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Abstract: The objective of this study was to develop a micromechanical approach for determining the
Mie–Grüneisen EOS parameters of iron under the Hugoniot states. The multiscale shock technique
(MSST) coupled with molecular dynamics (MD) simulations was employed to describe the shocked
Hugoniot relation of single-crystal (SC) and nanocrystalline (NC) iron under high pressures. The
Mie–Grüneisen equation of state (EOS) parameters, the cold pressure (Pc), the cold energy (Ec), the
Grüneisen coefficient (γ), and the melting temperature (Tm) are discussed. The error between SC and
NC iron results was found to be less than 1.5%. Interestingly, the differences in Hugoniot state (PH)
and the internal energy between SC and NC iron were insignificant, which shows that the effect of
grain size (GS) under high pressures was not significant. The Pc and Ec of SC and NC iron calculated
based on the Morse potential were almost the same with those calculated based on the Born–Mayer
potential; however, those calculated based on the Born–Mayer potential were a little larger at high
pressures. In addition, several empirical and theoretical models were compared for the calculation of
γ and Tm. The Mie–Grüneisen EOSs were shown on the 3D contour space; the pressure obtained
with the Hugoniot curves as the reference was larger than that obtained with the cold curves as
the reference.

Keywords: multiscale shock technique; iron; hugoniot states; Mie–Grüneisen equation of state
parameters; molecular dynamics

1. Introduction

Iron is a major element in the Earth’s core. The properties of iron at elevated tem-
peratures and pressures are crucial to model the temperature profile and the dynamics of
the earth core, where pressures could reach up to 130–370 GPa [1,2]. Under high-pressure
conditions, the behavior of metallic materials can be described by the equation of state
(EOS) [3]. In the study on high-pressure physics, a deep understanding of EOS and
other characteristics, such as the shock Hugoniot, Grüneisen coefficient (γ), and melting
temperature (Tm), is vital [4,5].

The shock Hugoniot relations, which can be applied to calculate the EOS, have re-
ceived great attention [6,7]. Barker [8] reexamined the α-iron Hugoniot at around 13 GPa.
The results showed that the Hugoniot α-phase iron was quite normal under 13 GPa, and
there was no indication of an early phase transition to ε-iron. Thomas et al. [9] investigated
the shock Hugoniot of α-iron under 10 GPa through low-velocity symmetric impact experi-
ments. The results provided reliable data and fit for α-iron under low-stress conditions
below 10 GPa. Above 13 GPa, a solid–solid phase (α–ε) transition will occur in iron [10].
Brown et al. [11] collected the shock Hugoniot data of iron (<0.3% carbon) in Los Alamos
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from about 39 to 442 GPa, which were obtained using explosive driven shock and a two-
stage light-gas gun system. Zaretsky [12] studied the shock response of polycrystalline iron
using the planar impact experiment method and determined the borders of stability of iron
α- and γ-phases. Liu et al. [13] investigated the crystal orientation effect on the phase tran-
sition stress of single iron under shock compression; the results show that the orientation
effect on the phase transition stresses of single crystal iron is not obvious. Sjostrom and
Crockett [14] conducted quantum molecular dynamics simulation to investigate the shock
Hugoniot and equation of state of warm dense iron; the shock Hugoniot of up to 20 TPa
agrees with the experimental results. Kadau et al. [15,16] investigated the shock-induced
phase transformations in single-crystal (SC) and polycrystalline iron using nonequilibrium
molecular dynamics (NEMD) simulations. The dynamics of shock-induced transformations
were discussed, and the Hugoniot data of SC and polycrystalline iron under pressures up
to 300 GPa were obtained.

The Mie–Grüneisen EOS, which relates the pressure (P), specific volume (V), and
internal energy (E), is widely used to characterize the behavior of metal materials in high-
pressure physics [17–23]. In the study by Heuzé [24], the general P(V, E) Mie–Grüneisen
form was extended to a complete S(V, E) form, which could provide all of the thermody-
namic properties. Zhang et al. [25] proposed a cold energy mixture theory in which the
Mie–Grüneisen EOS is calculated from the cold curves and Hugoniot curves, and the au-
thors also examined γ. In the Mie–Grüneisen EOS, γ plays an important role, as it can clarify
the melting of solids at extreme conditions [26]. There are three models for characterizing
the Grüneisen coefficient γ, the Slater model [27], the Dugdale–MacDonald model [28],
and the free-volume model [29]. In early 1963, Vashchenko and Zubarev [29] proposed the
idea of writing a unified equation for the three models. Based on this, Al’tshuler [30] gives
a unified expression of the Grüneisen coefficient γ. Cui and Yu [31] proposed a model to
calculate γ at high temperatures. The model agrees well with the experimental data of iron
in a wide range of pressures. Sha and Cohen [32] used first-principle calculations to study
the γ of bcc iron under pressures up to 40 GPa and temperature of 2000 K. The calculated
γ showed good agreement with the experiments, and the variation of γ with temperature
was remarkable, but the variation with pressure was moderate. Li et al. [33] calculated the
γ of iron in the pressure range of 90–160 GPa based on the Hugoniot data obtained by plate
impact experiments. The results show that γ0·ρ0 = γ·ρ = const in the pressure range.

Shock-induced melting is an important phenomenon for studying the solid–liquid
phase transition and the nature of material melting at extreme conditions, and the melting
temperature Tm is related to γ0. Based on the Lindemann melting criterion and the volume
dependence of the Gruneisen coefficient γ, Yang et al. [5] investigated the melting character-
istics of single and polycrystalline Al. Errandonea [34] used a laser-heated diamond-anvil
cell to study the melting characteristics of Cu, Ni, Pd, and Pt in high-pressure condi-
tions; it was shown that Simon equations could be used to describe the melting curves.
Anzellini et al. [35] conducted static laser-heated diamond anvil cell experiments to inves-
tigate the melting point of iron under pressures up to 200 GPa. The results indicated that
the temperature of iron at the inner core boundary was 6230 ± 500 K. Bouchet et al. [36]
calculated the melting curve, and EOS of hcp and bcc iron under pressures up to 1500 GPa;
the melting temperature was 11,000 K at the highest pressure.

MD simulation has become an important research method in high-pressure physics.
For example, the NEMD method [37], equilibrium molecular dynamics (EMD) method, [38]
and first-principle method [39] have been successfully applied to study the shock Hugoniot,
γ, and Tm. The time scale and model size in NEMD and EMD simulations are restricted
by computing resources; as the time scale and model size increase, the computational
time will significantly increase. The first-principle method can fundamentally calculate
the molecular structure and material properties, but the model size is too small in the
shockwave propagation simulation. To solve the computational time and model size
shortcomings in the above methods, Reed et al. [40] proposed a multiscale simulation
method, called the multiscale shock technique (MSST), to study the shockwave propagation
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in materials. Compared with the above methods, the MSST method can efficiently save
computational time and guarantee simulation accuracy with an acceptable model size of
the MD system [41,42]. Thus, in the present study, the MSST method is applied to obtain
the shock Hugoniot data in SC and nanocrystalline (NC) iron.

In the literature [3,9,12,13,15,16], there are relatively few studies on the comparison
between the shock Hugoniots, and EOS of SC and polycrystalline iron. The EOS, shock
Hugoniot, and Tm are significant physical properties that must be examined to study the
behavior of metal materials under high-pressure conditions. There are two issues involved
in the relation between shock Hugoniots and EOS: one regards obtaining the EOS based on
the shock Hugoniots, and the other concerns the determination of the shock Hugoniots
based on the EOS. In addition, the Grüneisen parameter and melting temperature can be
calculated from the shock Hugoniot data. The investigation path of this work firstly utilizes
MD simulation to obtain the shock Hugoniots of SC and NC iron; thus, the Hugoniot curve
can be obtained. Therefore, based on the Hugoniot data, γ and Tm can be determined.
Finally, the EOS of SC and NC iron can be presented.

2. Methodology

2.1. Hugoniot Pressure (PH) and Internal Energy (EH)

The Hugoniot relation can be expressed by three conservation equations: the mass
equation, the momentum equation, and the energy equation:

ρ
(
us − up

)
= ρ0us (1)

PH − P0 = ρ0usup (2)

EH − E0 =
1
2
(PH + P0)(V0 −V) (3)

where ρ, us, up, PH, EH, and V (=1/ρ) are the density, shockwave velocity, particle velocity,
pressure, and internal energy per unit mass and specific volume of the shocked material,
respectively. The shock wave velocity in the MD simulation was set to 6–11 km/s, and the
particle velocity under different loading conditions was obtained by varying the loading
velocity. The subscript “0” denotes the qualities in the initial state without shock, and “H”
represents the quantities in the Hugoniot state. For example, PH represents the pressure in
the Hugoniot state.

It has been found that under a wide range of pressure, the relationship between the
shockwave velocity us and the particle velocity up is approximately linear [11]:

us = C0 + λup (4)

where C0 and λ are the volume sound speed at zero pressure and the fitting parameter,
respectively. From MD simulation results, C0 and λ of SC and NC iron can be determined.
Once C0 and λ is determined, it can be used to calculate the Hugoniot curve PH(V) and the
internal energy EH(V).

According to Equations (1)–(4), when P0 = 0, the Hugoniot curve PH(V) and the
internal energy EH(V) can be derived:

PH(V) =
ρ0C2

0(1−V/V0)

[1− λ(1−V/V0)]
2 (5)

EH = E0 +
1
2

PH(V0 −V) =
∫ T0

0
cvdT +

1
2

PH(V0 −V) (6)

where cv and T0 are the specific heat at constant volume and the initial temperature,
respectively. If the EH is much larger than E0, E0 can usually be ignored.
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2.2. Cold Pressure (Pc) and Cold Energy (Ec)

From the Hugoniot relations at room temperature (usually 300 K), V0K, ρ0K, C′0, and
λ′ can be obtained as follows [43]:

V0K = V0(1− αvT0) (7)

ρ0K =
ρ0

1− αvT
(8)

C′0
2
= C2

0
(1− F)2

(1− Fλ)3 [1− F · γ(V0) + Fλ] (9)

λ′ = λ

(
C0

C′0

)2 (1− F)3

(1− Fλ)4

[(
1 +

Fλ

2

)(
1− Fγ(V0)

2

)
− Fγ2(V0)

4λ
(1− Fλ)

]
(10)

F =
∫ 300

0
αv(T)dT (11)

where γ(V0) is the Grüneisen coefficient at room temperature (usually 300 K); αv(T) is the
volume expansion coefficient, which is approximately constant from 0 K to 300 K; and C′0,
and λ′ are parameters of us and up relations at 0 K.

The Born–Mayer [44] and Morse [45] potentials are usually applied to describe the
atomic forces at 0 K; thus, the cold pressure Pc and cold energy Ec can be expressed
as follows:

Pc−BM = Qδ2/3
{

exp
[
q
(

1− δ−1/3
)]
− δ2/3

}
(12)

Ec−BM =
3Q
ρ0K

{
1
q
· exp

[
q
(

1− δ−1/3
)]
− δ1/3 −

(
1
q
− 1
)}

(13)

Pc−M = Aδ2/3
[
e2B(1−δ−1/3) − eB(1−δ−1/3)

]
(14)

Ec−M =
3A

2ρ0KB

[
eB(1−δ−1/3) − 1

]2
(15)

where Q, q, A, and B are material constants; δ = V0K/V; and ρ0K is the material density at 0.
At P = 0 and T = 0, we can assume that the first-order and second-order derivatives of

PH, isentropic Ps, and Pc are almost equal [5,46]. Thus, we have:(
∂PH
∂V

)
V0K

=

(
∂Ps

∂V

)
V0K

≈
(

∂Pc

∂V

)
V0K

(16)

(
∂2PH

∂V2

)
V0K

=

(
∂2Ps

∂V2

)
V0K

≈
(

∂2Pc

∂V2

)
V0K

(17)

With the determined C0 and λ from MD simulations, and according to Equations (5) and (10)–(15),
Q, q, A, and B can be calculated as follows:

Q =
3C′0

2
ρ0K

q− 2
(18)

q = 6λ′ − 3 +
√

3
(

12λ′2 − 20λ′ + 9
)

(19)

A =
3ρ0KC′0

2

4λ′ − 2
(20)

B = 4λ′ − 2 (21)
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2.3. Grüneisen Coefficient γ

The Grüneisen coefficient γ shows a dependence of volume and can be expressed as
follows [30]:

γ(V) =
t− 2

3
− V

2

d2
[

Pc(V)V2t/3
]
/dV2

d
[
Pc(V)V2t/3

]
/dV

(22)

where t is used to represent three models for characterizing γ. When t = 0, Equation (23)
represents the Slater model [27] γs(V); t = 1 represents the Dugdale–MacDonald model [28]
γDM(V); and t = 2 represents the free-volume model [29] γf(V).

At P = 0 and V = V0, Equation (22) approximately satisfies the isentropic Ps(V), and,
consequently, Equation (22) can be expressed as follows:

γs(V0) = −
t + 2

3
− V0

2
P′′s (V0)

P′s(V0)
(23)

When t is equal to 0, 1, and 2:

γs(V0)t=0 = −2
3
− V0

2
P′′s (V0)

P′s(V0)
(24)

γDM(V0)t=1 = −1− V0

2
P′′s (V0)

P′s(V0)
(25)

γ f (V0)t=2 = −4
3
− V0

2
P′′s (V0)

P′s(V0)
(26)

When P = 0 and V = V0, the first-order and second-order derivatives of Ps(V) and
PH(V) are identical. In addition, P′H(V0) and P′′H(V0) can be derived from PH obtained via
MD simulations or experiments; therefore, we have:

P′s(V0) = P′H(V0) = −
(

C0

V0

)2
(27)

P′′s (V0) = P′′H(V0) = 4

(
C2

0λ

V3
0

)
(28)

P′′s (V0)

P′s(V0)
=

P′′H(V0)

P′H(V0)
= −4λ

V0
(29)

Substituting Equations (27)–(29) into Equation (23) yields

γs(V0) = 2λ− 2
3

(30)

γDM(V0) = 2λ− 1 (31)

γ f (V0) = 2λ− 4
3

(32)

γs(V0) = γDM(V0) +
1
3
= γ f (V0) +

2
3

(33)

As we have determined λ from MD simulations, the value of Equations (30)–(32)
can be obtained. From previous work, the volume dependence of γ can be commonly
expressed by the following simpler empirical formulas [5,47–49]:

γ(V) = γ0
V
V0

(34)
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γ(V) =
2
3
+

(
γ0 −

2
3

)
V
V0

(35)

γ(V) =
2
3
+

(
γ0 −

2
3

)(
V
V0

)1.18
(36)

γ(V) = 0.67 + (γ0 − 0.67)
(

V
V0

)1.46
(37)

γ(V) =
1
2
+ 0.86

(
V
V0

)1/3
+ 0.25

(
V
V0

)4.5
(38)

2.4. Melting Temperature (Tm)

In high-pressure physics, the melting temperature Tm(V) is a significant material
characteristic. The Lindemann melting criterion is given by [50]:

dlnTm(V)

dlnV
= −2

3
+ 2γ(V) (39)

According to Equation (39), Equations (40)–(44) are deduced as:

Tm(V) = Tm0

(
V
V0

)2/3
exp

[
2γ0

(
1− V

V0

)]
(40)

Tm(V) = Tm0

(
V
V0

)−2/3
exp

[
2(γ0 − 2/3)

(
1− V

V0

)]
(41)

Tm(V) = Tm0

(
V
V0

)−2/3
exp

{
2(γ0 − 2/3)

1.18

[
1−

(
V
V0

)1.18
]}

(42)

Tm(V) = Tm0

(
V
V0

)−0.67
exp

{
2(γ0 − 0.9)

1.46

[
1−

(
V
V0

)1.46
]}

(43)

Tm(V) = Tm0

(
V
V0

)−1/3
exp

{
6× 0.86×

[
1−

(
V
V0

)1/3
]
+

2× 0.25
4.5

[
1−

(
V
V0

)4.5
]}

(44)

where γ0 is determined from Equations (30)–(32), Tm0 is the melting temperature at 0 GPa,
and is 1811 K for iron [51].

2.5. Mie–Grüneisen Equation of State

The Mie–Grüneisen EOS is usually applied to describe the behavior of metal materials
under extreme shock compression, and the form of Mie–Grüneisen EOS can be expressed
as follows [24]:

P− Pc =
γ(V)

V
(E− Ec) (45)

P− PH =
γ(V)

V
(E− EH) (46)

From the calculation results of PH, EH, Pc, Ec, and γ(V), the Mie–Grüneisen EOS could
be obtained.

3. MD Simulation

The embedded-atom method (EAM) potential presented by Mendelev et al. [52]
was used to conduct the MD simulation in this study. Three simulation models were
established to investigate the dynamic characteristics of SC and NC iron under intensive
shock conditions. The established models were based on bcc iron, and the shockwave
direction is [001] in SC iron. Figure 1 shows the three simulation models. The NC models
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were built on the Voronoi algorithm in Atomsk [53]. The periodical boundary conditions
were set in all directions for both SC and NC iron. To balance the calculation time and model
size, the simulation system of SC iron was about 8.4 × 8.4 × 8.4 nm3 with 54,000 atoms.
The model sizes of NC iron were about 10.9 × 10.9 × 10.9 nm3 with 111,195 atoms and
54.7 × 54.7 × 54.7 nm3 with 8,268,098 atoms. There were two grain sizes (GSs): 5 nm and
25 nm, which were chosen to study the GS effect in the shocking behavior.

Crystals 2021, 11, x FOR PEER REVIEW 7 of 17 
 

 

− = ( ) ( − ) (46)

From the calculation results of PH, EH, Pc, Ec, and γ(V), the Mie–Grüneisen EOS could 
be obtained. 

3. MD Simulation 
The embedded-atom method (EAM) potential presented by Mendelev et al. [52] was 

used to conduct the MD simulation in this study. Three simulation models were estab-
lished to investigate the dynamic characteristics of SC and NC iron under intensive shock 
conditions. The established models were based on bcc iron, and the shockwave direction 
is [001] in SC iron. Figure 1 shows the three simulation models. The NC models were built 
on the Voronoi algorithm in Atomsk [53]. The periodical boundary conditions were set in 
all directions for both SC and NC iron. To balance the calculation time and model size, the 
simulation system of SC iron was about 8.4 × 8.4 × 8.4 nm3 with 54,000 atoms. The model 
sizes of NC iron were about 10.9 × 10.9 × 10.9 nm3 with 111,195 atoms and 54.7 × 54.7 × 
54.7 nm3 with 8,268,098 atoms. There were two grain sizes (GSs): 5 nm and 25 nm, which 
were chosen to study the GS effect in the shocking behavior. 

First, the simulation system was equilibrated at 300 K for 10 ps in the NPT ensemble 
to ensure that the system reached a steady state in order to eliminate the residual stress. 
Then, the shockwave was examined using the MSST method under velocities of 6–11 
km/s. Moreover, the computation time should be long enough to guarantee that the shock-
wave in the system reaches a steady state after the shock. Thus, the statistical results, such 
as the particle velocity, pressure, and temperature, could be obtained from the MD results. 

   

Figure 1. Configurations of (a) SC iron and (b) NC iron with GS of 5 nm and (c) NC iron with GS of 25 nm. Separate grains 
are distinguished by different colors. 

4. Results and Discussion 
4.1. Shock Hugoniot Pressure and Internal Energy 

According to the experimental Hugoniot data from Brown et al. [11], the shock ve-
locity us ranged from 5.3 to 11.5 km/s at about 40–440 GPa. To ensure the stability of the 
MD simulation and evaluate the model validity, the velocity of us was set in the range of 
6 to 11 km/s in this study. Figure 2 shows the relationship between us and up for SC iron 
obtained via the MSST method; there is a good agreement between the MD simulation 
results and experimental data. Moreover, the linear relationship between us and up is in 
excellent accordance with the data in Figure 2. The linear relationship is also consistent 
with the study by Prieto and Renero [54], which indicates that the relationship between us 
and up of iron below 5 megabars can be described by a linear relationship. For SC iron, the 
relationship between us and up is given as us = 4.071 + 1.538up. The relationship between us 
and up from the experimental data is expressed as us = 3.935 + 1.578up. The relative errors 
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are distinguished by different colors.

First, the simulation system was equilibrated at 300 K for 10 ps in the NPT ensemble
to ensure that the system reached a steady state in order to eliminate the residual stress.
Then, the shockwave was examined using the MSST method under velocities of 6–11 km/s.
Moreover, the computation time should be long enough to guarantee that the shockwave
in the system reaches a steady state after the shock. Thus, the statistical results, such as the
particle velocity, pressure, and temperature, could be obtained from the MD results.

4. Results and Discussion

4.1. Shock Hugoniot Pressure and Internal Energy

According to the experimental Hugoniot data from Brown et al. [11], the shock velocity
us ranged from 5.3 to 11.5 km/s at about 40–440 GPa. To ensure the stability of the MD
simulation and evaluate the model validity, the velocity of us was set in the range of
6 to 11 km/s in this study. Figure 2 shows the relationship between us and up for SC iron
obtained via the MSST method; there is a good agreement between the MD simulation
results and experimental data. Moreover, the linear relationship between us and up is in
excellent accordance with the data in Figure 2. The linear relationship is also consistent
with the study by Prieto and Renero [54], which indicates that the relationship between us
and up of iron below 5 megabars can be described by a linear relationship. For SC iron, the
relationship between us and up is given as us = 4.071 + 1.538up. The relationship between
us and up from the experimental data is expressed as us = 3.935 + 1.578up. The relative
errors of C0 and λ obtained from the MSST method and experiment were 3.3% and 2.6%,
respectively, which proves the accuracy of the MD simulation.

To study the GS effect on the us–up relationship for NC iron, MD simulation was con-
ducted at the same shock velocity as that of SC iron. The results are shown in Figure 3. The
results of NC iron with different GS values are close. These discrete data are characterized
by us = 4.011 + 1.552up and us = 4.01 + 1.553up for GS 5 nm and GS 25 nm, respectively.
The relative error of C0 and λ between GS 5 nm and GS 25 nm was less than 0.1%, and
compared with the SC iron data, C0 and λ were approximately equal to an error of <1.5%.
The results indicate that the GS effect had little influence on the linear relationship between
us and up for SC and NC iron, and it could be neglected in the case of NC iron.
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Figure 2. The relation between us and up for SC at 300 K (the linear fitting curve is applied to the MD
results; experimental data are shown for comparison).
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Figure 3. The relationship between us and up for NC iron at 300 K: (a) NC iron with GS 5 nm (b) NC iron with GS 25 nm
(the linear fitting curve is applied to the MD results; experimental data are shown for comparison).

The shock Hugoniot data obtained from MD simulations of SC and NC iron are
listed in Table 1. As can be seen in Table 1, the particle velocity is high in NC iron below
a shock velocity of 8.0 km/s, with a maximum difference of 2.5% between SC and NC
iron. However, as the shock speed continues to grow, the difference in particle velocity
becomes very small. At 11 km/s, the maximum shock pressure in SC and NC iron is
387.98–389.62 GPa. From [11], it can be found that the shock pressure is 361.8 GPa at a
shock velocity of 10.7 km/s and 400.7 GPa at a shock velocity of 11.11 km/s. The MD results
are within the range of the experimental data, which shows the accuracy of the simulation.

A detailed comparison of MD simulation results and experimental data is presented
in Table 2. From Table 2, it can be observed that the volume sound speed C0 in SC iron is
higher than that in NC iron; however, the fitting parameter λ in SC iron is lower than that in
NC iron, and the same characteristics are also observed in SC and NC Al [5]. The maximum
relative error of C0 between the experiment and SC iron is 3.34%, and the maximum relative
error of NC iron is 1.89%. The difference of C0 between SC and NC iron is ~1.5%, which
is less than the difference with experiment data. The same characteristics in λ can be
observed; the maximum relative error between the experiment and SC iron is 2.60%, and
the maximum relative error of NC iron is 1.67%. The difference of λ between SC and NC
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iron is ~0.96%. The results indicate that a shock response difference between SC and NC
iron does exist, but the difference is not very significant.

Table 1. Hugoniot data for SC and NC iron determined by MD simulations at 300 K. An initial
density of 7.85 g/cm3 is used.

Material up (km/s) us (km/s) P (GPa) ρ (g/cm3)

SC iron

1.25 6.00 60.84 9.92
1.90 7.00 102.92 10.78
2.55 8.00 158.50 11.53
3.20 9.00 224.72 12.19
3.85 10.00 301.71 12.77
4.50 11.00 389.62 13.29

NC iron (GS 5 nm)

1.27 6.00 62.36 9.98
1.92 7.00 105.82 10.82
2.57 8.00 161.41 11.56
3.21 9.00 227.10 12.21
3.85 10.00 302.92 12.78
4.50 11.00 388.85 13.29

NC iron (GS 25 nm)

1.28 6.00 62.34 9.98
1.92 7.00 105.74 10.82
2.56 8.00 161.22 11.56
3.21 9.00 226.75 12.20
3.85 10.00 302.34 12.77
4.50 11.00 387.98 13.28

Table 2. C0 and λ obtained from the linear relationship between us and up for SC and NC iron at 300 K. The initial density is
7.85 g/cm3 in both the experiment and MD simulation.

Material
Shock

Velocity
C0

(km/s) λ

Relative Error

ReferenceSC NC (GS 5 nm) NC (GS 25 nm)

C0 λ C0 λ C0 λ

Commercial iron 5.3–11.5 km/s 3.935 1.578 3.34% 2.60% 1.89% 1.67% 1.87% 1.61% [11]
SC 6–11 km/s 4.071 1.538 - - 1.49% 0.90% 1.50% 0.96% This work

NC (GS 5 nm) 6–11 km/s 4.011 1.552 1.49% 0.90% - - 0.02% 0.06% This work
NC (GS 25 nm) 6–11 km/s 4.010 1.553 1.50% 0.96% 0.02% 0.06% - - This work

Based on the linear relationship obtained for SC and NC iron, the Hugoniot curve
could be obtained using Equations (5) and (6). Figure 4 shows the Hugoniot curves of SC
and NC iron. The black circle represents the results by Brown et al. [11], and the colored
curves represent this work for SC and NC iron. Figure 4a shows that for V/V0 > 0.6, the
curves obtained through the MSST method agree well with the results of Brown et al. [11];
when V/V0 < 0.6, the curves are approximately equal to the experiment results, and the
deviation is less than 3%. Considering the insignificant error of C0 and λ for SC and NC
iron, there is no noticeable difference between the three curves in Figure 4a. As shown
in Figure 4b, the internal energies obtained in the MD simulation and experiment were
almost the same; when V0/V = 1.7, the internal energy of SC iron was smaller than that
of NC iron, and the deviation at V0/V = 1.7 was 0.5%. The results not only prove the
reliability of the linear relationship between us and up but also show the EAM potential
for iron in the MD simulation. In addition, the results signify that the MD results are
appropriate for describing the cold pressure, the cold energy, the melting temperature, and
the Mie–Grüneisen EOS.
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Figure 4. The Hugoniot curves of SC and NC iron: (a) PH curve; (b) EH curve.

4.2. Cold Pressure and Cold Energy

Based on the C0 and λ obtained from the Hugoniot data, the material constants for
calculating cold pressure and cold energy in Equations (18)–(21) could be obtained. The
values are presented in Table 3.

Table 3. Material constants for calculating cold pressure and cold energy.

Material
Constants V0 (g/cm3) C

′
0(km/s) λ′ Q (GPa) q A (GPa) B

Experiment 0.127 4.010 1.581 41.245 11.192 87.662 4.325
SC iron 0.127 4.094 1.540 46.473 10.716 97.319 4.162
NC iron 0.127 4.093 1.541 44.238 10.894 93.170 4.223

Figures 5 and 6 compare the cold pressure Pc and cold energy Ec between SC and NC
iron, with the experimental data as a reference. The solid and dashed curves represent
Pc and Ec obtained using the Born–Mayer and Morse potentials, respectively. The results
from the Born–Mayer and Morse potentials presented the same increasing trend: Pc and
Ec increased with volume compression (V0K/V), which presented a sharp increment at
higher compression.
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At V0K/V less than 1.3, the curves of Pc agree well with each other. The result shows
that the cold energies described by the Born–Mayer and Morse potentials are basically the
same in the low-compression region. When the V0K/V is above 1.3, the Pc curves gradually
deviate from each other, and the Pc curves obtained by the Born–Mayer potential gradually
become larger. The relative error of Pc was about 10% when V0K/V was 2.0. Irrespective
of the potential function used, the cold pressure curve of SC iron was above that of the
NC iron. This indicates that the cold pressure of SC iron was higher than that of NC iron,
although the difference was quite small.

Under V0K/V of less than 1.4, the cold energy curves agree well with each other, as the
cold pressures obtained by the Born–Mayer and Morse potentials in the low-compression
region are approximately equal. Under V0K/V of above 1.4, the Ec curves gradually deviate
from each other. The cold energy obtained by the Born–Mayer potential is larger than that
from the Morse potential, and the same trend was found for the cold pressure. The relative
error of Ec is about 7% when V0K/V is 2.0. Furthermore, the cold energy in the SC iron is
larger than that of the NC iron in both Born–Mayer and Morse potentials.

4.3. Grüneisen Coefficient

The material constant λ in SC and NC iron was used to calculate the γ0 of the Slater,
Dugdale–Macdonald, and free-volume models through Equations (30)–(32). Subsequently,
γ0(V) was substituted into Equations (34)–(38) to obtain γ(V), and the experimental data
were used for comparison. Figure 7 shows the results of γ(V) from different empirical and
theoretical models.

Equations (34)–(38) are commonly used empirical models for calculating γ(V) at high
pressure. From Figure 7, it can be seen that the Grüneisen coefficient γ(V) first rapidly
decreased and then slowly dropped as the V0/V increased. At high compression, the
difference between SC and NC results became smaller; this indicates that the microstructure
has little effect on γ(V) under high pressure. Equation (38) is suitable for low-compression
data, that is, V0/V up to 1.5, and is free with λ; thus, different models do not affect their
results. With Equation (38) as a reference, when V0/V = 1.0, the initial value of γ0 is
γf (V0) < γDM(V0) < γS(V0). For all three models, the γ(V) obtained by the experimental
data (solid curve) is at the top followed by that for the NC iron (dash curve), and that for the
SC iron (dot curve) is at the bottom due to the difference between the λ values. Compared
with the results from Equations (35)–(38), the results from Equation (34) (black curves)
show a more significant downward trend with the increase in V0/V. This shows that the
γ(V) calculated using Equation (34) has the maximum change rate with the increase in
V0/V. The results from Equation (35)–(38) present a similar trend in predicting γ(V).
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Figure 7. The relationship between the Grüneisen coefficient γ(V) and V0/V. (a) γ(V) calculated from
the Slate model, (b) γ(V) calculated from the Dugdale-MacDonald model, (c) γ(V) calculated from
the Free-volume model.
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Equation (38) (magenta curve) is free of λ, and it has been proven to agree well with
the experimental data under V0/V up to 1.5 [49]. The γ(V) obtained using the free-volume
model has the smallest difference under V0/V up to 1.5. When V0/V is 1.5, the γ(V)
obtained by Equation (37) (cyan curve) intersects with the magenta curve. This indicates
that Equation (27) is applicable to characterize the γ(V) of iron at higher compression
compared with other expressions. This has also been proved by Jacobs and Schmid-
Fetzer [48]. In Figure 7c, the green curve is closer to the cyan curve than other curves. The
result shows that Equation (36) (green curve) is more suitable than other expressions for
describing γ(V). The relative error of the green curve is 7.8% at V0/V = 2.0.

4.4. Melting Temperature

Based on the Grüneisen coefficient and the Lindemann law, the melting tempera-
ture Tm can be obtained. In this study, γ0 is calculated via the free-volume model with
Equation (26), and Tm is predicted by Equations (40)–(44). The relationship between Tm
and pressure is illustrated in Figure 8, together with experimental data [35,55–63] and
theoretical data [64–68].
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Figure 8. Comparison of the melting temperature of iron from present calculations with previous
studies [35,55–68].

As shown in Figure 8, the temperature rises quickly to the melting point because of
the adiabatic process under shock compression, and Tm shows an increasing trend as the
pressure increases. The results from Equations (41), (42) and (44) present a similar and
close trend; the red curve at the top corresponds to Equation (41), while the green curve
at the bottom corresponds to Equation (43), and the maximum error is 29.5% at 450 GPa.
Moreover, the melting temperature in SC iron is a little lower than that in NC iron; the
maximum error is 2.5% at 450 GPa.

At lower pressure (<100 GPa), all curves except the green one are very close; this
shows that the prediction abilities of Equations (40)–(42) and (44) in the low-compression
area are almost the same. It can be found that Tm calculated by Equations (40) and (44)
agrees well with DAC experimental data in [57], and Tm calculated by Equation (43) agrees
well with DAC experimental data in [59,60,62]. Tm calculated by Equations (41) and (42)
is little higher than that obtained from DFT calculations [64–66]. However, the difference
between the results gradually increased at higher pressure (>100 GPa). The increasing trend
indicates that in the low-compression area, the effect of γ0 on Tm is insignificant; the effect
of γ0 on Tm becomes more significant with increasing pressure. This feature shows the
opposite trend compared with the γ(V) results. In Figure 8, it can be found that the DAC
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experimental data of Anzellini et al. [35], the theoretical data obtained by MD calculations
conducted by Zhang et al. [58], and DFT calculations conducted by Alfè et al. [64–66] are
in good agreement. Thus, the orange melting curve obtained by the DAC experiment up
to ~350 GPa was chosen as the main reference in this study. The results obtained from
Equations (40)–(44) are similar to the orange line, although there are some differences in
the results. At lower pressure (<100 GPa), the black line obtained by Equation (40) is the
closest to the orange line, and the green line (Equation (43)) and purple line (Equation
(44)) slightly deviate from the orange line. This indicates that Equation (40) can be used to
approximately predict Tm under 100 GPa. In the entire pressure range, the orange line is
within the calculation result from Equation (44) at pressure less than 300 GPa; the result
obtained from Equation (44) is lower than the orange line above 300 GPa. This result shows
that the calculation results under 300 GPa can cover the experimental data, and the results
obtained at higher pressures are lower than the experimental data.

4.5. Mie–Grüneisen Equation of State

The Mie–Grüneisen EOS can be obtained from Equations (45) and (46) with the
Hugoniot curve (Equation (45)) and the cold curve (Equation (46)) as the reference curves.
The Hugoniot curve is obtained via MD simulation. Based on previous analysis, the
Grüneisen coefficient γ in this study is calculated by Equations (32) and (36). The cold
pressure and cold energy are calculated from the Born–Mayer potential. Figure 9 shows
the Mie–Grüneisen EOS of iron in 3D contour form of SC iron based on the cold pressure
and cold energy, with the Hugoniot relations as the reference.
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The Mie–Grüneisen EOS is described in the pressure–specific volume–internal energy
(P-V-E) space. In the front view, the whole Mie–Grüneisen EOS space presents a concave
surface characteristic, as shown in Figure 9. The maximum pressure of EOS calculated
from the cold curve or the Hugoniot curve as the reference will be different. The maximum
pressure when the Hugoniot relations are utilized as the reference is ~200 GPa higher than
that when the cold pressure and cold energy are the references. The results indicate that
the reference data have a certain impact on the surface characteristic and values of the
Mie–Grüneisen EOS.

5. Conclusions

In this study, a micromechanical approach for determining the Mie–Grüneisen EOS
parameters of iron under the Hugoniot states was investigated using the MSST method in
MD simulation, and the shock Hugoniot, cold curve, melting temperature, and Grüneisen
coefficient are also discussed. The simulation results show that the difference between the
linear relationships of the shock Huguenot of SC and NC iron was insignificant, and both
agree well with the experiment data. Compared with the results at GS 5 nm and 25 nm,
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the GS effect of iron was not significant at high pressures. The difference between the
Born–Mayer potential and the Morse potential in calculating the cold pressure was almost
the same as that in calculating the cold energy, but the cold pressure and cold energy in SC
iron were a little higher than those in NC iron. As the pressure increased, the Grüneisen
coefficient gradually decreased, while the melting temperature gradually increased; the
two trends were opposite. The Grüneisen coefficient γ is calculated by Equations (16c) and
(18c), which have a better performance in this study. The Mie–Grüneisen EOS presented a
concave surface characteristic in 3D contour space; the pressure with the Hugoniot curve as
the reference was higher than that with the cold curve as the reference, which indicates that
different reference curves have a certain impact on the surface characteristic and values of
Mie–Grüneisen EOS. The research results in this paper prove the feasibility of the MSST
method and provide a reference for studying the EOS of other metals under high pressures.
Materials in practical applications are very complex and contain various impurities and
defects, and both impurities and defects affect their properties. We examined pure SC iron
and perfect NC iron in this study with the MSST method. In future work, we will consider
impurities and defects to study the dynamic response characteristics of materials under
more complex conditions.

Author Contributions: Conceptualization, investigation and writing—original draft preparation,
Y.W.; methodology and software, Y.W. and X.Y.; resources, F.W. and J.D.; supervision, X.Z. and
H.C.; project administration and funding acquisition, X.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the foundation of the National Key Defense Laboratory for
Computational Physics through the project “Study on the constitutive model of metal materials with
damage effect under strong dynamic load”, grant number HXo2020-74.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The authors are grateful to Jun Chen of the Institute of Applied Physics and
Computational Mathematics Beijing for his valuable suggestions and discussions. We would like
to express our sincere appreciation to the anonymous referee for his or her valuable suggestions
and corrections.

Conflicts of Interest: The authors declare that we have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Batani, D.; Morelli, A.; Tomasini, M.; Benuzzi-Mounaix, A.; Philippe, F.; Koenig, M.; Marchet, B.; Masclet, I.; Rabec, M.;

Reverdin, C.; et al. Equation of state data for iron at pressures beyond 10 Mbar. Phys. Rev. Lett. 2002, 88, 235502. [CrossRef]
2. Hai-Jun, H.; Fu-Qian, J.; Ling-Cang, C.; Yan, B. Grüneisen Parameter along Hugoniot and Melting Temperature of ε-Iron: A

Result from Thermodynamic Calculations. Chin. Phys. Lett. 2005, 22, 836. [CrossRef]
3. Dorogokupets, P.I.; Dymshits, A.M.; Litasov, K.D.; Sokolova, T.S. Thermodynamics and Equations of State of Iron to 350 GPa and

6000 K. Sci. Rep. 2017, 7, 41863. [CrossRef]
4. Joshi, R.H.; Bhatt, N.K.; Thakore, B.Y.; Vyas, P.R.; Jani, A.R. Grüneisen parameter and equations of states for copper–High pressure

study. Comput. Condens. Matter 2018, 15, 79–84. [CrossRef]
5. Yang, X.; Zeng, X.; Pu, C.; Chen, W.; Chen, H.; Wang, F. Molecular dynamics modeling of the Hugoniot states of aluminum.

AIP Adv. 2018, 8, 105212. [CrossRef]
6. Shao, J.L.; He, A.M.; Wang, P. Atomistic simulations on the dynamic properties of shock and release melting in single crystal Al.

Comput. Mater. Sci. 2018, 151, 240–245. [CrossRef]
7. Nagayama, K. Extended Rice-Walsh equation of state for metals based on shock Hugoniot data for porous samples. J. Appl. Phys.

2017, 121, 175902. [CrossRef]
8. Barker, L.M. Alpha-phase Hugoniot of iron. J. Appl. Phys. 1975, 46, 2544–2547. [CrossRef]
9. Thomas, S.A.; Hawkins, M.C.; Matthes, M.K.; Gray, G.T., III; Hixson, R.S. Dynamic strength properties and alpha-phase shock

Hugoniot of iron and steel. J. Appl. Phys. 2018, 123, 175902. [CrossRef]

http://doi.org/10.1103/PhysRevLett.88.235502
http://doi.org/10.1088/0256-307X/22/4/016
http://doi.org/10.1038/srep41863
http://doi.org/10.1016/j.cocom.2017.11.003
http://doi.org/10.1063/1.5050426
http://doi.org/10.1016/j.commatsci.2018.04.052
http://doi.org/10.1063/1.4982883
http://doi.org/10.1063/1.321931
http://doi.org/10.1063/1.5019484


Crystals 2021, 11, 664 16 of 17

10. Kadau, K.; Germann, T.C.; Lomdahl, P.S.; Holian, B.L. Microscopic view of structural phase transitions induced by shock waves.
Science 2002, 296, 1681–1684. [CrossRef] [PubMed]

11. Brown, J.M.; Fritz, J.N.; Hixson, R.S. Hugoniot data for iron. J. Appl. Phys. 2000, 88, 5496–5498. [CrossRef]
12. Zaretsky, E.B. Shock response of iron between 143 and 1275 K. J. Appl. Phys. 2009, 106, 023510. [CrossRef]
13. Liu, X.; Mashimo, T.; Kawai, N.; Sano, T.; Zhou, X. Isotropic phase transition of single-crystal iron (Fe) under shock compression.

J. Appl. Phys. 2018, 124, 215101. [CrossRef]
14. Sjostrom, T.; Crockett, S. Quantum molecular dynamics of warm dense iron and a five-phase equation of state. Phys. Rev. E

2018, 97, 053209. [CrossRef]
15. Kadau, K.; Germann, T.C.; Lomdahl, P.S.; Holian, B.L. Atomistic simulations of shock-induced transformations and their

orientation dependence in bcc Fe single crystals. Phys. Rev. B 2005, 72, 064120. [CrossRef]
16. Kadau, K.; Germann, T.C.; Lomdahl, P.S.; Albers, R.C.; Wark, J.S.; Higginbotham, A.; Holian, B.L. Shock waves in polycrystalline

iron. Phys. Rev. Lett. 2007, 98, 135701. [CrossRef]
17. Belkheeva, R.K. Equation of state for a highly porous material. High Temp. 2015, 53, 348–357. [CrossRef]
18. Khishchenko, K.V. Equation of state of sodium for modeling of shock-wave processes at high pressures. Math. Montisnigri

2017, 40, 140–147.
19. Maevskii, K.K.; Kinelovskii, S.A. Numerical simulation of thermodynamic parameters of high-porosity copper. Tech. Phys.

2019, 64, 1090–1095. [CrossRef]
20. Hallajisany, M.; Zamani, J.; Albelda Vitoria, J. Numerical and theoretical determination of various materials Hugoniot relations

based on the equation of state in high-temperature shock loading. High Press. Res. 2019, 39, 666–690. [CrossRef]
21. Maevskii, K.K.; Kinelovskii, S.A. Modeling of High-Porosity Copper-Based Mixtures under Shock Loading. J. Appl. Mech.

Tech. Phys. 2019, 60, 612–619. [CrossRef]
22. Khishchenko, K.V. Equation of state for niobium at high pressures. Math. Montisnigri 2020, 47, 119–123. [CrossRef]
23. Gilev, S.D. Low-parametric equation of state of aluminum. High Temp. 2020, 58, 166–172. [CrossRef]
24. Heuzé, O. General form of the Mie–Grüneisen equation of state. C. R. Mec. 2012, 340, 679–687. [CrossRef]
25. Zhang, X.F.; Qiao, L.; Shi, A.S.; Zhang, J.; Guan, Z.W. A cold energy mixture theory for the equation of state in solid and porous

metal mixtures. J. Appl. Phys. 2011, 110, 013506. [CrossRef]
26. Patel, N.N.; Sunder, M. High pressure melting curve of osmium up to 35 GPa. J. Appl. Phys. 2019, 125, 055902. [CrossRef]
27. Slater, J.C. Introduction to Chemical Physics; Chapter XIII; McGraw-Hill: New York, NY, USA, 1939.
28. Dugdale, J.S.; MacDonald, D.K.C. The thermal expansion of solids. Phys. Rev. 1953, 89, 832. [CrossRef]
29. Vashchenko, V.Y.; Zubarev, V.N. Concerning the Grüneisen constant. Fiz. Tverd. Tela 1963, 5, 886–890.
30. Al’tshuler, L.V. Use of shock waves in high-pressure physics. Phys. Uspekhi 1965, 8, 52–91. [CrossRef]
31. Cui, G.; Yu, R. Volume and pressure dependence of Grüneisen parameter γ for solids at high temperatures. Phys. B Condens. Matter

2007, 390, 220–224. [CrossRef]
32. Sha, X.; Cohen, R.E. Lattice dynamics and thermodynamics of bcc iron under pressure: First-principles linear response study.

Phys. Rev. B 2006, 73, 104303. [CrossRef]
33. Xi-Jun, L.; Xian-Ming, Z.; Fan-Hou, W.; Fu-Qian, J. Restudy of Grüneisen Parameter of Iron in the Pressure Range of 90–160 GPa.

Chin. Phys. Lett. 2001, 18, 85. [CrossRef]
34. Errandonea, D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt. Phys. Rev. B 2013, 87, 054108. [CrossRef]
35. Anzellini, S.; Dewaele, A.; Mezouar, M.; Loubeyre, P.; Morard, G. Melting of iron at Earth’s inner core boundary based on fast

X-ray diffraction. Science 2013, 340, 464–466. [CrossRef]
36. Bouchet, J.; Mazevet, S.; Morard, G.; Guyot, F.; Musella, R. Ab initio equation of state of iron up to 1500 GPa. Phys. Rev. B 2013, 87, 094102.

[CrossRef]
37. Barton, M.A.; Stacey, F.D. The Grüneisen parameter at high pressure: A molecular dynamical study. Phys. Earth Planet. Inter.

1985, 39, 167–177. [CrossRef]
38. Maillet, J.B.; Mareschal, M.; Soulard, L.; Ravelo, R.; Lomdahl, P.S.; Germann, T.C.; Holian, B.L. Uniaxial Hugoniostat: A method

for atomistic simulations of shocked materials. Phys. Rev. E 2000, 63, 016121. [CrossRef]
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