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Abstract: Although several schemes have been proposed to modify the classical Johnson–Cook
(J-C) model, the effect of temperature on the flow stress of materials at different temperatures has
not been clarified. In the current study, to investigate the deformation behavior of Ti-22Al-23Nb-
2(Mo, Zr) alloy at different temperatures, uniaxial tension experiments were performed at both
room (RT, 28 ◦C) and elevated temperatures, and a modified J-C model was developed to describe
the temperature-dependent plastic flow. In tensile experiments, Ti2AlNb-based alloy showed a
continuous work hardening until reaching the ultimate strength at RT, while an apparent drop
appeared in the flow stress after the peak stress at elevated temperature. Moreover, the experimental
peak stress significantly depends on the testing temperature. To correctly describe the different
variations of flow stresses at different temperatures, a parameter, S, which represents the softening
behavior of flow stress, is integrated into the classical J-C model. In addition, the applicability and
validity of the proposed J-C model were verified by calibration with experimental curves of different
temperatures. On the other hand, the fractography of post-test specimens was examined to interrupt
the increased fracture brittleness of Ti2AlNb-based alloy at elevated temperatures. The proposed
constitutive relation based on the J-C model is applicable to predict the deformation behavior of
other Ti2AlNb-based alloys at different temperatures.

Keywords: Ti2AlNb alloy; mechanical properties; constitutive relation; Johnson–Cook model

1. Introduction

The ordered orthorhombic Ti2AlNb, which was discovered in a Ti3Al-xNb alloy in
the late 1980s by Banerjee et al. [1], has attracted considerable attention as potential high-
temperature structural materials for aero-engines owing to its superior performances [2–4],
such as low density, high Young’s modulus, specific strength, good high-temperature
fatigue performance, and creep resistance. Because the actual application in aero-engines,
Ti2AlNb alloy is expected to be subject to various mechanical loads at high temperatures
from 400 ◦C to even 1000 ◦C. It is critically important to precisely predict the mechanical
behaviors of Ti2AlNb alloy, including deformation and fracture, at elevated temperature
for assuring the structural integrity and stability of aero-engines.

Up to now, many efforts have been devoted to the development of material systems,
including composition design [5–8] and phase equilibrium and transformation [9,10], and
thermal-mechanical processing techniques [11,12]. Recently, the mechanical behaviors
of Ti2AlNb alloy, such as tension [13,14], low cycle fatigue (LCF) [15], and creep [16,17],
have also been discussed, and the effect of the evolution of the microstructure [18] and
modification of the alloying element [19,20] was also investigated, where Mo addition was
found to improve the creep resistance of Ti2AlNb alloy [19], and Mo and Fe additions led
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to the increment of the room temperature ductility of Ti2AlNb alloys [21]. Furthermore, the
stress–strain curves of Ti2AlNb alloys with different alloy compositions and microstructures
were experimentally achieved using the uniaxial tension experiments at both room and
elevated temperatures [13]. The stress–strain curve at elevated temperature is usually
characterized by a linear increment to a peak followed by a significant drop in flow stress,
i.e., the softening of flow stress [13,22], which indicates that the representation of stress–
strain curves of Ti2AlNb alloy strongly depends on the temperature during the mechanical
experiments. Therefore, the proposal of an appropriate theoretical model, which can
correctly describe the stress–strain curves of Ti2AlNb alloys at different temperatures, is a
critical issue for further application in aero-engines. However, to the best knowledge of
the authors, a rare investigation has been performed to develop the theoretical model to
predict the deformation of Ti2AlNb alloys at different temperatures.

In 1983, Johnson and Cook [23] proposed a general empirical constitutive model for
materials subjected to a high temperature and loading rate. Until now, the J-C model has
been widely applied to evaluate various metallic materials with quasi-static and high-
speed impact loads at various temperatures [24–26]. However, it should be noted that the
work hardening, strain rate hardening, and thermal softening are separately considered
in J-C models, i.e., an uncoupled model [27–30]. In fact, during the deformation of metals
at elevated temperature, the work hardening or/and strain rate hardening and thermal
softening exist simultaneously and affect each other. Although the classical J-C model is
applicable to the special case where the flow stress possesses a linear relation with the
temperature and strain rate [23], unavoidable deviation will exist when the J-C model
describes the deformation behavior under a relatively high temperature or strain rate,
causing a significant nonlinear relationship with the flow stress.

In the past decade, different types of constitutive relations based on damage mechan-
ics have been proposed to investigate the deformation behaviors of metals at elevated
temperatures. Considering the effect of dislocation density, grain size, phase volume frac-
tion, and the evolution of damage and plastic evolution, Liu et al. [31] proposed a uniform
viscous plastic constitutive equation to analyze the plastic flow of Ti2AlNb alloys at ele-
vated temperatures of 910–970 ◦C. In addition, the evolution behaviors of the dislocation
density, recrystallization, and grain size during thermoplastic deformation were clarified
using the uniform viscous plastic relation [32]. In addition, the nucleation and growth of
the intergranular cavity induced by the increment of dislocation density and grain size
were discussed based on the superplasticity theory considering the evolution mechanism
of damage [33]. On the other hand, besides the aforementioned constitutive relations
regarding the deformation mechanisms at elevated temperatures, several modification
schemes have been proposed for the classical J-C model to analyze the deformation of
metals under a high temperature and strain rate [24–26,34–37]. Lin et al. [34] proposed
a modified J-C model, where there was a coupling effect between yield stress and the
working hardening. In addition, the influence of temperature and strain rate on the flow
stress was also considered. Huh et al. [35] modified the strain rate term into a quadratic
polynomial form to represent the nonlinear relation between the flow stress and the strain
rate. Ulacia et al. [36] further modified the one proposed by Hub et al. [35] and defined the
strain hardening exponent as a function of the strain rate, which was adopted to investigate
the sensitivity of work hardening to the strain rate of magnesium alloys. By studying
the stress–strain curves of magnesium alloys with different strain rates, Tan et al. [37]
found that the strain rate hardening coefficient in the classical J-C model was a function
of both the plastic strain and strain rate. Compared with the strain rate, the influence
of temperature on the work hardening of flow stress during deformation has not been
clarified. In addition, the sensitivity of the strain rate varies with the external temperature,
which is induced by the change of the deformation mechanism at different temperatures.
Therefore, considering the effect of temperature on the work hardening of flow stress in the
J-C model is another key issue for its application in describing the deformation behaviors
of materials at elevated temperatures.
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In the current study, the deformation behaviors of Ti-22Al-23Nb-2(Mo, Zr) alloys
(abbreviated as “Ti2AlNb-based alloys”) were experimentally investigated using uniaxial
tension at both room and elevated temperatures, and corresponding stress–strain curves
were obtained as well. In addition, by calibrating with the experiments, a modified J-
C model considering the significant effect on the flow stress at different temperatures is
developed, and its validity was examined by predicting the deformation of other specimens.
Finally, the fractography of post-test specimens was carefully observed using a high-
resolution field emission scanning electron microscopy (FE-SEM), and the increment of
the brittle nature of fracture for Ti2AlNb-based alloys with an increasing temperature was
interrupted from the characteristic of microstructures of the fracture trace.

2. Experiments

The as-received material was a hot-rolled alloy plate with a nominal composition of
Ti-22Al-23Nb-2(Mo, Zr) (at.%), and the final rolling temperature was 1020~1075 ◦C. After
hot-rolling, the alloy was subjected to air cooling with 900~980 ◦C and a subsequent 2 h
of annealing at 650~830 ◦C, respectively. Figure 1 shows the microstructure of the current
Ti2AlNb-based alloy in the SEM-BSE mode. The fine needle-like O phases are uniformly
distributed on the B2 matrix in an interwoven network, where the O phase possesses a
typical length of 2~5 µm and a width less than 300 nm.
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Figure 1. SEM micrograph of present Ti2AlNb-based alloy.

Figure 2 shows the geometric dimensions of the tension specimen. The deformation
behavior of the alloy was investigated by uniaxial tensile tests performed on a tension
machine (Instron 5985) with a high-temperature furnace at room temperature (RT, 28 ◦C),
500, 550 and 650 ◦C, respectively. The uniaxial tension experiments were performed with a
manner of displacement-control according to China National Standard of GB/T228-2010
and GB/T 228.2-2015, and the loading rate was set to 0.006 mm/mm/min for all specimens.
In addition, the strain gauge was removed when the strain exceeded 5% and the loading
rate was subsequently adjusted to 0.02 mm/mm/min. On the other hand, the fracture
morphology of all tested specimens at different temperatures was carefully examined using
a high-resolution SEM (Zeiss, Crossbeam FIB-SEM, Jena, Germany).

Figure 3 shows the true stress–strain curves of all tested specimens at RT and elevated
temperature. It can be found that the deformation behavior of Ti2AlNb-based alloy obvi-
ously changes with the increment of the temperature. At RT, the flow stress continuously
increases with the applied strain until the ultimate tension strain is larger than 4%, which
indicates an apparent working hardening at RT. The work hardening is also clearly identi-
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fied in the flow stress of tension specimens at 500 ◦C, although the ultimate fracture strain
is reduced to around 2%. On the other hand, with a higher temperature of 550 ◦C, the flow
gradually increases to a peak and subsequently drops down, indicating the appearance of
softening due to the high temperature. In addition, the ultimate fracture strain is further
reduced to 1.5%, which is significantly smaller than the ones at RT and 500 ◦C. For the
flow stress of the tension experiment at 650 ◦C, it quickly reaches a peak followed by a
sharp and linear drop, showing abnormal softening. Furthermore, the ultimate fracture
strain is almost the same as the one at 500 ◦C. Therefore, the temperature possesses a
dominant effect on the deformation behavior, i.e., the flow stress, of Ti2AlNb-based alloys,
and the softening replaces the work hardening in the flow stress when the temperature is
higher than 500 ◦C for the present study. This means that a critical transition temperature
exists for the deformation of Ti2AlNb-based alloys, and the microscopic mechanism for the
deformation behavior across such a critical temperature is expected to be different as well.
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To further clarify the deformation properties of Ti2AlNb-based alloys at different
temperatures, the variation of Young’s modulus and yield stress with the temperature
is discussed and shown in Figure 4. As shown in Figure 4a, Young’s modulus, which is
determined from the slope of the experimental stress–strain curves, gradually decreases
with the increment of the temperature. It is worth noting that a significant drop of Young’s
modulus emerges after 550 ◦C, which indicates the softening of Ti2AlNb-based alloys at
such elevated temperatures. On the other hand, Figure 4b illustrates the variation trend of
the yield stress with the temperature. As no obvious yield point can be precisely identified
from the experimental curve, the yield point is taken as the stress at which 0.2% plastic



Crystals 2021, 11, 754 5 of 14

deformation occurs, named σ0.2. The yield stress also decreases with the elevation of
the temperature, and a dramatic decrement appears after 550 ◦C as well. The similar
temperature dependence of both Young’s modulus and yield stress is found to be induced
by the partial disordering of the O phase at the elevated temperature [38–40]. In addition,
the significant drop in Young’s modulus and yield stress after 550 ◦C indicates an intrinsic
change of the deformation mechanism from the RT to the relatively high temperature.
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3. Constitutive Relation Based on Modified J-C Model
3.1. Classical Johnson–Cook Model

Because the tension experiments of all specimens were performed with the same
loading rate, the effect of the strain rate for the J-C model is ignored in the present study.
By setting the experimental strain rate to be the reference one, the classical J-C model can
be simplified as:

σ =
(

A + Bεn
p

)
(1− T∗m) (1)

Here, σ is the stress, εp is the plastic strain. In addition, T∗ = T−Tr
Tm−Tr

, where T is the
experimental temperature, Tr is the room temperature, Tm is the melting temperature of
materials, and A, B, m, and n are the parameters that need to be determined.

The undetermined parameters can be obtained as follows. The experimental condition
of T = Tr Equation (1) can be rewritten as:

σ =
(

A + Bεn
p

)
(2)

When the plastic strain εp = 0, A = σ0.2, Equation (2) can be expressed as:

Ln(σ− A) = LnB + nLnεp (3)

For the current study, based on the experimental stress–strain curve at RT, the parame-
ters of B and n can be determined from the linear fitting of Ln(σ− A) and Lnεp. On the
other hand, for εp = 0, Equation (2) can be written as:

σ0.2 = A(1− T∗m) (4)

According to the yield strength in the experimental stress–strain curve at 550 ◦C, the
temperature-sensitive parameter m can be obtained.

Figure 5 shows the comparison between the predicted stress–strain curves using
the classical J-C model and experimental ones. The J-C model gives a correct prediction
of the deformation behaviors of Ti2AlNb-based alloys at both RT and 500 ◦C. However,
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for the deformation behaviors at 550 and 650 ◦C, where an obvious linear drop exists in
the flow stress, a significant deviation appears between the theoretical and experimental
curves, indicating the inapplicability of the classical J-C model for the deformation of
Ti2AlNb-based alloys at relatively high temperatures.
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Figure 6 shows the relative difference between the experimental and theoretical flow
stresses obtained from the classical J-C model. For specimens tested at the same tempera-
ture, the difference almost linearly increases with the increment of the plastic strain. On
the other hand, with the increment of the temperature, the enlargement of the relative
difference becomes much quicker, i.e., the slope of the relative difference–plastic strain
curve becomes larger. Therefore, the relative difference shows a linear relationship with
the plastic strain, and the slope of the linear relationship significantly increases with the
increment of the temperature.
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3.2. Modified Johnson–Cook Model

In the classic J-C model, by regarding the yield strength at RT and the referencing
strain rate to be a benchmark, the variation of stress is a function of the strain, strain rate,
and temperature. Although the classic J-C model can describe the deformation behavior of
materials in the temperature range from RT to the melting point, the working hardening
coefficient B and n, and the strain rate hardening coefficient C are obtained from the tension
tests at RT. Therefore, the deviation between the theoretical prediction from the J-C model
and the experimental results enlarges with the increment of the temperature. To improve
the precision of theoretical prediction, we proposed a modified J-C model considering the
effect of temperature on flow stress.

Firstly, Equation (1) is written in the following form:

1− σ

1−
(

A + Bεn
p

)(
1 + C

.
Lnε
∗) = T∗m (5)

where
.
ε
∗
=

.
ε.
ε0

.
.
ε is the experimental strain rate and

.
ε0 is the reference strain rate. By

setting
.
ε
∗
= 1, the flow stress at RT is defined as σr =

(
A + Bεn

p

)
. In addition, when the

temperature reaches the melting point, the flow stress σm should be zero. Then, we have
the following relation:

1− σ

σr
= T∗m (6)

By re-writing the form of Equation (6), we have:

σr − σ

σr − σm
=

(
T − Tr

Tm − Tr

)m
(7)

σ = σr − (σr − σm)T∗m (8)

If the effect of strain rate is considered, the flow stress is obtained as:

σ = [σr − (σr − σm)T∗m]
(

1 + C
.

Lnε
∗)

(9)

where T ∈ [Tr, Tm]. As aforementioned, the classical J-C model can only offer a correct
prediction of the deformation behavior of Ti2AlNb based at the temperature lower than
500 ◦C, which is much lower than its melting point (Tm = 1690 ◦C). However, a large
error exists in the theoretical prediction of the J-C model for relatively high temperatures,
i.e., T > 550 ◦C. Therefore, we define the expression of stress within a relatively high-
temperature range of T ∈ [Tl , Th] as:

σ = [σl − (σl − σh)T∗m]
(

1 + C
.

Lnε
∗)

(10)

where Tl and Th are the lower and upper limits of the range of the elevated temperature for
applying the J-C model, and σl, σh are the corresponding flow stresses with

.
ε
∗
= 1, which

are the functions of εp. According to the classical J-C model, the flow stresses σl and σh can
be obtained as:

σl= F
(
εp
)
=
(

Al + Blε
n1
p
)

(11)

σh= F
(
εp
)
=
(

Ah + Bhεn2
p
)

(12)

To correctly predict the observed linear softening of flow stress of Ti2AlNb-based
alloys at an elevated temperature, a parameter S, representing the softening of flow stress,
is introduced into the model, and Equations (11) and (12) are derived as:

σl= F
(
εp
)
=
(

Al + Blε
n1
p
)
− Slεp (13)
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σh= F
(
εp
)
=
(

Ah + Bhεn2
p
)
− Shεp (14)

Therefore, a modified J-C model considering the effect of elevated temperature on the
flow stress is achieved as:

σ =
{(

Al + Blε
n1
p − Slεp

)
−
[(

Al + Blε
n1
p − Slεp

)
−
(

Ah + Bhεn2
p − Shεp

)]
T∗m

}(
1 + C

.
Lnε
∗)

(15)

The parameters in Equations (13) and (14) can be determined using nonlinear curve
fitting based on the experimental stress–strain curves at the lower and upper temperature
limits. In addition, the temperature-sensitive parameter m can be derived from Equation (9)
using the experiment results at the temperature limits as well. Until now, all the parameters
in the modified J-C model are determined, and the flow stress at any temperature in
the temperature range can be directly obtained using Equation (15). Table 1 lists all the
parameters in the classical and modified J-C models.

Table 1. The definition of all parameters adopted in the current study.

Term Term

σ True stress (MPa) R Correlation coefficient
εp Plastic strain (%) Tl Lower limits of the range of elevated temperature
T Experimental temperature (◦C) Th Upper limits of the range of elevated temperature
Tr Room temperature (◦C) σl, σh Corresponding flow stresses with Tl and Th
Tm Melting temperature (◦C) Sl, Sh Softening constants with Tl and Th
A Yield stress in J-C model (MPa)

.
ε Experimental strain rate

B, m, n Material constants of J-C model
.
ε0 Reference strain rate

σ0.2 Yield stress (MPa)

In the current study, the lower and upper temperature limits were set to 500 and
650 ◦C. Therefore, by using Equations (9), (13), and (14), the predicted stress–strain curves
using the newly proposed modified J-C model were obtained and are shown in Figure 7.
The proposed J-C model precisely predicts the total stress–strain curves, including the
variation of flow stress of Ti2AlNb-based alloys at both lower (500 ◦C) and upper (650 ◦C)
temperature limits, which indicates the validity of the proposed J-C model. On the other
hand, the critical transition temperature for the deformation behavior is included in the
specific temperature range of 500~650 ◦C. However, as the detailed value of the transition
temperature was not determined in the current study, the prediction of the deformation
behavior at the transition temperature remains for further study.
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Figure 7. Comparison between the experimental and the predicted stress–strain curves using the modified J-C model at
(a) 500 ◦C and (b) 650 ◦C.



Crystals 2021, 11, 754 9 of 14

3.3. Validity of the Modified J-C Model

To further verify the validity and applicability of the modified J-C model, the defor-
mation behavior of Ti2AlNb based at 550 ◦C was predicted by substituting T = 550 ◦C into
Equation (15). Figure 8 shows the comparison between the theoretically predicted and
experimental stress–strain curves at 550 ◦C. The modified J-C model gives a very close
prediction of the stress–strain curve at 550 ◦C as well. Therefore, it can be concluded that
the modified J-C model can precisely describe the deformation behaviors of Ti2AlNb-based
alloys at any temperature within the specified range.
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Figure 8. Predicted stress–strain curve from the modified J-C model and its comparison with the
experimental result at 550 ◦C.

Figure 9 shows the comparison between the experimental and theoretical prediction
with the classical and modified J-C models. The quality of the developed J-C model was
examined using the standard statistical quantities determined by Equations (16)–(18) [41,42].
The magnitudes of R, AARE, and RMSE are 0.999, 1.3%, and 11.0 MPa determined from
the modified J-C model, while 0.870, 14.5%, and 113.7 MPa were obtained from the classical
model, respectively. Therefore, the proposed modified J-C model possesses an excellent
precision on the prediction of deformation of Ti2AlNb-based alloys at different temperatures.

correlation coeffecient (R) =
∑N

i=1(Ei − E′)(Pi − P′)√
∑N

i=1(Ei − E′)2 ∑N
i=1(Pi − P′)2

(16)

average absolute relative error (AARE) =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣ (17)

root mean square error (RMSE) =

√√√√ 1
N

N

∑
i=1

(Ei − Pi)
2 (18)

On the other hand, to further examine the robustness of the modified J-C model, the
deformation behaviors of another titanium alloy of VT14 at different elevated tempera-
tures [42] were predicted using the proposed model, and the comparison between the
experimental [42] and theoretical results is shown in Figure 10. After the parameters of the
modified J-C model were determined using the experimental flow stresses at the upper
and lower limits of temperature range of 800–875 ◦C, the variation of flow stress of VT14 at
850 ◦C was precisely predicted by the proposed model. Therefore, the modified J-C model
in the current study can predict different materials at elevated temperatures.
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Figure 10. Comparison between experimental [42] and theoretical flow stresses of titanium alloy of VT14.

4. Temperature Dependence of Fractography with SEM Characterization

As shown in Figure 3, significant softening exists at the flow stress of Ti2AlNb-based
alloys at elevated temperatures of 550 and 650 ◦C in the current study. It has been well
known that the dislocation motion dominates the plastic deformation of metals. With an
increase of the temperature, the motion resistance due to Peierls–Nabarro stress is reduced
and thus the dislocation motion becomes easier than that at RT [43–45]. On the other
hand, as the yield strength is sensitive to the Peierls–Nabarro stress [44], and thus the
yield strength of materials becomes lower as well. Therefore, the weakened resistance of
dislocation motion induced by the elevated temperature causes softening in the flow stress
of Ti2AlNb-based alloys.

On the other hand, to further clarify the significant drop of flow stress at an elevated
temperature, we examined the fractography of post-test specimens at different tempera-
tures using FE-SEM. Figure 11 shows the overall views of fracture surfaces and the high
magnification observation of corresponding microscopic characteristics of the tested speci-
mens at RT, 550 ◦C, and 650 ◦C, respectively. For the fracture surface at RT, a typical mixture
of intergranular and transgranular fractures is identified from the overall view (Figure 11a).
The appearance of cleavage steps further confirms the existence of intergranular fracture
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(Figure 11b). Therefore, the co-existence of intergranular and transgranular fractures results
in relatively good plasticity and a large ultimate fracture strain of Ti2AlNb-based alloys at
RT. On the other hand, at the elevated temperature, an apparent drop emerges in the flow
stress and the ultimate fracture strain is reduced as well. As shown in Figure 11c, the overall
view of fracture surface at 550 ◦C indicates that the proportion of transgranular fracture
is largely increased, and secondary cracks also appear. A close observation of the typical
zone of the fracture surface, as shown in Figure 11d, shows that dimples appear, and the
cleavage fracture still exists. This means that, although the plastic deformation indicated
by dimples is strengthened, the transgranular fracture and appearance of secondary cracks
cause the brittle nature of Ti2AlNb-based alloys at 550 ◦C. Finally, the fracture surface at
650 ◦C in Figure 11e,f clearly illustrates the predominance of transgranular fracture and the
increased number of secondary cracks, which causes the significant softening of flow stress
at 650 ◦C. Therefore, the SEM characterization of the fractography indicates the transition
of the deformation behavior of Ti2AlNb-based alloy at different temperatures is mainly
represented by the variation of the fracture mechanism from the mixture of intergranular
and transgranular fractures to the dominance of the trangranular fracture and secondary
crack. In addition, the linearity of the relative difference between the experimental and the-
oretical results with the temperature suggests that the proposed parameter can be adopted
to approximately evaluate the transition of the fracture mechanism during the increment
of the testing temperature.
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On the other hand, it was found that Ti2AlNb-based alloys generally show high
hardness and significant brittleness due to the characteristic complex of long-range-ordered
crystal structures [46]. In addition, cleavage or intergranular fracture dominates the
failure of Ti2AlNb-based alloys at low homologous temperatures, i.e., the brittle-to-ductile
transition temperature (DBTT). In the current study, although the tension experiments in
the current study were performed at elevated temperatures of up to 650 ◦C, the testing
temperature in the current study was still lower than the DBTT of Ti2AlNb-based alloys [46].
Therefore, although the elevated temperature improved the motion of dislocation and
induced the decrement of yield stress, the fracture of all tested specimens were brittle ones.
In addition, the analysis of the fractography of all tested specimens further confirms the
brittleness of fracture of all specimens in the current study.

5. Conclusions

The deformation behavior of Ti2AlNb-based alloys was investigated using uniaxial
tension experiments at RT and elevated temperature, and a modified J-C model was
proposed to describe the observed variation of flow stress at different temperatures. The
main results are summarized as follows.

1. Uniaxial tension experiments at different temperatures revealed the dominant effect
of temperature on the deformation of Ti2AlNb-based alloys. Both Young’s modulus
and yield strength decreased with the increment of the temperature. Furthermore,
different from RT, obvious softening of the flow stress was observed in experiments
at 550 and 650 ◦C;

2. The classical J-C model was found to fail to describe the softening of flow stress at the
relatively high temperature, although it gave a correct prediction of the deformation
of Ti2AlNb-based alloys at RT;

3. A modified J-C model was developed by introducing an extra parameter to represent
the linear drop of flow stress at elevated temperatures. After determining the corre-
sponding parameters of the J-C model with the experimental results of the lower and
upper temperature limits, the deformation behavior at any temperature belonging to
the specific range can be correctly described.

4. The fractography of post-test specimens at different temperatures was characterized
by FE-SEM. Besides the decrement of resistance to dislocation motion due to the
elevated temperature, the softening of flow stress was strongly dependent on the
increased proportion of transgranular fracture and the existence of a secondary crack
in Ti2AlNb-based alloys.

This work provides important insight into the deformation and fracture behaviors of
Ti2AlNb alloys at both RT and elevated temperature, and a powerful and precise theoretical
model to predict its deformation at any temperature within a required range, which is the
critical issue for the application Ti2AlNb alloys at elevated temperatures.
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