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Abstract: In this study, carbon-supported MnO2 nanocomposites have been prepared using the
microwave-assisted heating method followed by two different approaches. The MnO2/C nanocom-
posite, labeled as sample S1, was prepared directly by the microwave-assisted synthesis of mixed
KMnO4 and carbon powder components. Meanwhile, the other MnO2/C nanocomposite sample
labeled as S2 was prepared indirectly via a two-step procedure that involves the microwave-assisted
synthesis of mixed KMnO4 and MnSO4 components to generate MnO2 and subsequent secondary
microwave heating of synthesized MnO2 species coupled with graphite powder. Field emission
scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelec-
tron spectroscopy (XPS), and inductively coupled plasma optical emission spectroscopy have been
used for characterization of MnO2/C nanocomposites morphology, structure, and composition. The
electrochemical performance of nanocomposites has been investigated using cyclic voltammetry and
galvanostatic charge/discharge measurements in a 1 M Na2SO4 solution. The MnO2/C nanocom-
posite, prepared indirectly via a two-step procedure, displays substantially enhanced electrochemical
characteristics. The high specific capacitance of 980.7 F g−1 has been achieved from cyclic voltamme-
try measurements, whereas specific capacitance of 949.3 F g−1 at 1 A g−1 has been obtained from
galvanostatic charge/discharge test for sample S2. In addition, the specific capacitance retention was
93% after 100 cycles at 20 A g−1, indicating good electrochemical stability.

Keywords: supercapacitors; microwave synthesis; nanocomposites; MnO2

1. Introduction

The development of high-performance, environmentally friendly, flexible, light and
inexpensive energy storage devices has become one of the most significant worldwide
concerns over the past few decades [1–4]. In this regard, supercapacitors (SCs) are widely
viewed as potential candidates for next-generation energy storage devices [5,6]. They are
of particular interest for high power capability, cyclic stability, safe and simple operation
principle, and speedy charge dynamics compared to the other storage devices [7,8].

The decisive role in the fabrication of efficient SCs is directly related to the intrinsic
properties of the electrode material used [2,9]. Various new advanced nanostructured
materials or their hybrid combinations of two or more components are being looked at.
Currently, transition metal oxides (TMOs) coupled mainly with high-surface-area carbon-
based materials have been allowed to achieve various hybrid SCs systems, which have
superior characteristics of power and energy densities compared to those values obtained
at each system separately [10,11]. Among the preferential TMO materials for SCs, a series
of manganese oxide-based hybrids were developed recently [12–16]. Exceptional attention
has been focused on MnO2 for its relatively low cost, environmental friendliness, natural
abundance, multiple oxidation states of Mn, wide operating voltage range (0–1.00 V vs.
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NHE in the neutral electrolyte), and high theoretical specific capacitance (Cs) close to
1370 F g−1 [17,18].

However, regardless of the above-mentioned superb characteristics, the main draw-
back for MnO2 widespread application is relatively poor electronic (10−5–10−6 S cm−1) and
ionic (10−13 S cm−1) conductivity [8,15]. The experimentally achieved actual capacitance
value is far below the theoretically predicted value and depends strongly on the mass
loading of MnO2. Typically it decreases rapidly with the increase in the MnO2 mass [19].
To improve the capacitive performance of MnO2, several strategies have been proposed.
Nanostructured MnO2-based electrodes with various morphologies have a high specific
surface area and a large surface-to-volume ratio for more effective contact with electrolyte
ions, such as mesoporous MnO2 nanotubes/nanosheets [20], nanowires [21], or flower-
like, urchinlike, and nano rodlike structures that have been developed. Multiple-phase
heterostructures for high-capacitance electrodes have been created as well [22]. Two high-
capacitance crystal phases of MnO2, namely α-MnO2 nanowires and δ-MnO2 ultrathin
nanoflakes, have been combined and generated a self-branch heterostructure with a high
Cs value of 178 F g−1 at 5 mV s−1 [22].

To enhance the electric conductivity of MnO2, the incorporation of conductive metals
including Au, Al, Cu, Fe, Mg, Co [23–31] able to act as electron donors have been applied.
Changes in electron structure by foreign heteroatoms resulted in the improved capacitive
performance of MnO2 and revealed that, for example, Cu-doped δ -MnO2 film delivered the
maximum Cs value as high as 296 F g−1 at 1 A g−1 [26]; for Fe-doped MnO2 nanostructures,
this value was of 267.0 F g−1 even under a high mass loading of 5 mg cm−2 [28]. In the
presence of Co, the achieved Cs value was of 350 F g−1 at a current density of 0.1 A g−1 [29].
The Al-doped MnO2 demonstrated a high mass and areal specific capacitance of 213 F g−1

and 146 F cm−2, respectively, at 0.1 A g−1 [25]. Meanwhile, Au-doped MnO2 showed a
high Cs value of 626 F g−1 at 5 mV s−1 [24].

However, the most effective and currently most widely used way to improve Cs of
MnO2-based electrodes is the deposition of thin films of latter materials on highly con-
ductive and large surface areas containing materials, such as carbon-based substrates,
including activated carbon, carbon nanotubes (CNTs), graphene, carbon fiber, or graphitic
carbon. Carbon-based materials are the most widely used because of their physical and
chemical properties, including low cost, variety of forms, low effort of processing, rela-
tively inert electrochemistry, controllable porosity, and numerous electrocatalytic active
sites for a variety of redox reactions [32–34] However, the performance of carbon-based
substrates has some limitations related to the insufficient penetration of ions on the inert
surface. Therefore, nanohybrids from two or more materials have been developed to
overcome such limitations and gained special attention due to synergetic effects in en-
hancing the surface and electron donor properties. S.V. Prabhakar Vattikuti et al. reported
1D/2Dcarbon-CuO-graphitic carbon nitride (C/CuO@g-C3N4) ternary heterostructure that
showed a better specific capacitance of 247.2 F g−1 compared with the pristine g-C3N4 of
83.7 F g−1, at the same time possessing good stability, with 92.1% of the initial capacitance
remaining even after 6000 cycles [35]. Newly designed nanohybrids with Bi2S3 nanorod
core@ amorphous carbon shell heterostructure C@Bi2S3 displayed a high specific capacity
of 333.43 F g−1 at a current density of 1 A g−1 and outperformed that of pristine Bi2S3
of 124.24 F g−1, due to well-defined cross linkages between the Bi2S3 core and carbon
shell [36]. The carbon layer was supposed to bind efficiently with Bi2S3 nanorods, and thus
improve electrical contact with the current collector, confirming the more active carbon
participation in the charge/discharge reaction process. These highly porous structures
allow the free permeation of electrolyte ensuring rapid movement of ions. Further on, a
novel Na2Ti3O7/single-walled carbon nanotubes SWCNTs nanostructure electrode mate-
rial due to high surface area, enriched interfacial conductivity, abundant active edge sites,
and mesoporous nature demonstrated a capacity of 576.01 F g−1, at 0.8 A g−1, with cycling
stability featuring 91.43% retaining of capacitance after 5000 cycles [37].
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Recently, a synergy of such carbon-based materials, featuring excellent conductivity
and ultrastability, with MnO2 substances having less lower conductivity but larger elec-
trochemical capacitance, has allowed overcoming limitations of each material separately
by making full use of their advantages due to the synergistic effects between those two
types of SCs materials [38–44]. Y. Ping et al. produced the hierarchically porous CJE/MnO2
composite with a large specific capacitance of 283 F g−1 at 1 A g−1, which was on account
of high specific surface area (1283 m2 g−1) and abundant active sites for pseudocapacitance,
that particularly resulted from the introduction of MnO2 [38]. Meanwhile, highly loaded
MnOx of 7.02 mg cm−2, electrodeposited on conductive carbon cloth allowed achieving
excellent rate capability due to the dual-tuning effect and showed specific capacitance
of 161.2 F g−1 (1.13 F cm−2) at a high current density of 20 mA cm−2 [39]. Recently, an
MnO2 nanowires/graphenated CNTs composite was grown in situ on 316 L stainless steel
and exhibited a high capacitance of 495.2 mF cm−2 (615.6 F g−1) at a current density of
0.5 mA cm−2 and 95% capacity retention after 5000 cycles due to the synergistic effects
of the high conductivity of graphenated CNTs and high pseudocapacitance of MnO2
nanowires [42].

Bearing in mind that the structure of the electrode material directly affects the elec-
trochemical properties of the electrode and simultaneously determines the performance
of SCs, different methods have been tested to develop high capacitive MnO2-based elec-
trode materials. Among them are such methods as hydrothermal synthesis [20,45,46],
electrochemical deposition [42,47,48], electrochemical exfoliation [48], electrospinning [49],
chemical coprecipitation [50], or even those, using templates [40]. Particular attention has
been focused on the simple, fast, cost-effective, and reliable microwave-assisted approach.
This method has several advantages that count the possibility to get great gain in energy
savings and enhanced fabrication of homogeneous materials since they do not need expen-
sive equipment or complicated procedures; microwave reactions take less time compared
to conventional methods and overtake all the substance uniformly, providing uniform
particle-size distribution in the sample. Recently, this approach was successfully introduced
to synthesize MnO2 materials that proved themselves for possible use in high-performance
supercapacitor applications [51–57].

In this study, the carbon-supported MnO2 nanocomposites (MnO2/C) were prepared
by the rapid and simple microwave-assisted heating method by employing manganese(II)
sulfate (MnSO4) or potassium permanganate (KMnO4) and carbon powder as the mi-
crowave absorbing material. The electrochemical properties of the prepared MnO2/C
nanocomposites have been studied to evaluate the possibility of using these nanocompos-
ites as potential supercapacitor electrode materials.

2. Materials and Methods

Graphite powder, KMnO4, MnSO4·H2O, Na2SO4, polyvinylidene fluoride (2%, PVDF),
N-methyl-2-pyrrolydone (NMP) were obtained from a Sigma-Aldrich supplier (Taufkirchen,
Germany). All reagents were of analytical grade and used as received without further
purification. Aqueous solutions were prepared using Milli-Q water with a resistivity of
18.2 MΩ cm−1.

MnO2/C nanocomposite labeled as sample S1 was prepared by the following steps:
2 g of KMnO4 was mixed with 0.1 g of graphite powder and 20 mL of deionized water
in an ultrasound bath for 30 min. Then, the reaction mixture was put into a microwave
reactor Monowave 300 (Anton Paar, Graz, Austria). The synthesis of MnO2/C was carried
out at a temperature of 150 ◦C for 5 min. After that, the precipitate was filtered out, washed
with deionized water, and dried in a vacuum oven at a temperature of 80 ◦C for 2 h.
Equation (1) describes the formation of MnO2 [18]:

4KMnO4 + 3C + H2O→ 4MnO2 + K2CO3 + 2KHCO3 (1)

Another MnO2/C nanocomposite labeled as sample S2 was prepared by the following
procedure: at first, the pure MnO2 was prepared. In a typical experiment, 0.063 g of KMnO4
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and 0.1 g of MnSO4·H2O was dispersed in 20 mL of deionized water and mixed in an
ultrasound bath for 30 min. Then, the reaction mixture was put into a microwave reactor,
and the synthesis was carried out at a temperature of 150 ◦C for 5 min. The precipitate was
filtered out, washed with deionized water, and dried in a vacuum oven at 80 ◦C for two h.
Equation (2) shows the formation process of pure MnO2 [58]:

2KMnO4 + 3MnSO4 + 2H2O→ 5MnO2 + 2H2SO4 + K2SO4 (2)

Then, 0.01 g of the prepared MnO2 was mixed with 0.1 g of graphite powder and
20 mL of deionized water in an ultrasound bath for 30 min. The synthesis of MnO2/C was
carried out under the same conditions as for the sample S1.

The prepared nanocomposites’ morphology, structure and composition were charac-
terized using an SEM-focused ion beam facility (Helios Nanolab 650, FEI, Eindhoven, The
Netherlands) equipped with an EDX spectrometer (INCA Energy 350 X-Max 20, Oxford
Instruments, Oxford, UK). The amount of active material was determined using an ICP
optical emission spectrometer Optima700DV (Perkin Elmer, Waltham, MA, USA).

The shape and size of catalyst particles were examined using a Transmission Electron
Microscope Tecnai G2 F20 X-TWIN (FEI, Eindhoven, The Netherlands) equipped with
an EDAX spectrometer with an r-TEM detector. For microscopic examinations, 10 mg of
sample was first sonicated in 1 mL of ethanol for 1 h and then deposited on the Cu grid
covered with a continuous carbon film.

XPS measurements were carried out to obtain information about the elemental chemi-
cal states and surface composition of powders on the upgraded Vacuum Generator (VG)
ESCALAB MKII spectrometer (VG Scientific, UK) fitted with a new XR4 twin anode.
The non-monochromatized Al Kα X-ray source was operated at hν = 1486.6 eV with
300 W power (20 mA/15 kV), and the pressure in the analysis chamber was lower than
5 × 10−7 Pa during spectral acquisition. The analyzer work function was determined,
assuming the binding energy of the Au4f7/2 peak to be 84.0 eV. The spectra were acquired
with an electron analyzer pass energy of 20 eV for narrow scans and resolution of 0.05 eV
and with a pass energy of 100 eV for survey spectra. All spectra were recorded at a 90◦

take-off angle. The spectra calibration, processing, and fitting routines were done using
Avantage software (v5.962) provided by Thermo VG Scientific (Waltham, MA, USA). Core
level peaks of Mn 2p, Mn 3s, O 1s, and C 1s were recorded and analyzed using a nonlinear
Shirley-type background. The calculation of the elemental composition was performed on
the basis of Scofield’s relative sensitivity factors.

XRD patterns of studied powders were measured using an X-ray diffractometer
SmartLab (Rigaku, Japan) equipped with a 9 kW rotating Cu anode X-ray tube. The
measurements were performed using Bragg–Brentano geometry with a graphite monochro-
mator on the diffracted beam and a step scan mode with the step size of 0.02◦ (in 2θ scale)
and counting time of 1s per step. The measurements were conducted in the 2θ range 10–75◦.
Phase identification was performed using software package PDXL (Rigaku, Japan) and
ICDD powder diffraction database PDF-4+ (2020 release).

All electrochemical measurements were performed with a three-electrode cell us-
ing cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD). The prepared
MnO2/C nanocomposites coated on the glassy carbon electrode (GCE) were employed as
the working electrode; a Pt sheet as a counter electrode and an Ag/AgCl/KCl electrode
were used as a reference. The working electrodes were prepared as follows: the required
amount of the active material (MnO2/C) was dispersed ultrasonically in 2% of PVDF in an
NMP solution for 1 h. Then, the obtained slurry was pipetted onto the polished surface of
GCE and dried in an oven at a temperature of 80 ◦C for 2 h.

All electrochemical measurements were performed with a Zennium electrochemical
workstation (ZAHNER-Elektrik GmbH & Co.KG, Kronach, Germany). Cyclic voltam-
mograms (CVs) were recorded in a 1 M Na2SO4 solution at different scan rates between
10 and 200 mV s−1. All solutions were de-aerated by argon for 15 min before measurements.
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The specific capacitance Cs (F g−1) of the electrode material was calculated from the CV
test according to the following equation (Equation (3)) [43]:

Cs =
1

m·v·∆V

∫
idv, (3)

where Cs, is the specific capacitance (F g−1), m—the mass of the active material (g), v—the
scan rate of potential (V s−1), ∆V—the range of scan potential (V), and i—the current (A).

Further, galvanostatic charge/discharge cycling was carried out within a potential
range between 0 and 1 V at a current density of 1, 2, 5, 10, and 20 A g−1. The Cs was
calculated using the following equation (Equation (4)) [55]:

Cs =
I∆t

m·∆V
, (4)

where I is the discharge current (A), ∆t is the time for a full discharge (s), and ∆V represents
the voltage change during the discharge process (V).

3. Results

The carbon-supported MnO2 nanocomposites were prepared using the microwave-
assisted heating method and two different approaches. The MnO2/C nanocomposite,
labeled as sample S1, was prepared directly by the microwave-assisted synthesis of mixed
KMnO4 and carbon powder components. Another MnO2/C nanocomposite, labeled as
sample S2, was prepared in another way: at first, pure MnO2 was obtained by synthesizing
KMnO4 and MnSO4. Then, the mixture of the obtained MnO2 and carbon powder was
affected by microwave-assisted heating.

SEM images of the prepared MnO2/C samples S1 (a, b) and S2 (c, d) under different
magnifications are presented in Figure 1.
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As evident, both samples are composed of spherical manganese nanograins located
on the carbon surface, but they differ significantly in particle number, size and density.
In the case of sample S1, a sparse population of almost separate particles under a low
MnO2 aggregation level is arranged (Figure 1a,b). The size of particles in this sample is
close to 20 nm. In the case of sample S2, a nanograins’ aggregate forms a large porous
network structure with carbon embedded inside (Figure 1c,d). The aggregation level of
MnO2 develops to a large extent without any clear interparticle boundaries.

The samples S1 and S2 were further characterized by TEM analysis. TEM images of
the samples S1 and S2 confirm the fibrous morphologies of both samples with the more
expressed one for sample S2 (Figure 2). It was found that in the prepared sample S1, the
MnO2 nanoparticles are spherical and are ca. 13–18 nm in size (Figure 2a,b). Furthermore,
no large MnO2 nanoparticles are present within the prepared sample, indicating their
negligible aggregation. In the case of sample S2, thin flakelike morphology is observed
(Figure 2c,d).
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The chemical composition and the surface electronic state of the prepared MnO2/C
nanocomposites were analyzed using XPS. The C 1s signal and Mn 2p and O 1s peaks were
observed in the XPS survey spectra of both samples S1 and S2 (Figure 3a). It indicates the
successful synthesis of MnO2/C, while K content in the samples S1 and S2 was ca. 3.5 and
0.88 at.%, respectively. In both cases, the deconvoluted spectra of Mn show a spin-orbit
doublet of the main Mn 2p3/2 and Mn 2p1/2 peaks located at binding energies (Eb) of
642.2 eV and 654.0 eV, respectively, with a spin-energy separation of 11.8 eV (not shown).
This value confirms the presence of MnO2 in the prepared nanocomposites [59–62].
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XPS spectra of Mn2p3/2 and C 1s for MnO2/C samples S1 and S2 are shown in
Figure 3b–e. As evident, for both samples, the Mn 2p3/2 peaks were deconvoluted
into four peaks at binding energies of 640.6 ± 0.3, 642.2, 643.5, and 644.7 and 646.6 eV,
indicating the mixed-valence of manganese oxide phases (Figure 3b,c). Following the
data reported in [59–64], the position of deconvoluted Mn 2p3/2 peaks are generally
assigned to Mn (IV) or Mn (II) oxidation state at Eb ranging between 641.85–643.0 eV or
640.10–641.12 eV, respectively. Therefore, peaks determined at 640.6 ± 0.3 and 642.2 eV
confirm the presence of Mn(II) and Mn(IV) species in the samples S1 and S2 (Figure 3b,c).
Moreover, the additional peak at 644.7 eV close to that obtained at 644.9 eV in [65,66] could
similarly be assigned to a satellite shake-up peak located at higher Eb values than the main
component and is a characteristic feature of the MnO phase Mn 2p core peak maximum
at 640.6 ± 0.3 eV [67]. Meanwhile, peaks at 643.5 eV and 644.7 eV based on data in [66]
could be related to Mn (VI and VII) species in the samples. There is no Mn 2p3/2 signal
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(647 eV) from permanganate ions, suggesting permanganate ions have been reduced to
MnO2 [68]. It should be noted that the dominating fraction in the prepared samples S1
and S2 is the MnO2 phase and is equal to ~59 and 53%, respectively. At the same time, the
MnO (Mn (II)) phase remains significantly lower compared to that determined for the
MnO2 (Mn (IV)) phase.

The high-resolution C 1s spectrum for sample S1 can be deconvoluted into three peaks
centered at Eb of 284.1, 285.1 and 286.1 eV (Figure 3d). The first one value could be assigned
to carbon atoms C–C; meanwhile, other peaks could be assigned to oxygen functionalized
carbon atoms, such as C–O, or C–OH and C=O [60,69].

In the case of the sample S2, the C 1s XPS spectrum could be fitted into three peaks at
284.6, 285.8, and 288.4 eV (Figure 3e), which corresponded to C–C/C=C, C–O, and O–C=O
bonds, respectively [70]. The strong peak of C–C/C=C bonds shows that carbon contained
high graphitization.

The obtained XRD patterns for both MnO2/C samples are shown in Figure 4. The
presence of broad peaks implied that the synthesized samples S1 and S2 are essentially a
mixture of amorphous and nanocrystalline phases. The prominent peaks from both samples
(Figure 4) locate at 26◦, which can be assigned to the (002) crystal plane of graphitic carbon
(ICDD card no. 00-056-0159). The diffraction peaks of α-MnO2 are indexed according to
ICDD card no. 04-005-4884, indicating a tetragonal unit cell with lattice parameters of
a = b = 9.82 Å and c = 2.85 Å. The synthesized powders are composed of small crystallites
with an average size of about 3.2 ± 0.3 nm.
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The electrochemical performance of samples S1 and S2 was evaluated from the cyclic
voltammetry and galvanostatic charge/discharge measurements using a three-electrode
system in a 1 M Na2SO4 solution. Figure 5 shows the CV curves of the sample S1 (a),
sample S2 (b), and pure carbon (c) at the scan rates of 10, 50, 100, and 200 mV s−1. No
obvious peaks are observed in all the CV curves. This indicates that the electrodes are
charged and discharge at a constant rate over the complete cycle.
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Both sample S1 and carbon show symmetrical rectangular shapes, which indicates
the ideal capacitive behavior of those samples (Figure 5a,c). In the case of sample S2,
deviations in the rectangularity of CV curves occur (Figure 5b). It can be seen that the
current response of sample S2 is significantly higher as compared with that of sample S1
and carbon (Figure 5a–c). It is clearly seen that the sample S2 shows a significantly higher
capacitive behavior as compared with that of sample S1 (Figure 5d).

The calculated Cs values for the sample S2 were 980.7, 743.2, 641.0, and 536.6 F g−1

at scan rates of 10, 50, 100, and 200 mV s−1, respectively (Figure 6). Meanwhile, for the
sample S1, Cs values were 535.8, 349.6, 275.2, and 209.7 F g−1 at scan rates of 10, 50, 100,
and 200 mV s−1. Those values were found to be ca. 1.8–2.6 times lower than those obtained
for sample S2.
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Comparisons of the supercapacitive behavior of various MnO2-based electrode ma-
terials reported in the literature and the present work are listed in Table 1, exhibiting the
high specific capacitance of our prepared electrode materials.

Table 1. Comparisons of specific capacitance for various MnO2-based electrode materials.

Materials Scan Rate,
mV s−1

Specific
Capacitance,

F g−1
Ref.

MnO2/C (S2) 10 980.7 This work
MnO2/C (S1) 10 535.8 This work
Self-branched
α-MnO2/δ-MnO2
heterojunction
nanowires

10 152.0 [22]

MnO2 5 380.0 [24]
MnO2 10 154.0 [29]
MnO2/3D-PC 1 416.0 [47]
MnO2 5 547.0 [68]
Ultra-long MnO2
nanowires 2 495.0 [69]

MnO2 NPs/Ni foam 5 549.0 [71]
MnO2/MWCNT 2 553.0 [72]

Galvanostatic charge/discharge curves for the sample S2 measured at different current
densities of 1, 2, 5, 10, and 20 A g−1 are shown in Figure 7a. The shapes of the curves show
a typical triangular symmetrical distribution with a slight curvature. This result indicates a
combination of electric double-layer and pseudocapacitive contributions. Specific capaci-
tance values were calculated from the discharge test. It was found that the sample S2 can
deliver high Cs values of 949.3, 719.3, 480.8, 406.7, and 371.5 F g−1 at a current density
of 1, 2, 5, 10, and 20 A g−1 (Figure 7b). The long-term stability of the charge/discharge
process was also performed on this sample S2 at a high current density of 20 A g−1 up to
100 cycles (Figure 7c). As evident, this electrode showed excellent long-term stability with
93% retention of its initial capacitance value during 100 cycles.
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4. Conclusions

We have successfully fabricated carbon-supported MnO2 nanocomposites via a simple
microwave-assisted heating method. Different architecture containing MnO2 nanocom-
posites demonstrates improved conductivity, which is a key limitation in pseudocapaci-
tors. The electrochemical measurements revealed that (due to this conductivity) MnO2/C
nanocomposites, especially those prepared via a two-step procedure, exhibit excellent elec-
trochemical performance, including a high specific capacitance of 980.7 F g−1. Moreover,
the specific capacitance retention was 93% after 100 cycles at 20 A g−1, indicating good
electrochemical stability. The obtained results demonstrate that the prepared MnO2/C
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nanocomposites should be a promising electrode material for supercapacitor applications
and could be further extended to fabricate other materials for supercapacitors.
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