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Abstract: In recent decades, the behavior of SrTiO3 upon annealing in reducing conditions has been
under intense academic scrutiny. Classically, its conductivity can be described using point defect
chemistry and predicting n-type or p-type semiconducting behavior depending on oxygen activity. In
contrast, many examples of metallic behavior induced by thermal reduction have recently appeared
in the literature, challenging this established understanding. In this study, we aim to resolve this
contradiction by demonstrating that an initially insulating, as-received SrTiO3 single crystal can
indeed be reduced to a metallic state, and is even stable against room temperature reoxidation.
However, once the sample has been oxidized at a high temperature, subsequent reduction can no
longer be used to induce metallic behavior, but semiconducting behavior in agreement with the
predictions of point defect chemistry is observed. Our results indicate that the dislocation-rich surface
layer plays a decisive role and that its local chemical composition can be changed depending on
annealing conditions. This reveals that the prediction of the macroscopic electronic properties of
SrTiO3 is a highly complex task, and not only the current temperature and oxygen activity but also
the redox history play an important role.

Keywords: strontium titanate; thermal reduction; insulator–metal transition; redox reactions; point
defect chemistry

1. Introduction

Redox processes in transition metal oxides have been under investigations for decades,
given their substantial potential for applications in the fields of sensorics, information
technology, superconductivity, and energy conversion [1–5]. SrTiO3 has emerged as one of
the most widely investigated model materials for metal oxides with a perovskite structure
and its electronic properties have been intensively analyzed [6,7]. Although stoichiometric
SrTiO3 is an insulator, it can be turned into a semiconductor by means of doping with
extrinsic donors or self-doping with oxygen vacancies [8]. The redox behavior of SrTiO3 has
been described in theoretical terms using point defect chemistry [9–11]. As the dominant
type of disorder in SrTiO3 is of the Schottky variety, the properties of the surface/surface
layer play a key role in exchange processes. By using the equilibrium constants of the partial
reactions between the relevant point defects in combination with the charge neutrality
condition, the conductivity of SrTiO3 can be calculated as a function of the surrounding
oxygen partial pressure at sufficiently high temperatures. It is predicted that in a regime
with a high oxygen partial pressure, SrTiO3 behaves as a p-type semiconductor, whereas
n-type conductivity prevails under reducing conditions [12]. This behavior has been
experimentally confirmed using ceramics and single crystals of SrTiO3 in many studies
over the last 30 years [9,11,13–16].

However, for SrTiO3 single crystals, which were annealed under vacuum conditions
(at an oxygen partial pressure in the range of 10−9 mbar), a completely different behavioral
pattern has been observed. During the annealing process, an insulator–metal transition
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occurs, boosting the macroscopic conductivity of SrTiO3 into regions far beyond those
predicted by point defect chemistry [17]. Even more surprisingly, the transition into the
metallic state was found to take place upon the effusion of an extremely small amount
of oxygen, in the range of 1013/cm3, from the SrTiO3 crystal [18]. As each oxygen atom
removed from the lattice leaves behind a two-fold positively charged vacancy being com-
pensated by electrons, it can be assumed that the concentration of electrons in the oxide is
equal to the effused oxygen. Hence, at an extremely low carrier concentration, the crystal
would be metallic, which stands in conflict with the Mott criterion that predicts metallicity
only at concentrations above 1018/cm3 [19]. As an explanation for this discrepancy, it must
be assumed that the metallic behavior of reduced SrTiO3 single crystals is caused by a local
phenomenon. Indeed, it has been found that this metallic conductivity is confined to a
region close to the surface and, under certain conditions, even 2D electron gases at the
surface have been identified [20–23]. Furthermore, it has been considered that the surface
layer of real crystals has a high concentration of dislocations, which constitute preferential
reduction sites [24–26]. Dislocations are intrinsically present in Czochralski grown crystals
with a density of about 106/cm2 [27]. Upon cutting and polishing, further dislocations
are introduced into the surface layer, reaching local densities above 109/cm2 [28]. Thus,
the Mott criterion could be fulfilled in regions close to the reduced dislocations, leading
to the evolution of metallic filaments within an insulating matrix. This effect could also
be exploited for resistive switching applications [29]. Using experimental methods with a
high spatial resolution, such as optical imaging, in combination with local conductivity
atomic force microscopy (LC-AFM), it has been proven that dislocations in SrTiO3 serve as
a template for the formation of metallic filaments upon thermal reduction, thus leading to
a preferential reduction in the dislocation-rich surface region [28,30].

In this study, we aim to discuss the conditions under which either metallic or point
defect chemistry-like behavior can be observed. Therefore, we perform annealing experi-
ments on an SrTiO3 single crystal while simultaneously measuring the sample resistance
using a four probe setup. Repeating the heating and cooling cycles on the same sample
but under different oxygen pressures allows a linking of the electrical properties with its
redox history.

2. Materials and Methods

Nominally undoped SrTiO3 single crystals were prepared following the Czochralski
method and using starting powders of 99.99% purity [27]. Samples of the crystal with
dimensions of 10 mm × 4 mm × 1 mm were cut out of the crystal boule in (100) direction
and the surface was mechanically polished.

The redox behavior of the sample was analyzed by an aixDCA setup (aixACCT
Systems, Aachen, Germany). Four electrodes covering both sides of the samples were
deposited by Pt paste, as is illustrated in Figure 1a. The electrodes were wrapped with
Pt wires, thus establishing an electrical connection to the measurement system. A small
alternating voltage (4 mV, 172.5 Hz) was applied via the two outer electrodes. Using a
lock-in technique, the current through the sample and the potentials at the four electrodes
were measured. The use of a four probe setup allows determining not only the total
resistance, but also the partial resistances. The nearly current free measurement of the
potential drop between the inner electrodes can be used to determine the bulk resistance,
while the potential drops between inner and outer electrodes on each side (I and II) are
related to the interface resistance, which is mainly determined by the resistance of the
surface layer [31]. As is described in detail elsewhere [11], the sample was placed in a
quartz tube furnace connected to an ultrahigh vacuum pumping system. The oxygen
activity was controlled by filling pure oxygen into the vacuum chamber.
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Figure 1. Four probe resistance measurements of the SrTiO3 single crystal: (a) schematic setup; (b) 
total and partial resistances of the sample during the first heating to 500 °C; (c) cooling curves of 
the resistances after thermal reduction at increasing maximum temperatures. 

3. Results 
After the chamber had been baked at 200 °C with the freshly prepared sample under 
vacuum conditions to reduce the amount of physisorbed species, the resistance of the 
sample was still above the measurement limit of the used setup (>108 Ω), indicating 
insulating behavior. During the first heating cycle, from 200 to 500 °C, the resistance 
dropped by many orders of magnitude, converging on a total resistance of around 105 Ω, 
as is depicted in Figure 1b. The partial resistances of the bulk and the two interfaces, which 
were simultaneously measured by the four probe technique, followed the same trend and 
decreased as a function of the temperature. The bulk resistance was higher than the 

Figure 1. Four probe resistance measurements of the SrTiO3 single crystal: (a) schematic setup; (b) total and partial
resistances of the sample during the first heating to 500 ◦C; (c) cooling curves of the resistances after thermal reduction at
increasing maximum temperatures.

3. Results

After the chamber had been baked at 200 ◦C with the freshly prepared sample under
vacuum conditions to reduce the amount of physisorbed species, the resistance of the
sample was still above the measurement limit of the used setup (>108 Ω), indicating
insulating behavior. During the first heating cycle, from 200 to 500 ◦C, the resistance
dropped by many orders of magnitude, converging on a total resistance of around 105 Ω,
as is depicted in Figure 1b. The partial resistances of the bulk and the two interfaces, which
were simultaneously measured by the four probe technique, followed the same trend
and decreased as a function of the temperature. The bulk resistance was higher than the
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surface/interface resistances. The temperature of the chamber was held at 500 ◦C for 9 h
before being cooled to room temperature. Upon cooling, the resistance increased again but
reached a value of 3.6 MΩ, which is significantly lower than the initial resistance, indicating
that the sample had been reduced and self-doped under vacuum conditions (Figure 1c).
This scheme of annealing and cooling cycles under vacuum conditions was repeated for
different temperatures in steps of 100 ◦C until the maximum annealing temperature of
1000 ◦C was reached.

Figure 1c displays the resistance curves obtained during cooling from the respective
annealing temperatures. In general, the resistance decreased continuously during annealing
as an effect of the ongoing reduction via the removal of oxygen from the crystal. After
annealing to 500, 600 and 700 ◦C, the cooling curves reveal an increase in the resistance
with decreasing temperature, which is typical for a thermally activated semiconductor.
At 800 ◦C, the total resistance still increased with decreasing temperature, but the bulk
resistance reached a maximum and then decreased again upon further cooling, whereas
the resistance of interface II continued to increase. After annealing at 900 ◦C, the resistance
initially decreased upon cooling until approximately 600 ◦C, and then increased again to
reach a maximum around approximately 250 ◦C, before it strongly decreased until reaching
room temperature. Moreover, in this measurement, the resistance of interface II at low
temperatures was higher than that of the bulk and of interface I, revealing that the sample
had heterogeneous properties. After annealing at 1000 ◦C, the resistance continuously
decreased upon cooling and the total resistance was more than six orders of magnitude
smaller than that in the as-received state. This indicates that upon reduction, the crystal
underwent an insulator–metal transition.

In the next step, we analyzed the impact of reoxidation on the self-doped crystal. To
achieve this, we exposed the metallic sample to 200 mbar of pure O2 at room temperature
for four hours before evacuating the chamber again. As can be seen in Figure 2a, the
resistance was virtually unaffected by the oxygen exposure and remained at the low level
of a few ohms. Subsequently, we heated the crystal to 1000 ◦C under vacuum conditions
with an oxygen partial pressure of approximately 10−9 mbar. The heating curve displayed
in Figure 2b shows an increasing resistance, with the increasing temperature still indicating
metallic behavior. At 1000 ◦C, the oxygen pressure was then raised to 3 × 10−7 mbar
and the resistance was monitored as a function of the time. Figure 2c shows that the total
resistance, as well as the partial resistances, increased upon high temperature oxygen
exposure by more than three orders of magnitude. After 42 h, a near equilibrium state had
been achieved, whereupon the sample was cooled down with a slightly increased oxygen
pressure maintained. The cooling curve in Figure 2d reveals an increasing resistance with
decreasing temperature, and shows that the sample had lost its metallicity and turned
into a semiconducting or insulating state. At room temperature, the resistance was above
the measurement limit, similar to the samples in the as-received state. Subsequently, the
temperature was increased to 1000 ◦C and the chamber held under vacuum conditions. As
is shown in Figure 3a, the resistance measured during heating exhibited semiconducting
properties. The sample did not return to a metallic state. While the temperature was being
held at 1000 ◦C, the oxygen pressure was increased in different steps, up to a final pressure
of 200 mbar (Figure 3b). Before starting each step, the resistance was monitored until near
equilibrium conditions were achieved, as per the procedure previously described [11].
The bulk resistance measured in (near) equilibrium was used to calculate the macroscopic
conductivity σ, which is displayed in Figure 3c as a function of the oxygen partial pressure.
The same type of measurement was performed at 800 and 900 ◦C, resulting in a typical
Brouwer diagram for SrTiO3. This illustrates that the sample had been transformed into a
semiconducting state, exhibiting a temperature and oxygen partial pressure dependence,
which is in qualitative and quantitative agreement with the predictions of point defect
chemistry and also with our previous experimental investigations of Verneuil grown SrTiO3
(Figure 3d).
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Figure 4 summarizes the annealing experiments performed on the SrTiO3 sample
under investigation. It depicts the bulk resistance measured during cooling at the respective
annealing temperatures. The curves labeled with 1–6 are the same as in Figure 1c and
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reveal that the resistance decreased with increasing reduction temperature until finally a
metallic behavior was present. After oxidation at a low oxygen pressure, the resistance
jumped to a high value and the semiconducting properties were present (curve 7). Repeated
annealing to 1000 ◦C under vacuum conditions slightly decreased the resistance at first,
but, eventually, a stable semiconducting behavior was reached (curves 8–9).
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4. Discussion

Our results reveal that SrTiO3 single crystals can be transformed from an initially
insulating state into a metallic one by means of thermal reduction under vacuum conditions
at a temperature of 1000 ◦C. However, once a crystal has been exposed to a small amount
of oxygen at high temperatures, it adopts a semiconducting state and does not return to
the metallic one anymore, even after prolonged exposure to reducing vacuum conditions
at 1000 ◦C. While the semiconducting state, obtained after exposure to oxygen, can be de-
scribed by defect chemistry, the macroscopic conductivity of the metallic state would be far
beyond theoretical predictions. In our view, this contradiction could be resolved by taking
the special role of a region close to the surface of the SrTiO3 single crystals into account,
to which an increased density of nonequilibrium (2-D) defects, e.g., dislocations, can be
attributed. As has been shown by four probe measurements, the metallic state is associ-
ated with the formation of conducting paths on this surface layer of the crystal [22,31,32].
The correlation between dislocations and conducting paths has also been illustrated by
microscopy methods such as LC-AFM, revealing that those paths form in the vicinity of
dislocations, which can be easily reduced [28]. Furthermore, the vacuum reduced surface
region was found to be Ti-rich, indicating that Sr diffused away from the surface towards
the bulk upon annealing [31,33]. This has been confirmed by SIMS depth profiling showing
a Sr depletion close to the surface and a Sr enrichment in the subsurface region of reduced
SrTiO3 [34]. During this process, a complex defect structure could also develop with TiSr
antisite defects coupled to oxygen vacancies, or the formation of TiOx nanophases [35,36].
Hence, a heterogeneous surface layer is generated that is depleted in Sr but enriched in
oxygen vacancies featuring a filamentary metallic conductivity. Upon high temperature
reduction, even the crystallographic structure close to the dislocations themselves could
change towards that of Ti suboxides, thus building up a metallic structure resistant to
room temperature oxidation [37,38]. Upon high temperature oxidation, the opposite effects
will occur. The surface oxygen vacancies will be filled and Sr will move towards the
surface, eventually forming an SrO terminated surface or even SrO nanocrystals [39,40].
It should be noted that the reoxidation depends subtly on the chemical composition of
the material, and it has been reported that specially prepared crystals can remain reduced,
even after high temperature oxidation [41]. As extended defects such as dislocations and
antiphase boundaries could provide easy diffusion paths for Sr, the stoichiometry and
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crystallographic structure of the dislocations themselves might also be altered [42,43]. The
segregation of the Sr to the surface might also have impact on the oxygen exchange kinetics,
as an SrO termination was found to inhibit the efficient formation of oxygen vacancies
upon exposure to reducing conditions [44]. Hence, once a Sr enriched surface has been
generated by annealing under oxidizing conditions, the oxygen exchange could only allow
for an equilibration of the oxygen vacancy concentration of the crystal according to point
defect chemistry, but not for the generation of excess oxygen vacancies at the surface and
close to dislocations, as this would be needed for metallic conductivity. This scenario can
be supported by the measurements of the effusion of oxygen from the reoxidized SrTiO3
crystals, which show comparable concentrations of removed oxygen atoms to those from
virgin crystals, although the metallicity in the surface region cannot be generated [45]. This
could indicate that the galvanic connections of the metallic filaments formed close to the
dislocation cores have been disrupted by an insulating fragment with SrO enrichment.

5. Conclusions

In summary, we have shown that one and the same SrTiO3 sample can be transformed
into either a state associated with metallic behavior or to a state of semiconducting behavior
that can be described by point defect chemistry through exposure to reducing conditions.
The difference between these two results is a high temperature oxidation step, which must
be performed beforehand in order to attain the semiconducting properties. Otherwise,
metallic surface conductivity arises. We have discussed the fact that changes in the chemical
composition in the dislocation-rich surface layer may irreversibly modify the sample, such
that once oxidized, the sample can no longer be brought into the metallic state. Hence,
the question of whether reduced SrTiO3 would behave as a metal or semiconductor can
only be answered if the redox history of the sample is known. This offers opportunities
for designing the electronic properties of solid oxides by a well-thought-out sequence of
annealing steps in oxidizing and reducing atmospheres.
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