5%, 0.6% and 0.8%, were used for each temperature.
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Figure 1. Standard LCF specimen.

2.4. Fractured Specimen Observation

After LCF tests, the fracture surfaces were examined on SEM to analyze the fracture
mode. Longitudinal section samples were cut from the fractured specimens and mounted
in epoxy resin. After grinding, polishing and chemical etching, the longitudinal sections
were observed on SEM to study the microstructure evolution and deformation mechanism
of the superalloy. In addition, TEM observation was conducted on the fatigue fractured
specimens to analyze the crystal defects. Samples for TEM observation were obtained
from thin slices cut at a distance of 5 mm away from the fracture surfaces of the failed
specimens. Thin slices were prepared by twin-jet thinning electrolytically in a solution of
10% perchloric acid and 90% alcohol at −20 ◦C, 40 mA. TEM observation was performed
on JEM2100.
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3. Results
3.1. Microstructure

The microstructures of the IN792 superalloys with two different grain sizes are charac-
terized through OM and SEM, as shown in Figure 2. The average sizes of the grains and
precipitates were calculated and are shown in Table 2. The coarse-grain alloy is named CG,
and the fine-grain alloy is named FG. It can be found that both the CG and FG superalloys
are composed of equiaxed grains with dendritic structure inside the grains. The average
grain size of the CG alloys is calculated to be about 2.3 mm, while the average grain size
of the FG alloys is about 0.4 mm. The dendritic structure of the FG alloy is also finer than
that of CG alloy, as illustrated in Figure 2a,e. Block and strip MC carbides precipitate in the
interdendritic regions and at the grain boundary, as indicated in Figure 2b,f. According
to measurements, the average sizes of MC carbides of the CG alloy and the FG alloy are
2.6 µm and 1.9 µm, respectively. In addition, flower-like γ/γ’ eutectic structures formed in
the interdendritic regions and at the grain boundary of IN792 superalloys, as in Figure 2c,g.
The average sizes of the γ/γ’ eutectic structures of CG alloy and FG alloy are 10.7 µm
and 8.1 µm. In conclusion, the grain refinement has refined the dendritic structures, MC
carbides and γ/γ’ eutectic structures of IN792 superalloy. In addition, our previous stud-
ies [23–25] found M5B3 borides at the grain boundary of IN792 superalloys. In the present
research, fine granular borides of about 1 to 2 microns disperse at the grain boundary of
CG and FG alloys, as shown in Figure 2d,h, and there is no difference between the grain
boundary M5B3 borides of CG and FG alloys.
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Figure 2. Microstructure of IN792 superalloys with two different grain sizes. (a) OM image of grain morphology of the CG
superalloy. (b) Backscatter electron image of MC carbides of the CG superalloy. (c) Secondary electron image of eutectic
structures of the CG superalloys. (d) Backscatter electron image of grain boundary M5B3 borides of the CG superalloy.
(e) OM image of grain morphology of the FG superalloy. (f) Backscatter electron image of MC carbides of the FG superalloy.
(g) Secondary electron image of eutectic structures of the FG superalloys. (h) Backscatter electron image of grain boundary
M5B3 borides of the FG superalloy.
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Table 2. The average size of the grain, γ’ phase, carbide and eutectic of coarse- and fine-grain
specimens.

Average Grain
Size (µm)

Average Size of MC
Carbide (µm)

Average Size of
Eutectic (µm)

Average Size of γ’ Phase
in the Dendrite Core (nm)

CG 2300 2.6 10.7 430
FG 400 1.9 8.1 420

It is known that γ’ phase is the main strengthening phase of Ni-based superalloy. The
γ’ phase of IN792 superalloys is observed through SEM and TEM, as shown in Figure 3.
The primary γ’ phase is regular cuboidal shaped with an average size of about 400 nm,
as can be found from Figure 3a,c and Table 2. Therefore, the γ’ phase is not refined by
grain refinement. In the TEM bright-field images, granular secondary γ’ phases are found
around primary γ’ phases. These secondary γ’ phases are about 60 nm for both the CG
and FG alloys, as exhibited in Figure 3b,d.
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The casting defects such as porosities are inevitable in cast superalloys, which would
influence the mechanical properties, especially the fatigue property. It has been
reported [10,26,27] that the casting defects could act as fatigue crack initiation sites, thus
leading to the fracture of superalloys. The casting defects of IN792 superalloys in the
present study are observed through OM, and it can be found that granular porosities about
10 to 30 µm are dispersed in the areas near the specimen surface for both grain size alloys,
as shown in Figure 4a,c. In the center areas of the specimen, however, there are some
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irregular-shaped porosities gathering areas, as shown in Figure 4b,d. This is because the
center of the specimen is the final solidification area, and the mobility of the melt is poor
at this time; thus, the porosity formation tendency is higher than the edge area. These
irregular-shaped porosities gathering areas in FG alloys are larger than that in CG alloys,
which is because of the low pouring temperature.
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3.2. Cyclic Stress Response Behavior

The LCF properties of IN792 superalloys with different grain sizes were tested at
700 ◦C and 800 ◦C, and four different total strain amplitudes (∆Et), 0.004, 0.005, 0.006 and
0.008, were applied. The cyclic stress response behaviors are shown in Figure 5. When the
total strain amplitude is 0.004, the IN792 superalloys show an obvious cyclic hardening
response soon after several cycles of loading. Until after dozens of cycles, the cyclic
hardening response ends, and the alloys gradually present a cyclic stability, as illustrated
in Figure 5a. The cyclic hardening content at 700 ◦C is higher than 800 ◦C. Moreover,
the stress amplitude of the FG alloy is always higher than the CG alloy. When the total
strain amplitude is 0.005, the stress response shows a similar tendency with the total strain
amplitude of 0.004, except for a cyclic softening at the final stage of fatigue, especially for
the CG alloys, as can be found from Figure 5b. As the total strain amplitude increases
to 0.006, the IN792 superalloys show continuous cyclic hardening response during the
whole fatigue process. When the total strain amplitude is 0.008, the IN792 superalloys
show continuous cyclic hardening response at 700 ◦C, but when these alloys are fatigue
tested under 800 ◦C, there is a short steady stage at the end of the fatigue test, as indicated
in Figure 5d.
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Figure 5. Cyclic stress response curves of IN792 superalloys: (a) ∆Et = 0.4%; (b) ∆Et = 0.5%; (c) ∆Et = 0.6%; (d) ∆Et = 0.8%.

3.3. Fatigue Life Curves

The relationship curves between total strain amplitudes and number of cycles to
failure are plotted in Figure 6. It can be found that the fatigue life decreases with the
increase in total strain amplitude. The fatigue life of the FG alloy is higher than the CG
alloy at the same total strain amplitude.

The strain-controlled low-cycle fatigue performance of superalloys is generally de-
scribed by the Coffin–Manson relationship, which separates the total strain amplitude into
plastic and elastic strain amplitude, expressed as follows [28]:

∆εt

2
=

∆εp

2
+

∆εe

2
= ε′f

(
2N f

)−c
+

σ′f
E

(
2N f

)−b

where ∆εt
2 is total strain amplitude, ∆εp

2 is plastic strain amplitude, ∆εe
2 is elastic strain

amplitude, 2N f is the number of cycles to failure, ε′f and σ′f are the fatigue ductility and
fatigue strength coefficients, respectively, and c and b are ductility and strength exponents.
The fitting curves of the IN792 superalloys with two different grain sizes LCF tested at
700 ◦C and 800 ◦C are shown in Figure 7, and the parameters in the Coffin–Mansion
relationship are indicated in Table 3. It can be found that the grain refinement increased
all the parameters when LCF tested at 700 ◦C, which means that both the LCF strength
and deformation resistance is improved. For LCF tests at 800 ◦C, the grain refinement
increased the fatigue ductility and strength coefficient, but slightly decreased the ductility
and strength exponent. Therefore, increasing the temperature weakened the LCF property
improvement of IN792 superalloys caused by grain refinement.
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Figure 6. The total strain amplitudes vs. number of cycles to failure curves of IN792 superalloys with
different grain sizes under 700 ◦C and 800 ◦C.
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Table 3. Parameters in the Coffin–Mansion relationship of IN792 superalloys with different grain
sizes under different LCF temperatures.

σ
′

f b ε
′

f c

FG-700 ◦C 1710 0.114 0.238 0.912
CG-700 ◦C 1568 0.110 0.085 0.901
FG-800 ◦C 1524 0.099 0.742 1.188
CG-800 ◦C 1423 0.110 0.503 1.285

The surface of the LCF fractured specimens were observed through SEM and the
results are shown in Figure 8. Basically, two different fracture modes are found for the
IN792 superalloys in the present study, and the fracture mode changes with the applied
total strain amplitude. When the total strain amplitude is low, such as 0.004 or 0.005,
the fatigue crack mainly initiates from the porosities near the specimen surface, and then
propagate towards the specimen interior transgranularly, as shown in Figure 8a,b,e and 8f.
The crack extension path is flat and perpendicular to the cyclic stress direction, and the
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river-like patterns exhibit the expansion direction of the crack. According to our previous
study [10], the porosities near the sample surface are more likely to incubate a crack under
HCF load. Therefore, the LCF fracture mode of IN792 superalloys at a low total strain
amplitude is similar to HCF fracture. Meanwhile, when the total strain amplitude is high,
such as 0.006 or 0.008, the fatigue life is rather short, and the fatigue crack are more likely to
produce in the center of the specimen and then expand around transgranularly. The crack
extension path is rough with obvious dendritic characteristics, indicating that the crack
expands along the interdendritic region. The LCF fracture mode of IN792 superalloys at a
high total strain amplitude is similar to the tensile fracture mode, as demonstrated in our
previous study of the tensile properties of IN792 superalloys [29].
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3.4. Microstructure of Fractured Specimens

After LCF tests, the fractured specimens were cut up along the longitudinal section,
and the microstructures near the fracture surface were observed through SEM. It was found
that the when the total strain amplitude is low, the specimen bears relatively low cyclic
stress, the MC carbides would not break and produce cracks and the grain boundaries
would not crack whether LCF tested at 700 ◦C or 800 ◦C, as shown in Figure 9a,d. How-
ever, when the total strain amplitude is high, the cyclic stress that the specimen bears is
high; thus, the MC carbides would break and become crack initiate sites, as indicated in
Figure 9b,e. The grain boundary M5B3 borides maintain a fine granular shape, and no
obvious differences are found compared from the before tests, regardless of the testing
temperature and applied total strain amplitude in the present study, as in Figure 9c,f.
Therefore, the M5B3 borides could play a grain boundary pinning role during LCF tests
under 700 ◦C and 800 ◦C, which would hinder the grain boundary cracking. As a result,
the grain boundary could keep good structure stability and high strength during LCF tests
at 700 ◦C and 800 ◦C. As a result, the increase in grain boundary content through grain
refinement could improve the LCF property of this superalloy.



Crystals 2021, 11, 892 10 of 15
Crystals 2021, 11, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 9. The microstructure of the LCF fractured IN792 superalloy near the fracture surface: (a) Secondary electron image 
of CG alloy tested at 700 °C, Δɛt = 0.5%. (b) Backscatter electron image of CG alloy tested at 700 °C, Δɛt = 0.8%. (c) Backscatter 
electron image of CG alloy tested at 700 °C, Δɛt = 0.4%. (d) Secondary electron image of CG alloy tested at 800 °C, Δɛt = 
0.4%. (e) Backscatter electron image of CG alloy tested at 800 °C, Δɛt = 0.8%. (f) Backscatter electron image of CG alloy 
tested at 800 °C, Δɛt = 0.6%. 

As the main strengthening phase of superalloy, γ’ phase would evolve during service 
of superalloy under high temperature, which could affect the deformation resistance of 
superalloy. The average size of primary γ’ phase after LCF tests under different conditions 
is measured through the area method, and the results are shown in Figure 10. It can be 
found that the γ’ phase would grow larger gradually during LCF tests, and the lower the 
total strain amplitude, the longer the fatigue life and the larger the γ’ phase size after LCF 
tests. Comparing Figure 10a,b, there is no significant difference in the size evolution of γ’ 
phase of FG alloy and CG alloy during LCF tests. Moreover, as the testing temperature 
rises from 700 °C to 800 °C, the γ’ phase size after LCF tests would increase slightly. 

  

(a) (b) 

Figure 10. The average size of γ’ phases of IN792 superalloys before and after LCF tests: (a) CG alloy; (b) FG alloy. 

  

430

500
463

449 452

536
477

460 451

0

100

200

300

400

500

600

700

0.4 0.5 0.6 0.80.80.60.50.4
Total strain amplitude, Δεt(%)

γ'
 s

iz
e,

 n
m

 Before LCF tests
 LCF tested at 700°C
 LCF tested at 800°C

420

498 460
449 452

530

486 472
445

0

100

200

300

400

500

600

700

0.5

γ'
 s

iz
e,

 n
m

Total strain amplitude, Δεt(%)

 Before LCF tests
 LCF tested at 700°C
 LCF tested at 800°C

0.4 0.80.6 0.4 0.5 0.6 0.8

Figure 9. The microstructure of the LCF fractured IN792 superalloy near the fracture surface: (a) Secondary electron
image of CG alloy tested at 700 ◦C, ∆Et = 0.5%. (b) Backscatter electron image of CG alloy tested at 700 ◦C, ∆Et = 0.8%.
(c) Backscatter electron image of CG alloy tested at 700 ◦C, ∆Et = 0.4%. (d) Secondary electron image of CG alloy tested at
800 ◦C, ∆Et = 0.4%. (e) Backscatter electron image of CG alloy tested at 800 ◦C, ∆Et = 0.8%. (f) Backscatter electron image of
CG alloy tested at 800 ◦C, ∆Et = 0.6%.

As the main strengthening phase of superalloy, γ’ phase would evolve during service
of superalloy under high temperature, which could affect the deformation resistance of
superalloy. The average size of primary γ’ phase after LCF tests under different conditions
is measured through the area method, and the results are shown in Figure 10. It can be
found that the γ’ phase would grow larger gradually during LCF tests, and the lower the
total strain amplitude, the longer the fatigue life and the larger the γ’ phase size after LCF
tests. Comparing Figure 10a,b, there is no significant difference in the size evolution of γ’
phase of FG alloy and CG alloy during LCF tests. Moreover, as the testing temperature
rises from 700 ◦C to 800 ◦C, the γ’ phase size after LCF tests would increase slightly.

Crystals 2021, 11, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 9. The microstructure of the LCF fractured IN792 superalloy near the fracture surface: (a) Secondary electron image 
of CG alloy tested at 700 °C, Δɛt = 0.5%. (b) Backscatter electron image of CG alloy tested at 700 °C, Δɛt = 0.8%. (c) Backscatter 
electron image of CG alloy tested at 700 °C, Δɛt = 0.4%. (d) Secondary electron image of CG alloy tested at 800 °C, Δɛt = 
0.4%. (e) Backscatter electron image of CG alloy tested at 800 °C, Δɛt = 0.8%. (f) Backscatter electron image of CG alloy 
tested at 800 °C, Δɛt = 0.6%. 

As the main strengthening phase of superalloy, γ’ phase would evolve during service 
of superalloy under high temperature, which could affect the deformation resistance of 
superalloy. The average size of primary γ’ phase after LCF tests under different conditions 
is measured through the area method, and the results are shown in Figure 10. It can be 
found that the γ’ phase would grow larger gradually during LCF tests, and the lower the 
total strain amplitude, the longer the fatigue life and the larger the γ’ phase size after LCF 
tests. Comparing Figure 10a,b, there is no significant difference in the size evolution of γ’ 
phase of FG alloy and CG alloy during LCF tests. Moreover, as the testing temperature 
rises from 700 °C to 800 °C, the γ’ phase size after LCF tests would increase slightly. 

  

(a) (b) 

Figure 10. The average size of γ’ phases of IN792 superalloys before and after LCF tests: (a) CG alloy; (b) FG alloy. 

  

430

500
463

449 452

536
477

460 451

0

100

200

300

400

500

600

700

0.4 0.5 0.6 0.80.80.60.50.4
Total strain amplitude, Δεt(%)

γ'
 s

iz
e,

 n
m

 Before LCF tests
 LCF tested at 700°C
 LCF tested at 800°C

420

498 460
449 452

530

486 472
445

0

100

200

300

400

500

600

700

0.5

γ'
 s

iz
e,

 n
m

Total strain amplitude, Δεt(%)

 Before LCF tests
 LCF tested at 700°C
 LCF tested at 800°C

0.4 0.80.6 0.4 0.5 0.6 0.8

Figure 10. The average size of γ’ phases of IN792 superalloys before and after LCF tests: (a) CG alloy; (b) FG alloy.

3.5. Dislocation Structure after LCF Tests

The dislocation structures of IN792 superalloys after LCF tests were observed through
TEM to analyze the deformation mechanism, and the results are revealed in Figure 11.
Since the γ’ phases of CG and FG alloys do not show differences, their dislocation structure
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is also the same. When the applied total strain amplitude is relatively low, the stress that the
superalloy bears is low. The dislocations could only slip in the γ channel between γ’ phases,
and no stacking fault was found in γ’ phases, which means that there is not enough shear
stress for dislocations to shear the γ’ phases, and the dislocations would accumulate at
the interface of γ/γ’ phase, thus forming dislocation networks, as indicated in Figure 11a.
However, as the applied total strain amplitude increases to 0.006 and 0.008, stacking faults
appear in the primary γ’ phases, as can be seen in Figure 11b, which implies that the
a
2< 110 > dislocations could dissociate at γ/γ’ interface, creating two partial dislocations
according to the following reaction [30]:

a
2
< 110 >→ a

3
< 121 >+ SISF +

a
6
< 112 >

where SISF is superlattice intrinsic stacking fault. The a
3< 121 > partial dislocation could

shear the primary γ’ phases, and SISF is left in the primary γ’ phases. Moreover, the
dislocations are quite curved because they would bypass the fine secondary γ’ phases
through the Orowan mechanism. Some Orowan loops can be found around the secondary
γ’ phases, as shown in Figure 11c. When the LCF testing temperature rises to 800 ◦C,
the dislocation structure morphology is similar to that of 700 ◦C under low total strain
amplitude, and the γ channel is filled with dislocation networks, and no stacking fault is
formed, as indicated in Figure 11d. Under high total strain amplitude, besides the stacking
faults in primary γ’ phases, Orowan loops are also found around the primary γ’ phases,
as revealed in Figure 11e. Therefore, the dislocations would interact with the primary γ’
phases through two ways: shearing and Orowan bypass mechanism when the LCF testing
temperature is 800 ◦C and the total strain amplitude is relatively high. In addition, for
the fine secondary γ’ phases, the dislocations would also bypass them through Orowan
mechanism, as indicated in Figure 11f.
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4. Discussion
4.1. The Cyclic Stress Response Behavior of IN792 Superalloy

The cyclic stress response behavior is always explained by the dislocation movement
and interaction between dislocations and precipitates [31–34]. It is generally believed that at
the beginning of fatigue loading, dislocations start to multiply, and the precipitates would
block the dislocation movement, thus causing cyclic hardening. Under a low total strain
amplitude, the above analysis has shown that a large number of dislocation networks are
formed in the interface of γ/γ’ phases, which would decrease the coherence of the interface
and result in fatigue softening. Moreover, when the total strain amplitude is low, the fatigue
life is long, and the primary γ’ phases grow large after LCF tests, as shown in Figure 10. It
has been reported [33] that the coarsening of γ’ phases would cause a reduction in coherent
interfaces, thus lead to a softening behavior. As a result, the softening effects brought by
dislocation networks and coarsening of primary γ’ phases would counteract the hardening
effect, thus creating a stable stress response behavior after dozens of loading cycles, as
illustrated in Figure 5a,b. In addition, there are a lot of dislocations that accumulate at
the grain boundary, as in Figure 11d, which proved that the grain boundary could block
dislocation movement [9,35,36]. The grain refinement increased the grain boundary content
of the IN792 superalloy and brought greater hindrance to the dislocation movement, and
therefore, the stress amplitude of FG alloys is higher than CG alloys, as demonstrated in
Figure 5.

When the total strain amplitude increases to 0.006, the dislocation could shear primary
γ’ phases, as exhibited in Figure 11b,e. The shearing of γ’ phases could lead to resistance
to dislocation movement, thus increasing the stress amplitude during LCF tests. Therefore,
the IN792 superalloys show a continuous cyclic hardening response, as shown in Figure 5c.
However, when the total strain amplitude continues to increase to 0.08, a short stable
period appears at the end of the cyclic stress response curves. Because the cyclic stress
amplitude would rapidly rise to a high value, lots of primary γ’ phases would be sheared
and the order of primary γ’ phases is reduced, which could decrease the strengthening
effects of the superalloy and cause a softening effect on the superalloy [33].

4.2. The Effect of Grain Refinement on the LCF Property and Fracture of IN792 Superalloy

According to microstructure observation, the grain refinement of IN792 superalloys
through reducing the melting temperature and pouring temperature not only caused
increased grain boundary contents, but also the refining of MC carbides, eutectic structures
and dendritic structures. The γ’ phases are not refined because they are reprecipitated
during the heat treatment process, and the same heat treatment process is employed
for CG and FG alloys. As for fracture surface observation, the LCF fracture mode of
IN792 superalloys in the present research is all transgranular. The microstructure of the
longitudinal section of LCF fractured specimens show that there is no crack formed at grain
boundary. The fine granular M5B3 borides dispersed at grain boundary are very stable
during the whole LCF process, which would play a pinning and strengthening role in the
grain boundary and prevent it from cracking. Therefore, it can be deduced that the grain
boundary strength is higher than the grain interior under the present test conditions. The
refining of grains could increase the grain boundary contents, and improve the overall
strength and crack growth resistance of IN792 superalloys.

As determined in our previous study [10], the porosities near the sample surface
are major HCF crack initiation sites of IN792 superalloys because they could cause stress
concentration in the surrounding areas. The LCF fracture mode under low total strain
amplitude is similar to HCF regime. Thus, the size and distribution of porosities is very
important to the LCF properties. The casting defects observation of CG and FG alloys
proved that even though the reducing the melting and pouring temperature could reduce
the mobility of the alloy melt and improve the porosity formation tendency, the porosities
near the specimen surface does not show much difference, as indicated in Figure 4. The
porosities near the center of the specimen would not cause fatigue fracture in the present
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study; therefore, the increase in porosity content for FG alloy does not show significant
influence on the LCF properties of IN792 superalloys.

It has been reported [37–40] that MC carbides distributed at the interdendritic re-
gion and grain boundary could strengthen the superalloy. However, as a microstructure
heterogeneity which is incoherent with matrix, it would also cause cyclic plastic strain
localization and crack during fatigue tests. The refining of MC carbides could decrease
the surrounding cyclic plastic strain localization and thus decrease the crack formation
tendency. In addition, the fracture surface observation has shown that the fatigue crack
would propagate along interdendritic region under a high total strain amplitude. Since
the grain refinement has refined the interdendritic region, the crack propagation would
encounter larger hindrance, which would contribute to a longer fatigue life. The refined
eutectic structure of FG alloys could also decrease the crack growth tendency because
eutectic structure has a relatively low strength. In conclusion, the refinement of MC car-
bides, eutectic structures and dendritic structures caused by grain refinement could also
contribute to the improvement of LCF properties of IN792 superalloy.

5. Conclusions

In this study, IN792 superalloys with two different grain sizes were manufactured
through different melting and pouring temperatures, and their microstructures are charac-
tered and LCF properties are tested under 700 ◦C and 800 ◦C. The following results are
obtained:

(1) Through decreasing melting and pouring temperatures, the grains, MC carbides,
eutectic structures and dendritic structures are refined simultaneously, but the primary
and secondary γ’ phases stay consistent due to the same heat treatment process.

(2) The LCF properties of 700 ◦C and 800 ◦C are optimized under four different total
strain amplitudes by grain refinement.

(3) The LCF fracture mode is related to the applied total strain amplitude. Under low
total strain amplitude, the fatigue cracks mainly initiate at the porosities near the
specimen surface, while under high total strain amplitude, the fatigue cracks tend to
form at the center of the specimen, and propagate along interdendritic regions.

(4) When the total strain amplitude is low, the dislocations could move in the γ chan-
nel and form dislocation networks. When the total strain amplitude is high, the
dislocations could shear primary γ’ phases and form stacking faults.

(5) The results obtained in the present study could provide theoretical guidance for
improving the service performance of IN792 superalloys.
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