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Abstract: The extreme values of Young’s modulus for rhombic (orthorhombic) crystals using the nec-
essary and sufficient conditions for the extremum of the function of two variables are analyzed herein.
Seven stationary expressions of Young’s modulus are obtained. For three stationary values of Young’s
modulus, simple analytical dependences included in the sufficient conditions for the extremum of the
function of two variables are revealed. The numerical values of the stationary and extreme values of
Young’s modulus for all rhombic crystals with experimental data on elastic constants from the well-
known Landolt-Börnstein reference book are calculated. For three stationary values of Young’s mod-
ulus of rhombic crystals, a classification scheme based on two dimensionless parameters is presented.
Rhombic crystals ((CH3)3NCH2COO·(CH)2(COOH)2, I, SC(NH2)2, (CH3)3NCH2COO·H3BO3, Cu-14
wt%Al, 3.0wt%Ni, NH4B5O8·4H2O, NH4HC2O4·1/2H2O, C6N2O3H6 and CaSO4) having a large
difference between maximum and minimum Young’s modulus values were revealed. The highest
Young’s modulus among the rhombic crystals was found to be 478 GPa for a BeAl2O4 crystal. More
rigid materials were revealed among tetragonal (PdPb2; maximum Young’s modulus, 684 GPa),
hexagonal (graphite; maximum Young’s modulus, 1020 GPa) and cubic (diamond; maximum Young’s
modulus, 1207 GPa) crystals. The analytical stationary values of Young’s modulus for tetragonal,
hexagonal and cubic crystals are presented as special cases of stationary values for rhombic crystals.
It was found that rhombic, tetragonal and cubic crystals that have large differences between their
maximum and minimum values of Young’s modulus often have negative minimum values of Pois-
son’s ratio (auxetics). We use the abbreviated term auxetics instead of partial auxetics, since only the
latter were found. No similar relationship between a negative Poisson’s ratio and a large difference
between the maximum and minimum values of Young’s modulus was found for hexagonal crystals.

Keywords: rhombic crystals; Young’s modulus; elasticity; crystals; auxetics

1. Introduction

Anisotropic materials occupy an important place in modern technical applications.
While the description of the linear elastic properties of isotropic media requires only two
independent elastic constants, the number of important elastic constants increases with
decreasing symmetry of materials. The deformation of anisotropic crystalline bodies
depends not only on the locations of external forces in relation to the body, but also on the
orientation of the crystallographic axes inside it. In addition, restrictions on such important
elastic engineering characteristics (combinations of elastic constants), such as Young’s
moduli, Poisson’s ratios and shear moduli, are reduced. In particular, if Poisson’s ratios
in isotropic media have restrictions of −1 below and 0.5 above, then for crystals of all
seven symmetry systems, including the most symmetric cubic system, there are no general
restrictions on the values and signs of Poisson’s ratios [1].

An analysis of the variability of Poisson’s ratios and Young’s moduli of a large number
of real crystals of all seven crystal systems (cubic, hexagonal, rhombohedral, tetragonal,
rhombic, monoclinic and triclinic) was carried out in [2,3], based on extensive information
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on experimental elastic constants in the Landolt–Börnstein reference book [4]. In [2],
the extrema of Poisson’s ratios and correlations of the extrema with the values of elastic
anisotropy indices, generalizing the classical Zener exponent, were found. The extrema of
Poisson’s ratios, together with the extrema of Young’s moduli, were also established for
real crystals of all crystalline systems in [3], limited to a one-parameter set of orientations.
General analytical results for the extrema of the basic engineering moduli of materials of
any crystal symmetry were obtained in [5–7]. In [6], the stationary values and extrema of
Young’s modulus and shear modulus were analyzed. In [7], conditions for the stationary
values, maxima and minima of the three engineering moduli of anisotropic elastic materials
were derived.

Several studies have been devoted to the analysis of the extreme values of Young’s
modulus and Poisson’s ratio for crystals of some particular symmetry systems and exam-
ples of real crystals. In [8], a variational Lagrangian analysis of the extrema of Young’s
modulus for cubic and hexagonal crystals was supplemented with examples of classifica-
tions and results for some crystals. In [9], general expressions for the extrema of Young’s
moduli of six constant tetragonal crystals were established, and results were given for
many materials. In [10,11], analytical expressions for the extreme values of Poisson’s ratio
for cubic crystals were obtained. These analytical relationships were used to calculate the
extreme values of known crystals. It has been demonstrated that high absolute values of
the extrema of Poisson’s ratio can be observed for specific orientations of some crystals.
In [10], indium–thallium alloys were such crystals. In [11], most of their attention was
paid to metastable cubic metal alloys and analyzing of the role of the elastic anisotropy
coefficient, which vanishes in the limit of an isotropic medium. Stationary and extreme
values of Young’s moduli and Poisson’s ratios for hexagonal crystals were established
in [12] based on an analytical analysis of the angular orientations of crystals and several
dimensionless anisotropy characteristics that disappear in the isotropic limit. Numerical
results were obtained on the basis of 147 hexagonal crystals. The anisotropy coefficients
made it possible to construct classification schemes for the distributions of the extrema of
Young’s modulus and Poisson’s ratio of real crystals.

The history of materials with negative Poisson’s ratio dates back to the publication on
crystalline pyrite in the well-known monograph by A.E.H. Love [13]. Experimental research
and qualitative analysis by R.S. Lakes of negative Poisson’s ratios for metal and polymer
foams [14,15] had a great influence on further studies of various materials and designs. The
proposal by K.E. Evans of replacing the longer phrase “negative-Poisson’s-ratio materials”
with the term auxetics [16,17] has become generally accepted.

The first theoretical studies of auxetics by K.W. Wojciechowsci [18,19] dealt with
a 2D isotropic lattice built from 2D anisotropic molecules. In [20], Tretiakov K.V. and
Wojciechowski K.W. studied the features of the formation of auxetics in the isotropic 2D
solid phase depending on the 2D molecular geometry. In [21], the same authors analyzed
the formation of auxetics, partially auxetics and nonauxetics among 2D crystals of five
crystal systems with anisotropic 2D molecules in the form of rigid cyclic tetramers. In the
article by K.W. Wojciechowski and A.C. Branka [22], approximations of free volume and
Monte Carlo simulation revealed the decisive role of the hexagonal shape of the molecule in
the 2D isotropic lattice model, which leads to auxeticity due to mirror symmetry breaking
(chirality). However, in [23], K.W. Wojciechowski demonstrated that a 2D isotropic model
with 2D anisotropic molecules such as cyclic trimers can form a nonchiral phase with a
negative Poisson’s ratio.

A new series of studies by K.W. Wojciechowski, K.V. Tretiakov, J.W. Narojczyk,
P.M. Piglowski and their collaborators has concerned the auxeticity of 3D model materials
with 2D thin layers and 1D narrow channels (“nanolayers” and “nanochannels”) [24–32].
The auxetic properties of the composites of spherical particles in some main matrix and
nanochannels [24,25,28–30] or nanolayers [26,27,31] depended on their orientations, rel-
ative particle diameters and filling densities. It was shown in [32] that the orthogonal
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combination of nanochannels and nanolayers can lead, with a sufficiently large size of
spherical inclusions, to the absence of auxetic properties of the composite.

Another line of research into the mechanism of auxeticity was undertaken by J.N.
Grima, K.E. Evans and A. Alderson et al. [33–58]. The concepts of the mechanism of
auxeticity of materials in these articles were based on rotations of simplified 2D geometric
structures from triangular, square, rectangular and rhombic forms (etc.). Following A.
Alderson and K.E. Evans, the auxetic nature of the deformation of a number of crystals
(zeolites, silicates, α-crystobalite and β-crystobalite in particular) was associated with
rotation and dilation of 3D tetrahedral and rotating 3D cuboidal microstructures [59–68]. It
was shown in [69] that the auxeticity and negative linear compressibility of Boron Arsenate
arise mainly due to deformations of framework tetrahedra. In [70], the manifestation of
auxeticity and negative linear compressibility was discussed in the case of the formation
of a 3D microstructure of a metamaterial due to stretching in out-of-plane direction of the
original 2D “rotating squares”. In [71], the possibility of auxeticity for a broad range of
loading directions and negative linear compressibility for a small number of such directions
was discussed for a 3D metamaterial composed of arrowhead-like structural units. In [72],
the role of the rearrangement of the 3D microstructure of boron arsenanite under shear
deformation in auxeticity and negative linear compressibility was discussed. An important
feature of the shearing deformation of tetrahedra on the projection planes is the distortion
of the rotating squares.

Auxetic materials are often found among natural anisotropic materials. There are
particularly many of them (about three hundred) among highly symmetric cubic crys-
tals [73–103]. Since the negativity of Poisson’s ratio usually corresponds to the selected
directions of crystal orientation [7,11], in this case we actually focus on partial auxetics.
Fewer auxetics are found among crystals of lower symmetry.

In this article, we consider the problem of stationary and extreme values of Young’s
modulus, and the question of the relationship between the extrema of Young’s modulus
and the value and sign of Poisson’s ratio. Section 2 begins with a presentation of Young’s
modulus versus crystal orientation angles. Then six anisotropy coefficients are introduced
as linear combinations of the compliance triples that disappear in the isotropic limit.
Anisotropy coefficients for 18 crystals are shown in Table 1. A more complete list is
provided in the Supplemental Material. In Section 3, the analysis of the second derivatives
made it possible to find the extrema of Young’s modulus for 140 rhombic crystals, shown
partially in Table 2 and completely in the Supplementary Material. The dependence of
three stationary values of Young’s modulus on the anisotropy coefficients is presented in
the form of a classification scheme. An analysis of the extrema of Poisson’s ratios showed
that more than 50 rhombic crystals are auxetic; about 30 of them correspond to the ratio
Emax/Emin > 3 (Table 3 and Supplementary Material). In Section 4, the stationary values
of Young’s modulus for cubic, hexagonal and tetragonal crystals are discussed briefly as
special cases of the rhombic system. In Section 5, conclusions are given.

Table 1. Values of anisotropy coefficients ∆1, ∆2, ∆3, ∆4, ∆5 and ∆6 of some rhombic crystals.

Crystals ∆1, ∆2, ∆3, ∆4, ∆5, ∆6,
TPa−1 TPa−1 TPa−1 TPa−1 TPa−1 TPa−1

CaSO4 −42.2 −47.5 −6.57 −8.02 −8.16 −4.33
CaCO3 −1.71 4.54 −13.0 −7.73 3.48 2.48

BaMnF4, sE −9.2 1.1 17.4 33.9 12.9 19.1
Cs2SO4 2.6 4.4 2.8 8.6 5.4 9.4

Ga 4.2 6.0 1.95 −1.76 2.1 −3.41
In4Se3 15.8 −9.15 43.0 28.0 −7.24 2.76
PbBr2 −101 −111 51.6 55.9 11.1 25.6

LiGaO2, sE 0.55 2.35 −1.85 −1.15 2.35 1.25
MgBaF4 −3.95 −3.65 11.3 8.8 1.7 −1.1
Co2SiO4 −2.0 1.09 −2.46 −0.73 −0.95 −2.31
Rb2SO4 −2.85 −3.55 2.35 3.95 1.65 3.95
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Table 1. Cont.

Crystals ∆1, ∆2, ∆3, ∆4, ∆5, ∆6,
TPa−1 TPa−1 TPa−1 TPa−1 TPa−1 TPa−1

AgTlSe −4.85 11.0 87.6 143 104 143
NaNO2 −54.5 −74.2 −2.5 −23.8 −19.9 −21.5

α-S 40.0 52.0 26.5 −14.5 −18.0 −71.0
−26.8 9.6 −35.3 −34.5 96.3 60.7

TbF3 1.55 −2.25 8.65 10.5 −3.72 1.9
Ni3B 4.37 3.73 2.77 1.6 3.63 3.1
α-U −0.6 1.22 −1.97 −2.09 5.32 3.38

ZnSb 2.35 −0.05 7.65 7.25 −9.5 −7.5

Table 2. Values of Young’s moduli E1, E2, E3, E4, E5, E6 and E7 for some rhombic crystals. Global maximum and minimum
values are shown in bold.

Crystals E1 E2 E3 E4 E5 E6 E7
GPa GPa GPa GPa GPa GPa GPa

Al2SiO5 188 Min 251 – 310 Max 247 Min – – 259 Max –
CaSO4 90.9 Max 175 Max 105 – 90.5 – 71.6 – 32.4 Min –
CaCO3 144 Max 75.8 Min 82.0 – 89.5 Max 66.3 Min – – 85.8

BaMnF4, sE 58.8 – 36.6 Min 29.9 Min 45.2 – 90.1 Max – – –
BaSO4 58.1 Min 53.2 – 92.6 Max 36.5 Min – – 73.2 Max –
Cs2SO4 32.7 Min 30.9 Min 27.5 Min 32.9 – 33.4 – 33.7 Max –

BeAl2O4 478 Max 386 Max 417 – 372 Min 374 – 379 – –
MgSiO3 190 – 148 Min 192 – – – 182 Min 202 Max –
Mg2SiO4 297 Max 171 – 203 – 171 Min 199 – – – –

Ga 82.0 Min 71.4 Min 118 Max – – – – 95.5 Max –
In4Se3 23.8 Min 58.8 Max 37.0 – – – 62.7 Max – – –

I 3.05 Min 9.71 – 7.58 – 6.24 Min 30.8 Max 13.5 Max –
La2CuO4 117 Min 116 Min 159 – 161 – 161 – 202 Max –

PbBr2 19.7 – 24.7 – 18.2 – 27.0 Max 38.7 Max 10.1 Min –
LiGaO2, sE 137 – 110 Min 125 – 132 Max 118 Min 139 Max 130

MgBaF4 70.9 – 69.4 – 86.2 – – – 129 Max 61.9 Min 72.8
C6N2O3H6 7.0 – 4.91 Min 3.51 Min 19.6 Max – – 13.7 – –

Co2SiO4 240 Max 138 – 170 – 133 Min 165 – – – –
Mg2GeO4 282 Max 161 – 187 – 153 Min 173 – – – –
Ni2SiO4 270 Max 175 Min 189 – 192 – – – – – –
KNO3 26.4 Max 20.1 – 15.4 – – – 14.4 Min – – 19.2

K2SeO4 40.3 Max 39.5 Max 30.6 – 24.7 Min – – 37.6 – –
K2SO4 42.4 – 45.9 – 44.2 – 47.4 Max 46.7 Max 38.4 Min –

K2ZnCl4 15.6 Max 15.7 Max 20.8 Max 15.2 – 14.8 – 13.3 Min –
RbHSO4 22.9 – 30.1 – 32.6 Max 14.3 Min 15.7 Min 31.5 Max –
Rb2SO4 38.8 – 39.8 – 36.5 Min 40.6 Max 40.1 Max 36.9 Min –

Rb2ZnBr4 12.2 – 12.9 Max 16.9 Max 12.5 – – – 10.0 Min –
Al2SiO5 242 Max 153 Min 279 – 325 Max 196 Min – – 225
AgNO3 11.3 Min 13.5 Min 29.2 Max – – – – 25.6 Max –
AgTlSe 18.7 – 14.4 Min 9.17 Min 38.8 – 49.6 Max – – –
NaBF4 39.4 Max 29.9 – 51.7 Max – – 13.9 Min 29.6 – –

Na2GeO3, sE 66.0 – 83.8 Max 71.4 – – – 94.7 Max 54.5 Min –
NaNO2 25.1 Max 49.8 Max 54.1 Max 33.7 – 25.0 – 15.9 Min –
Na2SO4 65.4 Max 93.5 Max 58.8 – 42.6 Min 51.1 – 63.0 – –
SrSO4 45.5 Min 45.9 – 87.7 Max 39.0 Min – – 74.6 Max –

α-S 14.1 Min 12.0 – 33.3 Max 11.5 Min – – 18.7 Max –
13.4 Max 9.01 Min 13.3 – 19.3 Max 10.8 Min – – 11.6

Mn2SiO4 198 Max 116 Min 146 – – – 143 – – – –
TbF3 101 Min 163 Max 85.1 Min – – 166 Max – – –

Tl2SO4 21.7 Min 21.0 Min 27.7 – 28.2 Max 27.9 – 22.2 – –
Ni3B 150 Min 166 Min 182 – 246 Max 203 – 232 – –
α-U 204 Max 149 Min 209 – 288 Max 170 Min – – 189

ZnSb 72.5 Min 87.7 Max 74.6 – 59.8 Min 101 Max – – 81.7
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Table 3. The values of the minimum and maximum Young’s moduli Emin, Emax and their ratios,
Emax/Emin; and the values of the minimum and maximum Poisson’s ratios, νmin and νmax.

Crystals Emin Emax Emax/Emin νmin νmax

(CH3)3NCH2COO·(CH)2(COOH)2 2.92 37.0 12.7 −0.05 0.91
I 3.05 30.8 10.1 −0.48 1.31

SC(NH2)2 2.39 23.8 9.96 −0.28 1.00
2.09 24.6 11.8 −0.37 1.07

(CH3)3NCH2COO·H3BO3 1.85 18.3 9.89 −0.39 1.22
Cu-14 wt% Al 3.0 wt% Ni 22.3 167 7.49 −0.70 1.43

NH4B5O8·4H2O 6.85 50.7 7.40 −0.10 0.85
NH4HC2O4·1/2H2O 10.5 61.0 5.81 0.05 0.82

C6N2O3H6 3.51 19.6 5.58 −0.91 1.05
(Fe,Mg)2(Al,Fe+3)9O6SiO4(O,OH)2 57.8 312 5.40 −0.20 0.95

CaSO4 32.4 175 5.40 −0.05 0.76
AgTlSe 9.17 49.5 5.40 −0.42 1.07

CH3COOLi·2H2O 11.6 53.8 4.64 0.04 0.68
CaPb(CN)4·5H2O 9.79 43.5 4.44 0.07 0.71

(CD)4N2 4.46 19.2 4.30 0.00 0.71
KB5O8·4H2O 10.2 43.1 4.22 0.06 0.82
Cd(COOH)2 8.06 33.3 4.13 −0.09 0.98

C24H18 3.22 13.1 4.07 −0.06 0.77
Ca(COOH)2 11.8 47.8 4.05 −0.23 0.81
C14H12N2 2.84 11.0 3.87 −0.02 0.76

PbBr2 10.1 38.7 3.83 −0.19 0.90
NaBF4 13.9 51.7 3.72 −0.05 0.71

(CH3NHCH2COOH)3·CaCl2 12.6 44.9 3.56 −0.48 0.76
Na2C4H4O6·2H2O 11.0 37.9 3.45 −0.05 0.88

C6H4(NO2)2 5.68 19.4 3.42 −0.01 0.60
NIPC 2.39 8.15 3.41 −0.16 0.84

NaNO2 15.9 54.1 3.40 0.09 0.64
CsSCN 6.38 21.1 3.31 0.01 0.78

(CH3)3NCH2COO·CaCl2·2H2O 7.63 23.6 3.09 −0.08 0.79
C6H8O7H2O 8.61 26.4 3.07 0.00 0.74
C5H10ClNO4 9.90 30.3 3.06 0.05 0.61
ZnSO47H2O 16.1 48.8 3.03 −0.15 0.71

15.6 30.0 1.92 −0.04 0.66
[CN3H6]2C8H4O4 3.61 10.9 3.02 −0.28 0.94

BaMnF4, sE 29.9 90.1 3.01 −0.05 0.87

2. Young’s Modulus

This expression for the reciprocal of Young’s modulus is obtained as the ratio of the
tensile force uniformly distributed over the transverse surface to the relative elongation
using Hooke’s law for an anisotropic material. Young’s modulus E(n) for anisotropic
materials depends on the tensor compliance coefficients sijkl and direction of the axis of
extension [104]:

1
E(n)

= sijklninjnknl .

Here ni are the components of the unit vector n, which is directed along the axis of extension.
Rhombic crystals are characterized by nine independent matrix compliance coefficients
s11, s22, s33, s44, s55, s66, s12, s13 and s23 [105]. The matrix of compliance coefficients is
represented as follows 

s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66

.
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Using the matrix compliance coefficients, the expression for Young’s modulus of rhombic
crystals can be written as

E−1(n) = s11n4
1 + s22n4

2 + s33n4
3 + (2s23 + s44)n2

2n2
3 + (2s13 + s55)n2

1n2
3 + (2s12 + s66)n2

1n2
2. (1)

If the orientation of the crystalline rod in the crystallographic coordinate system is
described with three Euler’s angles ϕ, θ, ψ, then using the relationship between the unit
vector n and Euler’s angles ϕ, θ,

n =

 sin ϕ sin θ
− cos ϕ sin θ

cos θ

,

the expression of Young’s modulus E for rhombic crystals can be rewritten as follows.

E−1(ϕ, θ) =
[
s11 sin4 ϕ + s22 cos4 ϕ + 0.25(2s12 + s66) sin2 2ϕ

]
sin4 θ+

+s33 cos4 θ + 0.25
[
(2s23 + s44) cos2 ϕ + (2s13 + s55) sin2 ϕ

]
sin2 2θ

(2)

The dependence of Young’s modulus for rhombic crystals is a periodic function ϕ and θ
with periods Tϕ = π and Tθ = π.

It is convenient to introduce six anisotropy coefficients of rhombic crystals for analyz-
ing the variability of Young’s modulus:

∆1 ≡ s11 − s12 − 0.5s66, ∆2 ≡ s22 − s12 − 0.5s66,
∆3 ≡ s11 − s13 − 0.5s55, ∆4 ≡ s33 − s13 − 0.5s55,
∆5 ≡ s22 − s23 − 0.5s44, ∆6 ≡ s33 − s23 − 0.5s44,

(3)

which disappear in the limit of an isotropic medium. The number of anisotropy coefficients
of rhombic crystals is greater than those of the cubic, hexagonal and tetragonal crystals. The
last crystals have one [105,106], two [8,12] and three [9] anisotropy coefficients, respectively.
The values of the anisotropy coefficients for some rhombic crystals are given in Table 1,
and in Table S1 from the Supplementary Material the values for all rhombic crystals from
the reference book [4] are presented.

3. Stationary and Extreme Values of Young’s Modulus

The necessary conditions for extremum of Young’s modulus are the stationarity conditions

∂E(ϕ, θ)

∂ϕ
= 0,

∂E(ϕ, θ)

∂θ
= 0. (4)

These conditions using (2) lead to a system of equations:
[(
(∆1 + ∆2) sin2 ϕ− ∆2

)
sin2 θ + ∆0 cos2 θ

]
sin2 θ sin 2ϕ = 0[(

s11 sin4 ϕ + s22 cos4 ϕ + 0.25(2s12 + s66) sin2 2ϕ− (s13 + 0.5s55) sin2 ϕ− (s23 + 0.5s44) cos2 ϕ
)

sin2 θ+

+
(
(s13 + 0.5s55) sin2 ϕ + (s23 + 0.5s44) cos2 ϕ− s33

)
cos2 θ

]
sin 2θ = 0

(5)

Here ∆0 = ∆6 − ∆4 = ∆5 − ∆3 = s13 − s23 + 0.5s55 − 0.5s44. Four solutions to the first
equation are θ = 0; ϕ = 0; ϕ = π/2; tan2 θ = −∆0/

(
(∆1 + ∆2) sin2 ϕ− ∆2

)
. By substitut-

ing them into the second equation of system (5), one can find seven stationary values of
Young’s modulus.

At ϕ = π/2 and θ = π/2 stationary value

E1 = E[100] =
1

s11
(6)

is achieved. It corresponds to stretching in the [100] direction.
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The second stationary value of Young’s modulus

E2 = E[010] =
1

s22
=

1
s11 + ∆2 − ∆1

(7)

is achieved at ϕ = 0, θ = π/2 and ϕ = π, θ = π/2. It corresponds to stretching in the
[01̄0] and [010] directions.

The third value also has a simple form,

E3 = E[001] =
1

s33
=

1
s11 + ∆4 − ∆3

, (8)

and is achieved at θ = 0 and an arbitrary angle ϕ. This stationary value corresponds to
stretching in the [001] direction.

At ϕ = 0 the fourth stationary value of Young’s modulus has the form

E4 =
E2E3(∆5 + ∆6)

2

E2∆2
5 + E3∆2

6 + 2E3(1− ∆5E2)∆5∆6
(9)

at the limitations
tan2 θ =

∆6

∆5
≥ 0. (10)

This value corresponds to stretching in the (100) plane. Young’s moduli E2 and E3 also lie
in the (100) plane.

At ϕ = π/2 the fifth stationary value of Young’s modulus has the form

E5 =
E1E3(∆3 + ∆4)

2

E1∆2
3 + E3∆2

4 + 2E3(1− ∆3E1)∆3∆4
(11)

with the limitations
tan2 θ =

∆4

∆3
≥ 0. (12)

This value corresponds to stretching in the (010) plane. Young’s moduli E1 and E3 also lie
in the (010) plane.

At θ = π/2 the sixth stationary value of Young’s modulus has the form

E6 =
E1E2(∆1 + ∆2)

2

E1∆2
1 + E2∆2

2 + 2E2(1− ∆1E1)∆1∆2
(13)

with the limitation

tan2 ϕ =
∆2

∆1
≥ 0. (14)

This value corresponds to stretching in the (001) plane. Young’s moduli E1 and E2 also lie
in the (001) plane.

The seventh stationary value of Young’s modulus has the form (2) with the constraints

tan2 θ = − ∆0

(∆1 + ∆2) sin2 ϕ− ∆2
≥ 0, (15)

0 ≤ sin2 ϕ =
∆0∆5 − ∆2∆6

∆2
0 + ∆0∆2 − ∆6(∆1 + ∆2)

≤ 1. (16)

We further investigate these stationary points using the sufficient condition for the
extremum of the function of two variables. If at the indicated stationary points from the
second derivatives of Young’s modulus,
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A =
∂2E
∂ϕ2 , B =

∂2E
∂ϕ∂θ

, C =
∂2E
∂θ2 , (17)

a combination is formed
D = AC− B2,

then at D > 0 extremes of Young’s modulus are achieved at the corresponding stationary
point (maximum at A < 0 and C < 0 or minimum at A > 0 and C > 0). In the case
D < 0, extrema are absent at the stationary point, and at D = 0 additional analysis is
required [107].

In the case of a stationary point ϕ = π/2, θ = π/2, we have E = E1 and

D =
16∆1∆2

s4
11

, A =
4∆1

s2
11

, C =
4∆2

s2
11

, B = 0.

Then, according to the sufficient condition for the extremum of the function, the value of
Young’s modulus E1 will be extremal if ∆1∆3 > 0. The value E1 will be the maximum at
∆1 < 0 or ∆3 < 0 and the minimum at ∆1 > 0 or ∆3 > 0.

In the case of a stationary points ϕ = 0, θ = π/2 and ϕ = π, θ = π/2, we have
E = E2 and

D =
16∆2∆5

s4
22

, A =
4∆2

s2
22

, C =
4∆5

s2
22

, B = 0.

The value of Young’s modulus E2 will be extreme if ∆2∆5 > 0. The value E2 is the maximum
at ∆2 < 0 or ∆5 < 0 and minimum at ∆2 > 0 or ∆5 > 0.

At θ = 0 and an arbitrary angle ϕ we have E = E3 and combination of coefficients D
vanishes. As a result, additional analysis is required for each specific crystal. The value
E3 will be the extremum of 44 (from 142) rhombic crystals. For example, such crystals are
Ga (E3 = Emax), NH4ClO4 (E3 = Emax), Al2SiO5 (E3 = Emax), BaSO4 (E3 = Emax), Cs2SO4
(E3 = Emin) and LiCsSO4 (E3 = Emin), AgTlSe (E3 = Emin), TbF3 (E3 = Emin) (see Table 2
and Table S2 in the Supplementary Material).

For the stationary values of Young’s modulus—E4, E5, E6 and E7—the second deriva-
tives A, B, C and D have a cumbersome analytical form. Therefore, only numerical analysis
of them for 142 rhombic crystals was carried out. The results of this analysis are presented
in Table 2 and Table S2 in the Supplementary Material. In Table S2 in the Supplementary
Material for the values of Young’s modulus E4, E5, E6 and E7, the values of the angles at
which they are achieved are also given. In these tables, the global maximum and minimum
values of Young’s modulus are shown in bold. An analysis of the variability of Young’s
modulus showed that the value E7 is the inflection point for all rhombic crystals from [4].

The largest differences between the maximum and minimum values of Young’s modulus
were found in (CH3)3NCH2COO·(CH)2(COOH)2 (Emax/Emin = 12.7), I (Emax/Emin = 10.1)
and SC(NH2)2 (Emax/Emin = 9.96; for the second set of elastic constants Emax/Emin = 11.8),
(CH3)3NCH2COO·H3BO3 (Emax/Emin = 9.92), Cu-14 wt% Al, 3.0 wt% Ni (Emax/Emin = 7.51),
NH4B5O8·4H2O (Emax/Emin = 7.39), NH4HC2O4·1/2H2O (Emax/Emin = 5.83), C6N2O3H6
(Emax/Emin = 5.58), CaSO4 (Emax/Emin = 5.4). The maximum Young’s modulus was re-
vealed in BeAl2O4 (Emax = 478 GPa). Thus, among rhombic crystals, no materials were found
for which Emax > 500 GPa, in contrast to materials with tetragonal, hexagonal and cubic
anisotropy (see Section 4).

Among rhombic crystals, more than 50 auxetics (materials with negative Poisson’s ratios)
were detected. The smallest values of Poisson’s ratio were for C6N2O3H6 (νmin = −0.91),
Cu-14wt %Al, 3.0wt %Ni (νmin = −0.70), I (νmin = −0.48), (CH3NHCH2COOH)3·CaCl2
(νmin = −0.48), AgTlSe (νmin = −0.42), (CH3)3NCH2COO·H3BO3 (νmin = −0.39),
Sr(COOH)2·2H2O (νmin = −0.39), SC(NH2)2 (νmin = −0.37). As can be seen, most ma-
terials that have a maximum value of ratio Emax/Emin have the smallest values of Poisson’s
ratio. The data from Table 3 and Table S3 from the Supplementary Material confirm this.
Thirty-three rhombic crystals with Emax/Emin > 3 are shown in Table 3. Twenty-four
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crystals of them have negative Poisson’s ratios. The remaining ten crystals from this table
have small positive values for the minimum Poisson’s ratio. These values range from 0 to
0.1. The values Emax/Emin and extremum values of Poisson’s ratio for all rhombic crystals
from [4] are given in Table S3 from the Supplementary Material.

In Figure 1, the classification scheme for three stationary values of Young’s modulus
E1, E2 and E3 depending on two dimensionless parameters is presented, α = (∆2−∆1)/s11
and β = (∆4 − ∆3)/s11. The points indicate the values of dimensionless parameters α
and β for 142 rhombic crystals from [4]. Most crystals fall into the area −1 < α < 1 and
−1 < β < 1. There are six zones on the classification scheme, in which various inequalities
between the stationary values of Young’s modulus E1, E2, E3 are satisfied. For each of these
zones, the surface of Young’s moduli for some rhombic crystals are shown in Figure 2.

Figure 1. Classification scheme for stationary values of Young’s modulus (E1, E2 and E3) for rhombic
crystals. The points indicate the values of dimensionless parameters α and β for 142 rhombic crystals
from [4].

Figure 2. Cont.
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Figure 2. Young’s modulus surfaces for rhombic crystals related to one of six zones: AgTlSe
(E1 > E2 > E3) (a), CaCO3 (E1 > E3 > E2) (b), Ga (E3 > E1 > E2) (c), Ni3B (E3 > E2 > E1)
(d), ZnSb (E2 > E3 > E1) (e) or TbF3 (E2 > E1 > E3) (f).

4. Young’s Moduli of Tetragonal, Hexagonal and Cubic Crystals

Above, the stationary values of Young’s modulus for rhombic crystals were shown.
Below we present the stationary values of Young’s modulus for tetragonal, hexagonal and
cubic crystals as special cases of rhombic crystals. Rhombic crystals are characterized by
nine independent compliance coefficients s11, s22, s33, s44, s55, s66, s12, s13 and s23, and six
anisotropy coefficients (see Formulas (3)).

4.1. Tetragonal Crystals

Tetragonal crystals have six independent compliance coefficients, which are obtained
under three conditions, s11 = s22, s44 = s55 and s13 = s23, for nine compliance coefficients
that were given previously.

The expression of Young’s modulus for six-constant tetragonal crystals takes the form

E−1(ϕ, θ) =
(

s11 − 0.5∆1 sin2 2ϕ
)

sin4 θ + s33 cos4 θ + 0.25(2s13 + s44) sin2 2θ.

The dependence of Young’s modulus for six-constant tetragonal crystals is a periodic
function ϕ, θ with periods Tϕ = π/2 and Tθ = π. Such crystals will already have three
anisotropy coefficients,

∆1 ≡ s11 − s12 − 0.5s66, ∆2 ≡ s11 − s12 − 0.5s44, ∆3 ≡ s33 − s13 − 0.5s44,

and five stationary values of Young’s modulus.
1. At ϕ = π/2, θ = π/2, ϕ = 0, θ = π/2 the first stationary value has the form
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E1 = E[100] = E[010] =
1

s11

and is achieved by stretching in the [100] and [010] directions.
2. At θ = 0 and an arbitrary angle ϕ second stationary value

E2 = E[001] =
1

s33

takes place when stretched in the [001] direction.
3. At ϕ = π/4, θ = π/2 the stationary value

E3 =
1

s11 − 0.5∆1

is achieved by stretching in the (001) plane.
4. At ϕ = 0, ϕ = π/2 and limitation

tan2 θ =
∆3

∆2
≥ 0

the fourth stationary value has the form

E4 =
E1E2(∆2 + ∆3)

2

E1∆2
2 + E2∆2

3 + 2E1(1− ∆3E2)∆2∆3
.

This value corresponds to stretching in the (100) (at ϕ = 0) and (010) (at ϕ = π/2) planes.
Young’s moduli E1 and E2 also lie in the (100) and (010) planes.

5. In this case, the system of Equations (5) is greatly simplified, and it is possible to
obtain a simple form for the fifth stationary value:

E5 =
E2E3(2∆2 + 2∆3 − ∆1)

2

4E2∆2
3 + E3(2∆2 − ∆1)

2 + 4∆3E3(1− ∆3E2)(2∆2 − ∆1)
,

which is achieved at ϕ = π/4, ϕ = 3π/4 and limitation

tan2 θ =
2∆3

2∆2 − ∆1
≥ 0.

Young’s moduli E2, E3 and E5 lie in the same plane.
A detailed analysis of the extreme values of Young’s modulus for six-constant and

seven-constant tetragonal crystals was carried out in [108].
The largest differences between the maximum and minimum values of Young’s mod-

ulus were found in Hg2I2 (Emax/Emin = 34.6), Hg2Br2 (Emax/Emin = 29.8), Hg2Cl2
(Emax/Emin = 24.0), TeO2 (Emax/Emin = 12.6; for the second set of elastic constants
Emax/Emin = 14.2) and (NH2)2CO (Emax/Emin = 11.6; for the second set of elastic con-
stants Emax/Emin = 24.1). The maximum Young’s modulus with Emax > 500 GPa was
revealed in PdPb2 (Emax = 684 GPa), stishovite (Emax = 654 GPa). Among tetragonal
crystals, 50 auxetics were found. Crystals with minimum Poisson’s ratios of less than −0.5
are Hg2Br2 (νmin = −1.02), Hg2I2 (νmin = −0.96), Hg2Cl2 (νmin = −0.91) and (NH2)2CO
(νmin = −0.8; for the second set of elastic constants νmin = −0.98), TeO2 (νmin = −0.80; for
the second set of elastic constants νmin = −0.85) and FeGe2 (νmin = −0.77) [2,109]. Thus,
tetragonal crystals with lowest Poisson’s ratio have the greatest ratio Emax/Emin. Note
that the minimum value of Poisson’s ratio for Hg2Br2 is less than −1 (less than the lower
boundary for isotropic materials).
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4.2. Hexagonal Crystals

Hexagonal crystals have five independent compliance coefficients, which are obtained
under four conditions s11 = s22, s44 = s55, s13 = s23, s66 = 2(s11 − s12) for nine compliance
coefficients of rhombic crystals previously given. The expression of Young’s modulus for
hexagonal crystals will take the form

E−1(θ) = s11 sin4 θ + s33 cos4 θ + 0.25(2s13 + s44) sin2 2θ.

Young’s modulus of hexagonal crystals depends on only one Euler’s angle θ. The de-
pendence of Young’s modulus is a periodic function θ with a period Tθ = π. Hexagonal
crystals already have two anisotropy coefficients:

∆1 ≡ s11 − s12 − 0.5s44, ∆2 ≡ s33 − s13 − 0.5s44

and three stationary values of Young’s modulus.
1. At θ = π/2 the first stationary value has the form

E1 = E(0001) =
1

s11

and achieved by stretching in the (0001) plane.
2. At θ = 0 second stationary value

E2 = E[0001] =
1

s33

takes place in tension in the [0001] direction.
3. When limiting

tan2 θ =
∆2

∆1
≥ 0

the third stationary value has the form

E3 =
E1E2(∆1 + ∆2)

2

E1∆2
1 + E2∆2

2 + 2E1(1− ∆2E2)∆1∆2
.

Young’s moduli E1, E2 and E3 lie in the same plane.
A detailed analysis of the extreme values of Young’s modulus and Poisson‘s ratio

for hexagonal crystals was carried out in [12]. In this article, a classification scheme for
the extreme values of Young’s modulus E1, E2 and E3, depending on two dimensionless
parameters, is also given. The largest differences between the maximum and minimum
values of Young’s modulus were found in graphite (Emax/Emin = 71.8), which has the
greatest ratio among rhombic, tetragonal, hexagonal and cubic crystals. A large differ-
ence (Emax/Emin > 5) was also revealed in RbNiCl3 (Emax/Emin = 5.52) and CsNiF3
(Emax/Emin = 5.72 for one experimental set of compliance coefficients and 10.6 for the sec-
ond set of compliance coefficients) [12]. Maximum Young’s modulus with Emax > 500 GPa
were detected in graphite (Emax = 1020 GPa), WC (Emax = 827 GPa), SiC (Emax = 556 GPa),
Re (Emax = 588 GPa) and Ru (Emax = 550 GPa). Graphite with hexagonal anisotropy and
diamond with cubic anisotropy have the highest Young’s moduli (Emax > 1 TPa) among
the rhombic, tetragonal, hexagonal and cubic crystals from [4].

Among hexagonal crystals, six auxetics have been detected [12]. These crystals are
MoS2 (νmin = −0.28), C7H12 (νmin = −0.15), Zn (νmin = −0.07), MnAs (νmin = −0.04),
Be-Cu at 2.4% (νmin = −0.04), Be (νmin = −0.005) and Be-Cu at 1.1% Cu (νmin = −0.005).
This number of crystalline auxetics is the smallest among rhombic, tetragonal, hexagonal
and cubic crystals. For hexagonal crystals, no relationship between the ratio Emax/Emin
and negativity of Poisson’s ratio was found, unlike rhombic, tetragonal and cubic crystals.
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4.3. Cubic Crystals

Cubic crystals have only three independent compliance coefficients, s11 = s22 = s33,
s44 = s55 = s66 and s12 = s13 = s23. The expression of Young’s modulus for cubic crystals
has the form

E−1(ϕ, θ) = s11 − 0.5∆(sin2 2θ + sin4 θ sin2 2ϕ).

The dependence of Young’s modulus is a periodic function ϕ, θ with periods Tϕ = π/2
and Tθ = π. Cubic crystals are characterized by one anisotropy coefficient

∆ ≡ s11 − s12 − 0.5s44

and have three stationary values of Young’s modulus.
1. At θ = 0 and an arbitrary angle ϕ—ϕ = π/2, θ = π/2; ϕ = 0, θ = π/2—the first

stationary value has the form

E1 = E[100] = E[010] = E[001] =
1

s11
(18)

and is achieved by stretching in the [100], [010] and [001] directions.
2. At ϕ = 0, θ = π/4; ϕ = π/2, θ = π/4; ϕ = π/4, θ = π/2 the second station-

ary value

E2 = E[110] =
1

s11 − 0.5∆
=

E1

1− ∆E1/2
(19)

is achieved by stretching in the [110] direction.
3. At ϕ = π/4, tan θ =

√
2 the third stationary has the form

E3 = E[111] =
1

s11 − 2∆/3
=

E1

1− 2∆E1/3
=

E2

1− ∆E2/6
(20)

and corresponds to stretching in the [111] direction. This value is conveniently obtained
from the fifth stationary value for tetragonal crystals.

Whether the magnitude of Young’s modulus is the maximum or minimum depends
on the sign and value of the anisotropy coefficient ∆. For a subclass of cubic crystals with
∆ > 0 from (18)–(20), inequalities follow:

E[111] > E[110] > E[100].

For example, Li, Na, K, Rb, Cs, Ca, Fe, Ni, Cu, Ag, Au, Al, C, Si and Ge have positive
anisotropy coefficients (∆).

For a subclass of cubic crystals with ∆ < 0 from (18)–(20), opposite inequalities follow:

E[100] > E[110] > E[111].

For example, V, Cr, Mo and Nb have negative anisotropy coefficients (∆).
The maximum Young’s moduli with Emax > 500 GPa were detected in diamond

(Emax = 1207 GPa), Ir (Emax = 649 GPa; for the second set of elastic constants Emax = 620 GPa),
ReO3 (Emax = 571 GPa; for the second set of elastic constants Emax = 478 GPa), NbC0.865
(Emax = 526 GPa), SiC (Emax = 511 GPa; for the second set of elastic constants Emax = 547 GPa)
and CeB6 (Emax = 508 GPa; for the second set of elastic constants Emax = 472 GPa). The largest
differences between the maximum and minimum values of Young’s modulus were found
in InTl (25at%Tl) (Emax/Emin = 32.5), InTl (28.13at%Tl) (Emax/Emin = 26.6), InTl (27at%Tl)
(Emax/Emin = 25.0), InTl (30.16at%Tl) (Emax/Emin = 21.0), NiCr2O4 (Emax/Emin = 20.8),
CuAuZn2 (Emax/Emin = 15.8), Au23Cu30Zn47 (Emax/Emin = 10.8), InTl (39.06at%Tl)
(Emax/Emin = 10.8) and CuSi (4.17at%Si) (Emax/Emin = 10.2). InTl alloys are shape memory
materials. Additionally, a minimum value of Poisson’s ratio of less than −1 was detected
in some InTl alloys [11,86,102]: νmin = −1.17 for InTl (25at%Tl) and νmin = −1.02 for InTl
(27at%Tl). Some other crystals also have large negative Poisson’s ratio values: νmin = −0.81
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for InTl (28.13at%Tl), νmin = −0.77 for InTl (30.16at%Tl), νmin = −0.59 for InTl (39.06at%Tl),
νmin = −0.77 for NiCr2O4, νmin = −0.72 for CuAuZn2, νmin = −0.62 for Au23Cu30Zn47 and
νmin = −0.16 for CuSi (4.17at%Si). In the case of cubic crystals, a relationship between the
maximum ratio Emax/Emin and the negativity of Poisson’s ratio can also be observed. All
these crystals with negative Poisson’s ratios have positive anisotropy ratios (∆).

5. Conclusions

In the article, the variability of Young’s moduli of rhombic crystals was analyzed.
Analytical expressions of seven stationary values were obtained. Three stationary values
always exist. Four other values occur when the additional conditions are met. In the case
of rhombic crystals, the six stationary values of Young’s modulus were revealed upon
tension in the (100), (010) and (001) planes. Three of these values have a simple form
and correspond to stretching in the [100], [010] and [001] directions. In addition, these
six stationary values of Young’s modulus can be extremes under certain conditions. The
seventh stationary value is the inflection point for all 142 rhombic crystals indicated in [4].

Analytical stationary values of Young’s modulus for tetragonal, hexagonal and cubic
crystals were written out as special cases of rhombic crystals. Tetragonal crystals already
have five stationary values of Young’s modulus, whereas hexagonal and cubic crystals
have three. In the case of tetragonal and hexagonal crystals, all stationary values can be
global extrema under certain conditions. For cubic crystals, only two stationary values are
global extrema (E[100] or E[111]).

In the article, a numerical analysis of the stationary and extreme values of Young’s
modulus of rhombic crystals was also carried out, and the angles at which these values
were revealed were determined. For three stationary values of Young’s moduli of rhombic
crystals corresponding to tension in the [100], [010] and [001] directions, a classification
scheme based on two dimensionless parameters was presented. Rhombic crystals with
strong anisotropy (Emax/Emin) were detected.

More than 50 auxetics have been identified among rhombic crystals. The largest differ-
ences between the maximum and minimum values of Young’s modulus of rhombic crystals
were found in (CH3)3NCH2COO·(CH)2(COOH)2 (Emax/Emin = 12.7), I (Emax/Emin = 10.1),
SC(NH2)2 (Emax/Emin = 9.96; for the second set of elastic constants Emax/Emin = 11.8),
(CH3)3NCH2COO·H3BO3 (Emax/Emin = 9.92), Cu-14 wt%Al, 3.0wt%Ni (Emax/Emin = 7.51),
NH4B5O8·4H2O (Emax/Emin = 7.39), NH4HC2O4·1/2H2O (Emax/Emin = 5.83), C6N2O3H6
(Emax/Emin = 5.58) and CaSO4 (Emax/Emin = 5.4). Most of these crystals have negative
minimum values of Poisson’s ratio: (CH3)3NCH2COO·(CH)2(COOH)2 (νmin = −0.05),
I (νmin = −0.48), SC(NH2)2 (νmin = −0.37), (CH3)3NCH2COO·H3BO3 (νmin = −0.39),
Cu-14wt%Al, 3.0wt%Ni (νmin = −0.70), NH4B5O8·4H2O (νmin = −0.10), C6N2O3H6
(νmin = −0.91) and CaSO4 (νmin = −0.05). Twenty-four of the thirty-three rhombic crystals
with Emax/Emin > 3 have negative Poisson’s ratios.

The same relationship between these factors was revealed for crystals with tetrago-
nal and cubic anisotropy. The largest differences between the maximum and minimum
values of Young’s modulus of tetragonal crystals were found in Hg2I2 (Emax/Emin = 34.6),
Hg2Br2 (Emax/Emin = 29.8), Hg2Cl2 (Emax/Emin = 24.0), TeO2 (Emax/Emin = 12.6; for the
second set of elastic constants Emax/Emin = 14.2) and (NH2)2CO (Emax/Emin = 11.6; for
the second set of elastic constants Emax/Emin = 24.1). All these crystals have negative
minimum values of Poisson’s ratio: Hg2I2 (νmin = −0.96), Hg2Br2 (νmin = −1.02), Hg2Cl2
(νmin = −0.91), TeO2 (νmin = −0.80; for the second set of elastic constants νmin = −0.85)
and (NH2)2CO (νmin = −0.8; for the second set of elastic constants νmin = −0.98).
In the case of cubic crystals, the largest differences between the maximum and mini-
mum values of Young’s modulus were found in InTl (25at%Tl) (Emax/Emin = 32.5), InTl
(28.13at%Tl) (Emax/Emin = 26.6), InTl (27at%Tl) (Emax/Emin = 25.0), InTl (30.16at%Tl)
(Emax/Emin = 21.0), NiCr2O4 (Emax/Emin = 20.8), CuAuZn2 (Emax/Emin = 15.8),
Au23Cu30Zn47 (Emax/Emin = 10.8), InTl (39.06at%Tl) (Emax/Emin = 10.8) and CuSi
(4.17at%Si) (Emax/Emin = 10.2). All these crystals have negative minimum values of Pois-
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son’s ratio: InTl (25at%Tl) (νmin = −1.17), InTl (28.13at%Tl) (νmin = −0.81), InTl (27at%Tl)
(νmin = −1.02), InTl (30.16at%Tl) (νmin = −0.77), NiCr2O4 (νmin = −0.77), CuAuZn2
(νmin = −0.72), Au23Cu30Zn47 (νmin = −0.62), InTl (39.06at%Tl) (νmin = −0.59) and CuSi
(4.17at%Si) (νmin = −0.16). For hexagonal crystals, the relationship between the largest
ratio Emax/Emin and the minimum value of Poisson’s ratio was not revealed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11080863/s1. Table S1: Values of anisotropy coefficients ∆1, ∆2, ∆3, ∆4, ∆5 and ∆6 of
rhombic crystals. Table S2: Values of Young’s modulus, E1, E2, E3, E4, E5, E6 and E7, for rhombic
crystals. Global maximum and minimum values are shown in bold. Angle values are given in
degrees. Table S3: The values of the minimum and maximum Young’s moduli Emin and Emax and
their ratios Emax/Emin; and the values of the minimum and maximum Poisson’s ratios νmin and νmax.
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