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Abstract: The propagation properties of waves in finite Timoshenko locally resonant (LR) beams
resting on forced vibrations and periodically attached two-degree-of-freedom force-type resonators
are studied by the wave-based analysis approach. By calculating the motion equations of the beam,
the transmission and reflection matrices of waves at the resonator attached point are first derived,
and the forced vibration response of the finite periodic beam is deduced by the wave-based approach.
Several examples are also analyzed by the finite element method to verify the high accuracy of
the developed wave-based analysis approach. Numerical results show that wider low-frequency
band-gaps exist in this type of LR beams. It was also found that the resonator masses and spring
stiffnesses caused different effects on the band-gap properties of the combined LR beam. The desired
band-gap widths of the LR beam can be tuned by adjusting the mass blocks and spring stiffness in
the resonators based on the results.

Keywords: Timoshenko LR beams; wave-based analysis approach; two-degree-of-freedom force-type
resonators; low-frequency band-gaps

1. Introduction

The propagation of acoustic and elastic waves in periodic structures, known as
phononic crystals (PCs) and acoustics/elastic metamaterials (AMs/EMs) [1,2], has at-
tracted growing interest in recent years. This structure can be designed and manufactured
to cease the propagation of flexural waves in specific frequency bounds, known as band-
gaps. This property allows for potential applications as acoustic or vibration devices [3–9].
Recently, the propagation of flexural waves along AMs/EMs has been studied by many
researchers [10–13]. Among them, as a continuous–discrete structure, LR beams can ef-
fectively achieve vibration attenuation, where resonators are one or several spring-mass
systems coupled with a continuous Euler or Timoshenko beam, with several potential
applications in mechanical and structural engineering [14,15].

LR beams are often regarded as infinite systems. The existing analysis methods of the
band-gap properties of LR beams mainly concern the transfer matrix method (TMM) [16,17],
spectral element method [18], and finite element method (FEM) [19,20]. Yu et al. ana-
lyzed the low-frequency flexural wave band-gaps of Euler–Bernoulli and Timoshenko
beams [11,12]; the dispersive relation of flexural waves was derived by using the TMM
and the frequency response function (FRF) of a finite periodic system was calculated by the
FEM. Liu and Hussein [21] improved the TMM to examine the trend of the frequency band
structure of an LR beam modified by the spring constant or mass of local resonators, and
the transition criterion was established by observing the transition between LR and Bragg
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band-gaps. Liang [22] proposed an improved differential quadrature method to obtain the
band-gap properties of a Euler–Bernoulli LR beam with spring-mass resonators. On the
basis of these methods, various infinite periodic structures of LR beams have been con-
structed and studied for their band-gap properties theoretically and experimentally [23,24].
However, the boundary conditions are lacking in the analysis of infinite structures, and the
engineering structures cannot be infinite. Thus, the analysis of the band-gap properties
of finite structures plays an important part in real engineering applications. The FEM is
the most widely applied method in vibration analysis of the finite LR beams [19,20,25].
Although the FEM can accurately evaluate the band-gap properties of various dimen-
sions and shapes of LR beams, their time consumption and commercially expensive prices
seriously limit wider use.

In recent years, many researchers have become more and more interested in a wave-
based vibration analysis approach for finite LR beams. By using the availability of trans-
mission, reflection, and transmission matrices, Mei and Mace [26] first derived the trans-
mission and reflection matrices for different discontinuities on Timoshenko beams. Thus,
the wave-based vibration analysis approach became more systematic and simple. Then,
the wave-based vibration analysis approach was developed for the vibration analysis of
LR beams carried out with periodic uncoupled force-moment resonators [27]. The wave-
based vibration analysis approach can not only realize the complex vibration analysis of
distributed structures, but is also efficient for combined distributed and discrete systems,
offering benchmarks for numerical methods [28,29].

In this study, for finite Timoshenko LR beams combined with periodic coupled 2-
DOF spring-mass systems, a wave-based vibration analysis approach is developed for
forced vibration analysis. The transmission and reflection matrices at the 2-DOF force-
type resonator attached point are first derived and assembled as a module with MATLAB
software to be used for the calculations of forced response and band-gap properties of
the LR beam. Here, the module can be called and modified easily by modeling the
LR structure, which significantly simplifies the design work for LR structures. Several
examples of analysis show that the proposed method is an efficient and accurate vibration
analysis approach for finite periodical LR beams, and can be used as a paradigm. Finally,
with the vibration analysis of the LR beam suspended with different resonators using the
developed wave-based vibration analysis approach, we also analyzed how the mass block
value and the spring stiffness of resonator influence the band-gap properties of the finite
LR beam.

This paper is organized as follows: In Section 2, the equations of motion and wave
propagation are presented. By considering the applied forces caused by the resonators
when injecting waves into the host beam, the relationship between the propagation and
reflection of the bending wave components at the 2-DOF force-type resonator attached
point are obtained. In Section 3, the developed wave approach is applied for forced
vibration analysis of an LR beam suspended periodically with eight 2-DOF force-type
resonators. The calculation accuracy of the developed wave-based vibration analysis
approach is verified by several numerical examples in Section 4 and the effects of mass and
spring stiffness of the resonator on the band-gap properties of finite LR beams are studied
in detail. Conclusions are drawn in Section 5.

Notation

The symbols used in this paper are listed in Table 1, and Table 2 summarizes the key
abbreviations commonly used in this paper.
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Table 1. Notations and definitions.

Notation Definition

ρ Mass density
E Young’s modulus
G Shear modulus
A Cross-sectional area
I Area moment of inertia
κ Shear coefficient
k Spring stiffness
L Lattice constant
w Transverse deflection
u Longitudinal deflection
ψ Total bending
ω Frequency
m Resonator mass

Table 2. List of key acronyms used in this paper.

Acronym Expansion

LR Locally resonant
AMs Acoustics metamaterials
EMs Elastic metamaterials
TMM Transfer matrix method
FEM Finite element method
FRF Frequency response function
LR Locally resonant

2. Wave-Based Analysis Approach
2.1. Overview

In accordance with Ref. [30], the equations of motion governing bending, rotational,
and longitudinal vibration for Timoshenko beams are:

GAκ

(
∂ψ(x, t)

∂x
− ∂2w(x, t)

∂x2

)
+ ρA

∂2w(x, t)
∂t2 = q(x, t) (1)

EI
∂2ψ(x, t)

∂x2 + GAκ

(
∂w(x, t)

∂x
− ψ(x, t)

)
− ρI

∂2ψ(x, t)
∂t2 = 0 (2)

ρA
∂2u(x, t)

∂t2 − EA
∂2u(x, t)

∂x2 = p(x, t) (3)

where x represents the position along the beam’s neutral axis, t is time, w(x, t) is the
transverse deflection, and u(x, t) is the longitudinal deflection. ψ(x, t) denotes the total
bending cross-sectional rotational angle, and ∂w(x,t)

∂x is the slope of the centerline of the

beam. ∂w(x,t)
∂x − ψ(x, t) is the shear angle. p(x, t) and q(x, t) are the applied longitudinal

and transverse forces on per unit length, respectively. Material properties are as follows:
mass density ρ, Young’s modulus E, and shear modulus G. Geometrical properties are:
cross-sectional area A, area moment of inertia I, and shear coefficient κ, respectively.

The expressions of shear force V(x, t), bending moment M(x, t), and longitudinal
force F(x, t), respectively, are:

V(x, t) = GAκ

(
∂w(x, t)

∂x
− ψ(x, t)

)
(4)

M(x, t) = EI
∂ψ(x, t)

∂x
(5)
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F(x, t) = EA
∂u(x, t)

∂x
(6)

We consider the absence of loading and the suppression of time dependence eiωt; the
solutions to the free wave propagation Equations (1)–(3) are expressed as:

w(x, t) = a+1 e−ik1x + a+2 ek2x + a−1 eik1x + a−2 ek2x (7)

ψ(x, t) = −iPa+1 e−ik1x − Na+2 e−k2x + iPa−1 eik1x + Na−2 ek2x (8)

u(x, t) = c+e−ik3x + c−eik3x (9)

where a1, a2, c are the amplitude of the propagating flexural wave, the near-field flex-
ural wave, and the propagating longitudinal wave, respectively. The superscripts + or
− represent the forward- or backward-propagating waves. k1, k2, k3 denote the three
wavenumbers. iP and N relate the rotational solution to the transverse displacement
solution as:

P = k1

(
1 − ω2

k2
1C2

s

)
, N = k2

(
1 +

ω2

k2
2C2

s

)
(10)

The relations of wavenumber–frequency dispersion are obtained as:

k1 =

√√√√1
2

[(
1

Cs

)2
+

(
Cr

Cb

)2
]

ω2 +

√(
ω

Cb

)2
+

1
4
[

(
1

Cs

)2
−
(

Cr

Cb

)2
]2ω4 (11)

k2 =

√√√√−1
2

[(
1

Cs

)2
+

(
Cr

Cb

)2
]

ω2 +

√(
ω

Cb

)2
+

1
4
[

(
1

Cs

)2
−
(

Cr

Cb

)2
]2ω4 (12)

k3 =

√
E
ρ

ω2 (13)

where the wave speeds for bending, shear and rotation are expressed as:

Cs =

√
GAκ

ρA
, Cb =

√
EI
ρA

, Cr =

√
ρI
ρA

(14)

Note that, for the LR beam suspended with periodic 2-DOF force-type resonators
investigated in this paper, only bending vibrations were involved.

2.2. Propagation Matrix

Between discontinuities, Equations (7)–(9) represents the exact state of wave propaga-
tion at a single frequency in a uniform beam. Here, we consider two points—A and B—of
a beam falling between discontinuities and separated by a distance x, as shown in Figure 1.
Since only bending vibrations are involved in the LR beam, the propagation matrix can be
defined as:

b+ = f(x)a+, a− = f(x)b−. (15)

where

a+ =

[
a+1
a+2

]
, a− =

[
a−1
a−2

]
, b+ =

[
b+1
b+2

]
, b− =

[
b−1
b−2

]
(16)

a+ and a− are the wave coefficients for forward- and backward-propagating waves at
point A. b+ and b− are wave coefficients at point B.

f(x) =
[

e−ik1x 0
0 e−k2x

]
(17)
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2.3. Reflection at a Free Boundary

The boundary condition for the LR beam investigated in this paper is free–free ends.
Thus, the transverse force and bending moment must all vanish. The relationship between
the incident waves a+ and the reflected waves a− is expressed with a reflection matrix as:

a− = rfa+ (18)

where

rf =

 −Pk1(−N+k2)+ik2 N(k1−P)
Pk1(−N+k2)+ik2 N(k1−P)

2Nk2(−N+k2)
Pk1(−N+k2)+ik2 N(k1−P)

2iPk1(−P+k1)
Pk1(−N+k2)+ik2 N(k1−P)

Pk1(−N+k2)−ik2 N(k1−P)
Pk1(−N+k2)+ik2 N(k1−P)

 (19)

2.4. Applied Forces and Moments

Figure 2 depicts the waves a and b generated by the external force applied at x = 0.
Continuity and equilibrium conditions can be obtained as:

b+ − a+ = f (20)

b− − a− = −f (21)

where the vectors of the excited wave amplitudes are:

f =
[

iN
P

]
F

GAκ(k2P − k1N)
(22)
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Figure 2. Waves generated by external force.

2.5. Transmission and Reflection at the 2-DOF Force-Type Resonator Attached Point

The LR beam suspended with 2-DOF force-type resonators is depicted in Figure 3,
where m1 and m2 are the masses of the resonators, kA and kB are the stiffnesses of two linear
elastic springs, and L is the lattice constant of the periodic structure (distance between two
adjacent 2-DOF force-type resonators).
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As shown in Figure 4, the equation of motion of the resonator can be written as: −𝐹 = 𝑚 𝑤  (23)𝐹 − 𝐹 = 𝑚 𝑤  (24)

where 𝐹 =  𝑘 (𝑤 − 𝑤 ) (25)

Figure 3. A beam with periodic 2-DOF force-type resonators.

Figure 4 presents the free body diagram of a single resonator on the beam. In the
figure, wmA and wmB denote the transverse deflections of the mass blocks m1 and m2,
respectively. FA is the force caused by the spring between the mass blocks m1 and m2.
Similarly, FB is the force caused by the spring between the mass block m2 and the host
beam. w, u, and ψ are the transverse deflection, axial deflection and angular rotation of the
host beam at the point resonator attached. F is the force of the resonator applied on the host
beam. Here, for the 2-DOF force-type resonator, F = FB. Note that, the transverse deflection
w is only involved here because the 2-DOF force-type resonator applies transverse force
only to the host beam.
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As shown in Figure 4, the equation of motion of the resonator can be written as:

− FA = m1
..
wmA (23)

FA − FB = m2
..
wmB (24)

where
FA = kA(wmA − wmB) (25)

FB = kB(wmB − w) (26)
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Combining Equations (23)–(26), and considering the motion of the system is time
harmonic with frequency ω, the displacements of the mass blocks wmA and wmB can be
expressed in terms of the deflection at the attachment point w as:

wmA =
−kAkB

kAm1ω2 + kBm1ω2 + kAm2ω2 − kAkB
w (27)

wmB =
kBm1ω2 − kAkB

kAm1ω2 + kBm1ω2 + kAm2ω2 − kAkB
w (28)

Then, the forces FA and FB between the mass blocks and host beam can be obtained
from Equations (25)–(28):

FA = r1w (29)

F = FB = r2w (30)

where

r1 =
−kAkBm1ω2

kAm1ω2 + kBm1ω2 + kAm2ω2 − kAkB

r2 =
−kAkB(m1 + m2)ω

2

kAm1ω2 + kBm1ω2 + kAm2ω2 − kAkB

As in Ref. [31], the applied forces caused by the resonators can be considered as
injecting waves into the host beam. Substituting the expression of transverse force F in
Equation (30) into Equation (22), and combining Equations (7)–(9), (20), (21), one can obtain
the relations of vibration waves at the point resonator attached,[

A11 A12
A21 A22

][
a+

a−

]
+

[
B11 B12
B21 B22

][
b+

b−

]
= 0 (31)

where the coefficient matrices in Equation (31) are

A11 =

[
iNβr2 + 1 iNβr2

Pβr2 Pβr2 + 1

]

A12 =

[
iNβr2 iNβr2
Pβr2 Pβr2

]
A21 =

[
−iNβr2 −iNβr2
−Pβr2 −Pβr2

]
A22 =

[
−iNβr2 + 1 −iNβr2

−Pβr2 −Pβr2 + 1

]
B11 = B22 =

[
−1 0
0 −1

]
B12 = B21 =

[
0 0
0 0

]
β =

1
2(GAκ)(k2P − k1N)

3. Vibration Analysis with Wave-Based Approach

Figure 5 denotes a LR beam suspended periodically with eight 2-DOF force-type
resonators with the involved wave components. As shown in the figure, the resonators
are attached at points B, C, D, E, F, H, J, and K. The lattice constant of the structure is L.
Two ends of the host beam are freely supported. The external force is applied at point G
with the generated waves g+11, g−11, g+12 and g−12. The distance between point G and the
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left end of the host beam (point A) is L11, and the distance from point G to point B (the
first resonator attached point) is L12. The length from the last resonator to the right end of
the host beam (point M) is L. According to the propagation, transmission, and reflection
relations described in Section 2, the relations of waves at discontinuities of the LR beam
can be obtained as follows.

At eight resonator attachment points B, C, D, E, F, H, J, and K:[
A11 A12
A21 A22

][
b1

+

b1
−

]
+

[
B11 B12
B21 B22

][
b2

+

b2
−

]
= 0 (32)

[
A11 A12
A21 A22

][
c1

+

c1
−

]
+

[
B11 B12
B21 B22

][
c2

+

c2
−

]
= 0 (33)[

A11 A12
A21 A22

][
d1

+

d1
−

]
+

[
B11 B12
B21 B22

][
d2

+

d2
−

]
= 0 (34)[

A11 A12
A21 A22

][
e1

+

e1
−

]
+

[
B11 B12
B21 B22

][
e2

+

e2
−

]
= 0 (35)[

A11 A12
A21 A22

][
f1
+

f1
−

]
+

[
B11 B12
B21 B22

][
f2
+

f2
−

]
= 0 (36)[

A11 A12
A21 A22

][
h1

+

h1
−

]
+

[
B11 B12
B21 B22

][
h2

+

h2
−

]
= 0 (37)[

A11 A12
A21 A22

][
j1
+

j1
−

]
+

[
B11 B12
B21 B22

][
j2
+

j2
−

]
= 0 (38)[

A11 A12
A21 A22

][
k1

+

k1
−

]
+

[
B11 B12
B21 B22

][
k2

+

k2
−

]
= 0 (39)

At free support boundaries A and M:

a+ = rfa− (40)

m− = rfm+ (41)

Ten pairs of propagation relations along the beam elements are included for the LR
structure: AG, GB, BC, CD, DE, EF, FH, HJ, JK, and KM.

Along AG
g+11 = f(L11)a+, a− = f(L11)g−11 (42)

Along GB
b+1 = f(L12)g+12, g−12 = f(L12)b−1 (43)

Along BC
c+1 = f(L)b+2 , b−2 = f(L)c−1 (44)

Along CD
d+

1 = f(L)c+2 , c−2 = f(L)d−
1 (45)

Along DE
e+1 = f(L)d+

2 , d−
2 = f(L)e−1 (46)

Along EF
f+1 = f(L)e+2 , e−2 = f(L)f−1 (47)

Along FH
h+

1 = f(L)f+2 , f−2 = f(L)h−
1 (48)

Along HJ
j+1 = f(L)h+

2 , h−
2 = f(L)j−1 (49)
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Along JK
k+

1 = f(L)j+2 , j−2 = f(L)k−
1 (50)

Along KM
m+ = f(L)k+

2 , k−
2 = f(L)m− (51)

The relations between the external force and the generated wave amplitudes are:

g+12 − g+11 = q (52)

g−12 − g−11 = −q (53)

Combining Equations (32)–(51) and writing into matrix algebraic form gives:

Afzf = F (54)

where Af is an 80 × 80 coefficient matrix, zf is an 80 × 1 component vector, and F is an
80 × 1 vector holding the external transverse forces to the host beam.
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Figure 5. Wave analysis of a finite LR beam.

4. Numerical Results and Discussion

Consider the aluminum LR beam suspended with eight periodic 2-DOF force-type
resonators such as the structure in Figure 3. The parameters are: the Young’s modulus
E = 70G N/m2, the Poisson’s ratio v = 0.33, and the shear modulus [2], which is cal-
culated by G = E/2(1 + v). The mass density ρ = 2700 kg/m3. The cross-section of
the beam elements is 3 × 10−3 × 1 × 10−2 m2. The shear coefficient can be obtained from
κ = 10(1 + v)/(12 + 11v). The lattice constant is L. The loading is applied at the position
L11 = 0.01 m from the left end of the host beam, and the L12 = 0.09 m. The distance
between the measured point and the right end of the host beam is Lm = 0.01 m, and the
last resonator has a distance of L2 = 0.1 m away from the right end of the host beam.

First of all, the effect of the number of resonators on the band-gap of the LR beam is inves-
tigated with the newly developed wave-based analysis approach described above. Figure 6
shows the transmission curves of LR beams with different numbers of resonators N, in which
the resonator parameters are the same: kA = kB = 1.6384 × 104 N/m, m1 = m2 = 20.054 g, L
= 0.1 m. It is obvious that the transmittance drops inside the two band-gaps increase with an
increasing number of resonators. Moreover, the bandwidths of the two band-gaps increase
with an increasing number of resonators as well until N = 8. When the number of resonators
increases to 10, the drop in transmittance increases, while the bandwidths of the band-gaps
remain the same. Since the bandwidth of the band-gap is the most important characteristic
of the LR beam, the optimal number of resonators is N = 8, obtained from Figure 6. In this
paper, the number of resonators was chosen as eight for further investigations.
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Figure 6. The FRF of the LR beam with different number of resonators N = 3, 5, 8, 10.

Figure 7 shows the influence of the lattice constant L (location of resonators) on the band-
gaps of the LR beam. Similarly, the resonator parameters are: kA = kB = 1.6384 × 104 N/m,
m1 = m2 = 20.054 g. As shown in Figure 7, the bandwidth of the lower frequency band-gap
remains the same as the lattice constant L is increased; meanwhile, the band-gap moves to
a lower frequency range. In addition, the bandwidth and frequency range of the higher
frequency band-gap both decrease with the increase in lattice constant L.

The effect of the total mass of the eight resonators on the band structure of the LR beam
is acquired in Figure 8. The resonator parameters are: L = 0.1 m, kA = kB = 1.6384 × 104 N/m,
and m1 = m2. As expected, the bandwidths of the higher frequency band-gap increase
as the total mass of the resonators increases; meanwhile, the band-gap moves to a lower
frequency range. However, the width of the lower frequency band-gap is maintained with
the increase in total mass, while the band-gap moves to a lower frequency.

To further investigate the influences of mass blocks m1, m2 and spring stiffnesses kA,
kB of the resonator on the band-gap width of the LR beam suspended with eight periodic
2-DOF force-type resonators, the band-gap widths of the LR beam with different resonator
structures are calculated. The mass blocks m1, m2 and spring stiffnesses kA, kB of all
selected resonators are listed in Table 3. The lattice constant L = 0.1 m.
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Figure 7. The band-gap widths vary with lattice constant L.
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Figure 8. The band-gap widths vary with total mass of resonators.

Table 3. Schemes of mass distribution and spring stiffness of resonators.

Case m1 (g) m2 (g) kA (N/m) kB (N/m) Relations

Scheme 1
Case 1 2~20 20~200 8.1921 ×103 8.1921 ×103 m1/m2 = 0.1
Case 2 20~200 2~20 8.1921 ×103 8.1921 ×103 m1/m2 = 10

Scheme 2
Case 3 10 10 2000~12,000 8000~48,000 kA/kB = 0.25
Case 4 10 10 8000~48,000 2000~12,000 kA/kB = 4

With the newly developed wave-based analysis approach, the band-gap widths of all
cases are obtained and the calculation results are shown in Figures 9 and 10. It can be seen
directly from Figure 9 that the band-gap width increases with the mass of the resonator;
meanwhile, the band-gap moves to a lower frequency. The mass blocks m1 and m2 of
resonator have the opposite mass ratio in case 1 and case 2. By comparing the band-gap
properties in Figure 9a,b, it can be seen that a larger mass proportion of m2 can realize better
band-gap properties with the sum mass of resonator masses m1 and m2 unchanged. The
variation trend of band-gap width with spring stiffness is depicted in Figure 10. The two
subfigures in Figure 10 show the band-gap width increases with the spring stiffness, and
the band-gap moves to a higher frequency in the meantime. The opposite spring stiffness
ratios are selected in case 3 and case 4. Through a comparative analysis of Figure 10a,b, the
band-gap width with spring stiffness ratio kA/kB = 0.25 is much wider than the opposite
spring stiffness ratio kA/kB = 4, which shows that the larger spring stiffness kB should
be selected for a wider band-gap width. All these results show that the mass and spring
stiffness of the resonator are positively correlated with the band-gap width. It should
also be noted that when larger values for resonator mass m2 and spring stiffness kB are
selected compared to mass m1 and stiffness kA, it is easier to widen the band-gap width in
a low-frequency range.
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In order to verify the calculation accuracy of the wave-based analysis approach for
this kind of finite periodic LR beam, several sets of resonators were selected. The physical
parameters, including the first two natural frequencies of the resonators, are listed in
Table 4. The band-gap widths are calculated by the wave-based analysis approach and
FEM (ANSYS Workbench), respectively.

Table 4. Different mass and spring stiffness of resonator samples.

Resonator m1(g) m2 (g) kA (N/m) kB (N/m) Mode 1 (Hz) Mode 2 (Hz)

Resonator 1 10.027 10.027 8.1921 × 103 8.1921 × 103 88.97 232.8
Resonator 2 20.054 10.027 1.6384 × 104 8.1921 × 103 74.48 277.9
Resonator 3 10.027 20.054 8.1921 × 103 1.6384 × 104 101.7 203.5
Resonator 4 20.054 20.054 1.6384 × 104 1.6384 × 104 88.91 232.77

As shown in Table 4, the resonator samples we selected have some relations—the
values of mass block m1 and spring stiffness kA in resonator 2 are two times greater than
resonator 1, and resonator 3 has two times the mass m2 and stiffness kB than resonator 1.
For resonator 4, m1, m2, kA, and kB are all two times greater than resonator 1. As already
known from Figures 9 and 10, the band-gap width is greater with the increase in resonator
mass and spring stiffness. Here, we increase kA and kB along with m1 and m2, respectively,
to make sure the natural frequencies of the resonators are close to each other. The effect
of (a) m1 and kA, and (b) m2 and kB on the band-gaps of the LR beam is discussed in the
results later.

In the simulation, two ends of the host beam were free supported. Figure 11 depicts
one of the geometrical models for FEM simulation. The red arrow in the figure represents
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the harmonic force excitation with frequency range from 0 to 450 Hz applied on the loading
site of the host beam in the y direction. The loading site was the point with a distance
L11 = 0.01 m from the left end of the host beam. Meanwhile, the measured point was the
point with a distance Lm = 0.01 m from the right end.
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The frequency response function (FRF) of the finite LR beam suspended with different
sets of resonators, respectively, is analyzed through the newly developed wave-based
vibration analysis approach and FEM, as is shown in Figure 12. It can be seen from
the comparisons that the FRF curves of the periodic beam calculated by the wave-based
vibration analysis approach and FEM are very close to each other. The fitness of the FRF
results calculated by the two methods verifies the correctness of the wave-based analysis
method proposed to calculate the band-gap properties of the finite periodic LR beam.
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Figure 12. The FRF of the LR beam using wave-based vibration analysis approach and FEM. (a) The comparison of FRF with
resonator 1; (b) The comparison of FRF with resonator 2; (c) The comparison of FRF with resonator 3; (d) The comparison of
FRF with resonator 4.

For further insight into the propagation characteristics of the finite periodic LR beam
with different resonators, and how the mass and spring stiffness of the resonator influence
the band-gap width, the FRF curves of the LR beams with these four different sets of
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resonators are plotted in Figure 13. From Figure 13, we can find that the band-gap widths
of all cases are wider than the one associated with resonator 1, and the degree of width is
related to the mass distribution and spring stiffness of the resonators.
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In order to observe the effects of the mass distribution and spring stiffness of the
resonator on the band-gap width more accurately, the band-gap widths and boundaries of
the LR beam with different resonators are summarized in Table 5. The data in Table 5 show
that the lower boundaries of the band-gaps are all around the first two natural frequencies
of the resonators, respectively. As expected, the band-gap width broadens with the increase
in resonator mass and spring stiffness. Furthermore, the increase in (a) m1 and kA, and
(b) m2 and kB has different effects on the band-gaps. The band-gap width associated with
resonator 2 in the lower frequency range is increased by 26.8% more than the one associated
with resonator 1, which depicts that the increase in mass block m1 and kA is beneficial to
widen the band-gap width in a lower frequency range. The band-gap width associated
with resonator 3 in a higher frequency range is 3.14 times greater than the one associated
with resonator 1. This result shows that it is effective to increase the mass block m2 and
kB to widen the band-gap width in a higher frequency range. The mass blocks m1, m2
and spring stiffnesses kA, kB in resonator 4 are two times greater than in resonator 1. The
band-gap widths associated with resonator 4 increased by 40% in the lower frequency
range and 157.07% in the higher frequency range compared to resonator 1. All these results
illustrate a trend of variation in band-gap width associated with mass distribution and
spring stiffness.

Table 5. Summary of band-gap widths.

Resonator
Lower Frequency Band-Gap (Hz) Higher Frequency Band-Gap (Hz)

Region (Hz) Width Region (Hz) Width

Resonator 1 [84.35, 148.01] 63.66 [230.77, 253.06] 22.29
Resonator 2 [71.62, 151.20] 79.58 [275.34, 288.07] 12.73
Resonator 3 [97.08, 160.75] 63.67 [202.13, 272.16] 70.03
Resonator 4 [84.35, 173.48] 89.13 [227.59, 284.89] 57.30

5. Conclusions

In this paper, the wave-based vibration analysis approach was employed and de-
veloped by solving forced vibrations of a finite LR beam suspended periodically with
2-DOF force-type resonators. Considering the applied force caused by the resonator when
injecting the wave into the host beam, the reflection and transmission matrices at the 2-DOF
force-type resonator attached point were derived, and the propagation characteristics of
the Timoshenko beam periodically suspended with eight 2-DOF force-type resonators were
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analyzed. The vibration analysis procedure is only a simple assembly of the involved reflec-
tion and transmission matrices, which shows the high efficiency of the derived analytical
method in vibration analysis of finite LR beams. The band-gap properties of several exam-
ples were calculated with the developed wave-based analysis approach and FEM; good
agreements with FEM results showed the high accuracy of the analytical method. Thus,
the developed wave-based analysis approach can be used as a valuable tool in vibration
analysis of finite LR beams. In particular, the influence of mass and spring stiffness of the
resonators on band-gaps width of Timoshenko beams was investigated with different cases.
It was found that the mass and spring stiffness m1 and kA of the resonator were in charge
of the lower-frequency band-gap of the LR beam, while m2 and kB had more influence on
the higher-frequency band-gap. The results in this paper provide guidance in the design of
an LR beam for vibration attenuation in engineering practice.
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