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Abstract: The magnetic dipole effect for thixotropic nanofluid with heat and mass transfer, as well as
microorganism concentration past a curved stretching surface, is discussed. The flow is in a porous
medium, which describes the Darcy–Forchheimer model. Through similarity transformations, the
governing equations of the problem are transformed into non-linear ordinary differential equations,
which are then processed using an efficient and powerful method known as the homotopy analysis
method. All the embedded parameters are considered when analyzing the problem through solution.
The dipole and porosity effects reduce the velocity, while the thixotropic nanofluid parameter
increases the velocity. Through the dipole and radiation effects, the temperature is enhanced. The
nanoparticles concentration increases as the Biot number and curvature, solutal, chemical reaction
parameters increase, while it decreases with increasing Schmidt number. The microorganism motile
density decreases as the Peclet and Lewis numbers increase. Streamlines demonstrate that the
trapping on the curved stretched surface is uniform.

Keywords: magnetic dipole effect; thixotropic nanofluid; curved stretching surface; analytical solution

1. Introduction

Non-Newtonian fluid flows have already captivated the attention of researchers.
These materials are used extensively in bioengineering, geophysics, pharmaceuticals,
chemical and nuclear industries, polymer solutions, cosmetics, oil storage engineering,
paper manufacturing, and other fields. Clearly, no single constitutive relationship can
account for all non-Newtonian materials based on behavioral shear stresses. It is distinct
from Newtonian and creeping viscous fluids [1]. As a result, several non-Newtonian fluid
models have been proposed [2–5]. One such model is the thixotropic fluid model. The
shear thinning fluid differs from the thixotropic fluid in that the shear thinning fluid has
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less viscosity and its shear rate increases over time, whereas the viscosity of a thixotropic
fluid decreases with a constant shear rate. A few studies on thixotropic and non-Newtonian
fluid models can be found in the references [6–21].

The suitability of the flow of porous media for a wide range of practical industrial
applications, including crude oil extraction, food storage, fossil fuels, geothermal systems,
porous insulation, packaged beds, petroleum technology and waste disposal, etc., has at-
tracted considerable interest among scientists. Various models, such as Darcy–Forchheimer
and Darcy and Brinkman, have been introduced in the literature. Researchers are inter-
ested in studying porous media models because of its importance. These models may be
established in the light of Darcy’s law, where the pressure gradient is directly related to the
average velocity of the volume. Darcy’s formula may be slow and porous with no effect
of inertia, porosity variable, solid boundary or thermal dispersion. To achieve the desired
accurate results, the presence of non-Darcian effects is crucial for the porous media analysis
as discussed by Nield and Bejan [22]. These effects are presented by Forchheimer [23], with
response of the square velocity term to the Darcian velocity term. Subsequently, Morris [24]
coined the term “Forchheimer”, applicable to the high Reynolds number. Kishan and
Maripala [25] investigated the effects of viscous dissipation and thermophoresis analysis
on the mixed convection in Darcy–Forchheimer MHD fluid via porous saturated media.
Rauf et al. [26] investigated the thermal radiation viscous fluid flow in Darcy–Forchheimer
porous space over a curved moving surface. Jagadha [27] studied the Darcy–Forchheimer
mixed convection MHD boundary layer flow with viscous dissipation in nanofluid satu-
rated with porous media.

The ferrofluids describe a specific category of magnetizable fluids with interesting ef-
fects that have a tremendous technological impact. The ferrofluid is often a single magnetic
particle domain colloidal suspension with a size of approximately 10 nm. Aerodynamics
and computer peripherals, avionics, cooling agents, crystal processing, filtration, fiber
optics, loudspeakers, laser based operational devices, nuclear power plants, robotics, semi-
conductor processing, refrigeration, plastic drawing, etc. regularly use ferrofluids in a
number of industrial applications. Like these innumerable applications, a number of
studies of ferrofluids have been carried out by researchers and scientists. Andersson [28]
investigated the ferrofluid with special effects of magnetic dipole. Hayat et al. [29] investi-
gated the magnetic dipole effect on radiative ferromagnetic Williamson fluid flow. Some
important studies in connection with ferrofluid are presented in the references [30–32].

For industrial, chemical applications and bio-engineering, such as drying, energy trans-
port between desert coolers and cooling towers, food processing, production of polymers,
evaporation, and metal work, the study of chemical reactions (productive/destructive) are
essential for stretching surfaces. Extrusion on the stretched surface, heat transfer in the
MHD stagnation point flow under the effect of chemical reactions and transpiration are
analyzed by Mabood et al. [33]. Narayana and Babu [34] presented a study of MHD Jeffrey
fluid flow with the chemical reaction effects over a stretching sheet numerically. Mixed
peristaltic convective flow of Prandtl fluid to Hall current and chemical reaction effects is
investigated by Hayat et al. [35]. Hayat et al. [36] studied the hydromagnetic flow of vis-
cous fluid with chemical reaction and thermal radiation through a curved stretching sheet.
The others relevent and stretching surfaces studies can be seen in the references [37–43].

Bioconvection is a common phenomenon that occurs in suspensions due to the up-
swimming of microorganisms that have a marginally higher density than water. When
the upper surface of the suspensions becomes too dense due to microorganism prolifera-
tion, it becomes porous and microorganisms collapse, resulting in bioconvection. These
microorganisms may exhibit gravitaxis, gyrotaxis, or oxytaxis. Supporting gyrotactic
microorganisms for fluids aids in mass conversion, mixing micro-scales, and increasing
fluid stability, particularly in micro-volumes. A number of researchers have investigated
its various effects on fluid flow. Chamkha et al. [44] investigated the radiating effects
on gyrotactic microorganisms on a vertical plate with fluid variability of temperature in
natural bioconvection flow. Raju and Sandeep [45] proposed a mathematical model to
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study bioconvection through the use of non-linear chemical and thermal radiation in a
rotational fluid. Hady et al. [46] studied the unsteady bioconvection thermal boundary
layer flow in the presence of gyrotactic microorganisms on a stretching plate and a vertical
cone in a porous medium. Recent investigations on bioconvection can be found in the
references [47–56].

The current study discusses the magnetic dipole effect on thixotropic fluid with heat
and mass transfer, as well as microorganism concentration passing through a curved
stretching surface. The Darcy–Forchheimer model is used to describe the flow in a porous
medium. Thermal radiation and viscous dissipation effects are also taken into consider-
ation. Through appropriate similarity transformations, partial differential equations are
transformed into ordinary differential equations and solved using a well-known technique,
namely homotopy analysis method HAM [57–59]. Many researchers [40,47,60–63] have
used HAM to solve their research problems. The results obtained are used to discuss
graphically the effects of all the relevant parameters on all dimensionless profiles.

2. Methods

Two-dimensional hydrodynamic incompressible ferromagnetic thixotropic nanofluid
past a stretched curved sheet under the influence of magnetic dipole is considered. x
and y are used for curvilinear coordinates. The stretching surface is curled in a radius
circle R′. Based on the linear velocity u = Ax (A is constant), the sheet is stretched in
the x-direction and y-direction, which is transverse to x-direction. The magnetic field of
strength B0 is perpendicular to the flow direction. The surface is submerged in a non-Darcy
porous medium. As the Reynolds number (due to a magnet) is smaller in the present
problem, the electrical and induced magnetic fields are ignored. Convective heat and
mass transfer conditions are observed. In addition, a chemical reaction of the first order is
also considered.

In conjunction with the above assumptions, the boundary layer of the equations
involved are governed by the following terms [7,26,27,29,30]

∂{(y + R′)v}
∂y

+ R′
∂u
∂x

= 0, (1)

u2

y + R′
=

1
ρ

∂p
∂y

, (2)

ρ

(
v

∂u
∂y

+
R′u

y + R′
∂u
∂x

+
uv

y + R′

)
=

R′

y + R′
∂p
∂x

+ µ

(
∂2u
∂y2 −

u
(y + R′)2 +

1
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∂u
∂y

)
− 6R1

(
∂u
∂y

)2(
∂2u
∂y2

)
+ 4R2

[
∂u
∂y

∂2u
∂y2

(
u

∂2u
∂x∂y

+ v
∂2u
∂y2

)
+

(
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)2(
u

∂3u
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∂y3 +
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∂T
∂y

)
=

kT
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[
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(
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)4
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(
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+ 4µR2v
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(
∂qr
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, (4)

R′

y + R′
u

∂C
∂x

+ v
∂C
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=
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(
∂C
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(
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)
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+ v
∂N
∂y

+
bWc

Cw − C∞

∂
(

N ∂C
∂y
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= Dm
∂2N
∂y2 , (6)
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with boundary conditions

u = Ax = Uw(x), v = 0, −kT
∂T
∂y

= h1
(
Tw − T

)
, −D

∂C
∂y

= km
(
Cw − C

)
, N = Nw at y = 0, (7)

u→ 0,
∂u
∂y
→ 0, v→ 0, T→ T∞, C→ C∞, N→ N∞, as y→ ∞, (8)

where velocity components are (u,v) in the radial (x-direction) and transverse (y-direction),
km is the mass transfer coefficient, h1 is the convective heat transfer coefficient, R1 and R2
are the material constants, diffusion coefficient is D, constant fluid density is ρ, kT is the
thermal conductivity, σ is the electrical conductivity, ko is permeability of porous medium,
the effective dynamic viscosity is µ, magnetic permeability is µo, heat capacitance is (ρcp),
first order chemical reaction parameter is Kc, microorganisms diffusion is Dm, speed of gy-
rotactic cell is Wc, b is the chemotaxis, Cb is the drag coefficient, S1 is the porosity of porous
medium, T is the temperature, C is the concentration, N is the gyrotactic microorganisms
concentration, and C∞, T∞, and N∞, respectively, stand for the nanoparticles concentration,
temperature, and density of microorganisms far away from the surface.

Rosseland and Ozisik approximation allows to write the radiation heat flux qr with σ∗

Stenfan-Boltzman, and βR mean absorption coefficient [64] as:

qr = −
4σ∗

3βR

∂T4

∂y
= −4T3

∞σ∗

3βR

∂T
∂y

. (9)

Magnetic Dipole

The characteristics of the magnetic field have an effect on the flow of ferrofluid due
to the magnetic dipole. Magnetic dipole effects are recognized by the magnetic scalar
potential Φ [29] shown in Equation (10)

Φ =
γ

2π

x
x2 + (y + c)2 , (10)

where γ stands for magnetic field strength at the source, c is the distance of the line currents
from the leading edge. Hx and Hy are taken as the components of magnetic field as shown
in Equations (11) and (12)

Hx = −∂Φ
∂x

=
γ

2π

x2 − (y + c)2

[x2 + (y + c)2]2
, (11)

Hy = −∂Φ
∂y

=
γ

2π

2x(y + c)
[x2 + (y + c)2]2

. (12)

The magnetic field H is usually proportional to the components of magnetic field
Hx and Hy, gradient along x and y directions respectively. It is therefore defined in
Equation (13) as

H =
√

H2
x + H2

y . (13)

It is considered that the temperature-dependent variation of magnetization M is linear
as shown in Equation (14)

M = K1(T − T∞), (14)

where K1 identifies the coefficient of the ferromagnetic. The physical schematic of the
heated ferrofluid can be seen in Figure 1.
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Figure 1. Schematic diagram of the problem.

Considering the following transformations [26], with ν as kinematic viscosity, A
is constant:

u = Ax f ′(ζ), v = −
(

R′

y + R′

)√
Aν f (ζ), p = ρA2x2 p(ζ), ζ = y

√
A
ν

,

θ(ζ) =
T − T∞

Tw − T∞
, φ(ζ) =

C− C∞

Cw − C∞
, χ(ζ) =

N − N∞

Nw − N∞
, (15)

By the application of Equation (15), Equations (2)–(8) provide the following
Equations (16), (18)–(25)

p′ =
f ′2

ζ + α1
, (16)

f ′′′ −
(

α1

ζ + α1

)[
f f ′′ − f ′2 + A1 f ′ f

]
+ Nn1 f ′′2 f ′′′ + Nn2

[
f ′′4 − α1

ζ + α1

(
f ′′′2 f f ′′ + f ′′2 f f ′′′′

)]
− P1 f ′ − Li f ′2 +

2β

(ζ + d)4 θ + 2
(

α1

ζ + α1

)
p = 0, (17)

(
1 + Rd

)(
θ′′ +

θ′

(ζ + α1)

)
+ Pr

(
α1

ζ + α1

)
f θ′ +

1
3

PrNn1Ec f ′′4 + PrNn1Ec
[

f ′ f ′′ − f f ′′′
]

+
2βλ(θ − ε) f
(ζ + d)3 + βλ(θ − ε)

[
2 f ′

(ζ + d)4 +
4 f

(ζ + d)5

]
= 0, (18)

φ′′ +
φ′

(ζ + α1)
+

(
α1

ζ + α1

)
Scfφ′ − δScφ = 0, (19)

χ′′ + Pe
[
φ′χ′ + φ′′χ + Nδφ′′

]
+ Le

(
α1

ζ + α1

)
f χ′ = 0. (20)

To eliminate the pressure term, integrating (16) to get p and replacing it, then (17) becomes
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f ′′′ −
(

α1

ζ + α1

)[
f f ′′ − f ′2 + A1 f ′ f

]
+ Nn1 f ′′2 f ′′′ + Nn2

[
f ′′4 − α1

ζ + α1

(
f ′′′2 f f ′′ + f ′′2 f f ′′′′

)]
− P1 f ′ − Li f ′2 +

2β

(ζ + d)4 θ +

(
α1

(ζ + α1)2

)
(2 f f ′′ − f ′2) = 0, (21)

and the boundary conditions become

f ′(0) = 1, f (0) = 0, f (∞) = 0, f ′′(∞) = 0, (22)

θ′(0) = −Bi1[1− θ(0)], θ(∞) = 0, (23)

φ′(0) = −Bi2[1− φ(0)], φ(∞) = 0, (24)

χ′(0) = 1, χ(∞) = 0, (25)

where A1 is the ratio of rate constants, α1 is the curvature parameter, d is the dimensionless
distance, Nn1 and Nn2 are the non-Newtonian parameters, β is the ferrohydrodynamic
interaction parameter, heat dissipation parameter is λ, ε is the curie temperature, Prandtl
number is Pr, radiation parameter is Rd, Eckert number is Ec, chemical reaction parameter
is δ, the Schmidt number is Sc, local inertia parameter is Li, porosity parameter is P1, Lewis
number is Pe, Lewis number is Le, thermal Biot number is Bi1 and concentration Biot
number is Bi2, which are defined by

A1 =

√
µ

ρA
, α1 = R′

√
A
ν

, Nn1 =
4R2 A4x2

ρν2 , Nn2 =
−6R1 A4x2

ρν
, P1 =

µS1

ρAk∗o
, Li =

CbS1√
k∗o

,

β =
γµoK1ρ(Tw − T∞)

2πµ2 , Pr =
µCP
kT

, Ec =
(Ax)2

CP(Tw − T∞)
, λ =

Aµ2

ρ(Tw − T∞)kT
, d =

√
Ac2

ν
,

δ =
AKc

ν
, Rd =

16σ∗T3
∞

3k∗
, Sc =

ν

D
, Pe =

bWc

Dm
, Le =

ν

Dn
, Bi1 =

h1

kT

√
ν

A
, Bi2 =

km

kT

√
ν

A
, (26)

ε =
T∞

T∞ − Tw
, Nδ =

N∞

Nw − N∞
.

The quantities of interest, such as coefficient of skin friction, local Nusselt, Sherwood
and local density numbers, are determined by

C f =
τyx

ρ(Ax)2 , Nux =
−xqw

kT(Tw − T∞)
, Shx =

−xqm

D(Cw − C∞)
, Snx =

−xqn

D(Nw − N∞)
, (27)

where

τyx = µuy|y=0, qw = −kTTy|y=0 −
4T3

∞σ∗

3βR

∂T
∂y
|y=0, qm = −DCy|y=0, qn = DmNy|y=0. (28)

By putting values from Equation (28) in Equation (27), it is obtained that

C f =
1

Rex

(
f ′′(0)− f ′(0)

α1

)
, Nu = −Re0.5

x (1 + Rd)θ′(0),

Sh = −Re0.5
x φ′(0), Sn = −Re0.5

x χ′(0). (29)

3. HAM Solution

The initial guesses and the linear operators are taken as

f0(ζ) = Aζ + (1− A)(1− e−ζ), θ0(ζ) =
Bi1

1 + Bi1
e−ζ , φ0(ζ) =

Bi2
1 + Bi2

e−ζ , χ0 = e−ζ . (30)
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Equation (30) satisfies the properties as given below

L f (E1 + E2eζ + E3e−ζ) = 0, Lθ(E4eζ + E5e−ζ) = 0,

Lφ(E6eζ + E7e−ζ) = 0, Lχ(E8eζ + E9e−ζ) = 0, (31)

where Ei(i = 1, . . ., 9) indicates the arbitrary constants.
The corresponding zeroth order form of the problems are

(1− q)L f [ f (ζ, q)− f0(ζ)] = qh f N f [ f (ζ, q), θ(ζ, q)],

(1− q)Lθ [θ(ζ, q)− θ0(ζ)] = qhθ Nθ [θ(ζ, q), f (ζ, q)],

(1− q)Lφ[φ(ζ, q)− φ0(ζ)] = qhφNφ[φ(ζ, q), f (ζ, q)],

(1− q)Lχ[χ(ζ, q)− χ0(ζ)] = qhχNχ[χ(ζ, q), φ(ζ, q), f (ζ, q)], (32)

f (0, q) = 0, f ′(0, q) = 1, f ′(∞, q) = A, θ′(0, q) = −Bi1(1− θ(0, q)), θ(∞, q) = 0,

φ′(0, q) = −Bi2(1− φ(0, q)), φ(∞, q) = 0 χ′(0, q) = 1, χ(∞, q) = 0, (33)

N f [ f (ζ, q)] =
∂3 f (ζ, q)

∂ζ3 −
(

α1

ζ + α1

)[
f (ζ, q)

∂2 f (ζ, q)
∂ζ2 −

(
∂ f (ζ, q)

∂ζ

)2

+ A1
∂ f (ζ, q)

∂ζ
f (ζ, q)

]
+ Nn1

(
∂2 f (ζ, q)

∂ζ2

)2
∂3 f (ζ, q)

∂ζ3 + Nn2

[(
∂2 f (ζ, q)

∂ζ2

)4

− α1

ζ + α1

((
∂3 f (ζ, q)

∂ζ3

)2

f (ζ, q)
∂2 f (ζ, q)

∂ζ2

+

(
∂2 f (ζ, q)

∂ζ2

)2

f (ζ, q)
∂4 f (ζ, q)

∂ζ4

)]
− P1

∂ f (ζ, q)
∂ζ

− Li

(
∂ f (ζ, q)

∂ζ

)2

+
2β

(ζ + d)4 θ(ζ, q) +
(

α1

(ζ + α1)2

)(
2 f (ζ, q)

∂2 f (ζ, q)
∂ζ2 −

(
∂ f (ζ, q)

∂ζ

)2
)

, (34)

Nθ [θ(ζ, q)] =
(
1 + Rd

)(∂2θ(ζ, q)
∂ζ2 +

1
(ζ + α1)

∂θ(ζ, q)
∂ζ

)
+ Pr

(
α1

ζ + α1

)
f (ζ, q)

∂θ(ζ, q)
∂ζ

+
1
3

PrNn1Ec
(

∂2 f (ζ, q)
∂ζ2

)4

+ PrNn2Ec
[

∂ f (ζ, q)
∂ζ

∂2 f (ζ, q)
∂ζ2 − f (ζ, q)

∂3 f (ζ, q)
∂ζ3

]
+

2βλ(θ(ζ, q)− ε) f (ζ, q)
(ζ + d)3 + βλ(θ − ε)

[
2

(ζ + d)4
∂ f (ζ, q)

∂ζ
+

4 f (ζ, q)
(ζ + d)5

]
, (35)

Nφ[φ(ζ, q)] =
∂2φ(ζ, q)

∂ζ2 +
1

(ζ + α1)

∂φ(ζ, q)
∂ζ

+

(
α1

ζ + α1

)
Sc f (ζ, q)

∂φ(ζ, q)
∂ζ

− δScφ(ζ, q), (36)

Nχ[χ(ζ, q)] =
∂2χ(ζ, q)

∂ζ2 + Pe
[

∂φ(ζ, q)
∂ζ

∂χ(ζ, q)
∂ζ

+
∂2φ(ζ, q)

∂ζ2 χ(ζ, q) + Nδ
∂2φ(ζ, q)

∂ζ2

]
+ Le

(
α1

ζ + α1

)
f (ζ, q)

∂φ(ζ, q)
∂ζ

, (37)

where q ∈ [0, 1] is the embedding parameter while N f , Nθ , Nφ, and Nχ are the nonlin-
ear operators.

The m-th order deformation problems are as follows
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L f [ fm(ζ, q)− ηm fm−1(ζ)] = h fR f ,m(ζ), (38)

Lθ [θm(ζ, q)− ηmθm−1(ζ)] = hθRθ,m(ζ), (39)

Lφ[φm(ζ, q)− ηmφm−1(ζ)] = hφRφ,m(ζ), (40)

Lχ[χm(ζ, q)− ηmχm−1(ζ)] = hχRχ,m(ζ), (41)

fm(0) = f ′m(0) = f ′m(∞) = 0,

θ′m(0)− Bi1θm(0) = θm(∞) = 0,

φ′m(0)− Bi2φm(0) = φm(∞) = 0,

χ′m(0) = χm(0) = χm(∞) = 0, (42)

Rm
f (ζ) = f ′′′m−1 −

(
α1

ζ + α1

)[ m−1

∑
r=0

fm−1−r f ′′r −
m−1

∑
r=0

f ′m−1−r f ′r + A1

m−1

∑
r=0

fm−1−r f ′r

]

+ Nn1

m−1

∑
r=0

(
r

∑
k=0

f ′′m−1−r f ′′r−k

)
f ′′′k + Nn2

[ m−1

∑
r=0

(
r

∑
k=0

(
k

∑
p=0

f ′′m−1−r f ′′r−k

)
f ′′k−p

)
f ′′p

− α1

ζ + α1

( m−1

∑
r=0

(
r

∑
k=0

(
k

∑
p=0

fm−1−r f ′′′r−k

)
f ′′′k−p

)
f ′′′′p

+
m−1

∑
r=0

(
r

∑
k=0

(
k

∑
p=0

fm−1−r f ′′r−k

)
f ′′k−p

)
f ′′′′p

)]
− P1 f ′m−1 − Li

m−1

∑
r=0

f ′m−1−r f ′r

+
2β

(ζ + d)4 θm−1 +
α1

(ζ + α1)2

(
2

m−1

∑
r=0

fm−1−r f ′′r −
m−1

∑
r=0

f ′m−1−r f ′r

)
, (43)

Rm
θ (ζ) =

(
1 + Rd

)(
θ′′m−1 +

θ′m−1
(ζ + α1)

)
+ Pr

(
α1

ζ + α1

) m−1

∑
r=0

fm−1−rθ′r

+
1
3

PrNn1Ec
m−1

∑
r=0

(
r

∑
k=0

(
k

∑
p=0

f ′′m−1−r f ′′r−k

)
f ′′k−p

)
f ′′p

+ PrNn2Ec
[ m−1

∑
r=0

f ′m−1−r f ′′r −
m−1

∑
r=0

fm−1−r f ′′′r

]
+

2βλ(θm−1 − ε) fm−1

(ζ + d)3

+ βλ(θm−1 − ε)

[
2 f ′m−1

(ζ + d)4 +
4 fm−1

(ζ + d)5

]
, (44)

Rm
φ (ζ) = φ′′m−1 +

φ′m−1
(ζ + α1)

+

(
α1

ζ + α1

)
Sc

m−1

∑
r=0

fm−1−rφ′r − δScφm−1, (45)

Rm
χ (ζ) = χ′′m−1 + Pe

[
m−1

∑
r=0

φ′m−1−rχ′r +
m−1

∑
r=0

φ′′m−1−rχr + Nδφ′′m−1

]

+ Le
(

α1

ζ + α1

) m−1

∑
r=0

fm−1−rχ′r, (46)

where

ηm =

{
0, if m ≤ 1
1, if m > 1.

(47)
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The general solutions are given by

fm(ζ) = f ∗m(ζ) + E1 + E2eζ + E3e−ζ , (48)

θm(ζ) = θ∗m(ζ) + E4eζ + E5e−ζ , (49)

φm(ζ) = φ∗m(ζ) + E6eζ + E7e−ζ , (50)

χm(ζ) = χ∗m(ζ) + E8eζ + E9e−ζ , (51)

where ( f ∗m(ζ), θ∗m(ζ), φ∗m(ζ), χ∗m(ζ)) are special solutions.

4. Convergence Analysis of the Homotopy Solution

The nonzero auxiliary parameters are involved in the homotopy solution. These
parameters are extremely important in controlling and adjusting the convergence acquired
by the homotopic series solutions. The h-curves at the 15th order of approximations are
sketched to show the acceptable approximate region of convergence. Figure 2 depicts
the region as falling within the ranges −1.8 ≤ h f ≤ 0.2,−2.5 ≤ hθ ≤ 0.8,−4.2 ≤ hφ ≤
1.1,−0.4 ≤ hχ ≤ 0.4. The values of parameters used are A1 = d = 1, λ = β = P1 =
Li = Sc = 0.3, ε = δ = Ec = 0.1, Pe = Le = Nδ = 0.2, Nn1 = Nn2 = 0.5, Pr = 6.8, Re =
0.7, α1 = Rd = Bi1 = Bi2 = 0.4.

Figure 2. h-curves for f (ζ), θ(ζ),φ(ζ),χ(ζ).

5. Discussion

The velocity behavior with the ferromagnetic hydrodynamic interaction parameter β
can be seen in Figure 3. It demonstrates that the velocity decreases as β increases. Ideally,
the resistance force known as Lorentz force [65] increases with the β increase, and the
velocity field decreases. Figure 4 is used to investigate the effect of curvature parameter
α1 on the velocity profile. It is clearly shown in the figure that the velocity component
decreases for larger α1. Figures 5 and 6 describe the effects of the thixotropic parameters
Nn1 and Nn2 on the velocity profile. From these figures, it is observed that Nn1 and
Nn2 result in an increase in fluid velocity. Ideally, Nn1 and Nn2 are associated with the
properties of shear thinning, which show a time-dependent changes in viscosity. The higher
the fluid under shear stress, the lower the viscosity of nanofluid, which will ultimately lead
to an increase in fluid velocity. Figure 7 is used to present the velocity behavior with the
porosity parameter P1. The presence of porous medium slows down the field of the flow,
resulting in an increase in shear stress on the curved surface, and therefore the velocity
profile shows a declining trend by increasing the values of P1. In contrast to the effect seen
with P1, change in local inertia parameter Li results in an increase in velocity as shown in
Figure 8.

Figure 9 is used used to examine the effect of β on temperature. Here, temperature
increases with higher values of β. The temperature profile behavior relating to the higher
values of thermal Biot number Bi1 is shown in Figure 10. The parameter Bi1 significantly
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promotes the temperature field in a positive manner attributable to the effective convective
heat effects. It is also observed that there is no heat transfer at Bi1 = 0. The effect of
the heat dissipation parameter λ on temperature is shown in Figure 11. The temperature
is a decreasing function of λ. Physically thermal conductivity of liquid decreases with
larger λ, and therefore the temperature decreases. The Eckert number Ec attributes to
the temperature profile is shown in Figure 12. For larger Ec, temperature and thermal
boundary layer thickness were observed to be effected with the increase in Ec. In this
phenomenon, the heat energy stored in the fluid is caused by friction forces that increase
the temperature. The Curie temperature parameter ε effect on temperatureprofile is shown
in Figure 13. The temperature decreases through larger values of ε. Thermal conductivity
of the liquid increases with the larger ε. The effect of Prandtl number Pr on temperature
profile is shown in Figure 14. The temperature distribution and thermal boundary layer
are reduced by higher values of Pr, due to which thermal diffusion is reduced. In addition,
fluids with a smaller values of Pr slowly decay compared to liquids with larger values of
Pr. The effect of radiation parameter Rd on temperature profile is discussed in Figure 15.
The increase in temperature curves with a larger boundary layer thickness is determined
by an increase in Rd. Usually, mean absorption coefficient decays for higher estimation of
Rd and diffusion flux occurs as a consequence of the temperature gradient, which therefore
increases the temperature.

The effect of the concentration Biot number Bi2 on the nanoparticles concentration
profile is shown in Figure 16. In this case, the concentration is increased in response to
increase in the Bi2 values. Figure 17 shows the effect of the Sc on concentration profile.
Since Sc is the ratio of momentum to mass diffusivity, the increase in Sc causes a decay in
mass diffusivity, thus leading to a decrease in nanoparticles concentration. Figure 18 shows
the effect of the curvature parameter α1 on the nanoparticles concentration profile. The
increase in the curvature parameter results in an increase in the concentration. Figure 19
shows the effect of the chemical reaction parameter δ on the concentration profile. The
nanoparticles concentration is observed to increase for the higher estimates of δ. In fact,
the consumption of reactive species rapidly declines as δ becomes larger.

Figure 20 shows the effect of Peclet number Pe on the microorganisms profile. There
is a clear relationship between the reduced density of the microorganisms and the increase
in Pe. The higher values of Pe indicate the minimum motile diffusivity. Figure 21 shows
the impact of Lewis number Le on microorganisms concentration profile. The decrease in
the concentration distribution is shown as the Lewis number increases, since it is inversely
proportional to the mass diffusion.

The effect of the dimensionless variable ζ on the streamlines is shown in Figures 22 and 23.
It is shown that the number of the trapped boluses increases as the values of ζ increase, and
the streamlines have also been identified to be perpendicular to the surface. The increase
in the ζ increases the shearing motion, which, in fact, results in a higher precession of the
flow to the stretching surface.

Table 1 shows a numerical analysis of the skin friction coefficient for β, α1, P1, Li, Nn1, Nn2.
It is discovered that the skin friction coefficient increases with the increasing values of
β, P1, Li, Nn2, while a reverse trend is observed for α1 and Nn1. Table 2 cross-checks the
accurateness of the homotopic solution used in the present investigation. A comparison
of skin friction coefficient for the different values of α1 with the study [66] is shown for
P1 = Li = β = A1 = Nn1 = Nn2 = 0 at ζ = 0. Table 3 shows the numerical assessment of
the local Nusselt number for various values of β, α1, λ, Pr, Rd, ε, Ec, Nn1, Nn2. It is observed
that the local Nusselt number decreases with increasing values of β, α1, λ, Nn1. Table 4
shows the numerical values of the local Sherwood number for various values of α1, Sc, δ.
It is observed that the local Sherwood number decreases with the increasing values of
parameters. The tables clearly show that the current findings are completely consistent.
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Figure 3. Impact of the ferrohydrodynamic interaction parameter β on velocity profile f ′(ζ).

Figure 4. Impact of the curvature paraeter α1 on velocity f ′(ζ).

Figure 5. Impact of the non-Newtonian parameter Nn1 on velocity f ′(ζ).
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Figure 6. Impact of the non-Newtonian parameter Nn2 on velocity f ′(ζ).

Figure 7. Impact of the porosity parameter P1 on velocity f ′(ζ).

Figure 8. Impact of the local inertia parameter Li on velocity f ′(ζ).
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Figure 9. Impact of the ferrohydrodynamic interaction parameter β on temperature θ(ζ).

Figure 10. Impact of the thermal Biot number Bi1 on temperature θ(ζ).

Figure 11. Impact of the heat dissipation parameter λ on temperature θ(ζ).
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Figure 12. Impact of the Eckert number Ec on temperature θ(ζ).

Figure 13. Impact of the curie temperature parameter ε on temperature θ(ζ).

Figure 14. Impact of the Prandtl number Pr on temperature θ(ζ).
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Figure 15. Impact of the thermal radiation parameter Rd on temperature θ(ζ).

Figure 16. Impact of the solutal Biot number Bi2 on concentration φ(ζ).

Figure 17. Impact of the Schmidt number Sc on concentration φ(ζ).
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Figure 18. Impact of the curvature parameter α1 on concentration φ(ζ).

Figure 19. Impact of the chemical reaction parameter δ on concentration φ(ζ).

Figure 20. Impact of the Peclet number Pe on motile microorganism χ(ζ).
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Figure 21. Impact of the Lewis number Le on motile microorganism χ(ζ).

Figure 22. Behavior of streamlines for ζ = 0.1.

Figure 23. Behavior of streamlines for ζ = 0.3.
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Table 1. Numerical values of skin friction coefficient with varying values of the parameters
β, α1, P1, Li, Nn1, Nn2.

β α1 P1 Li Nn1 Nn2 −C f

0.3 0.4 0.3 0.3 0.5 0.5 1.24238
0.7 1.24698
1.1 1.25158

0.7 1.24467
1.0 1.23511
1.3 1.22220

0.6 1.33715
0.9 1.43382
1.2 1.53241

0.6 1.28757
0.9 1.33233
1.2 1.37976

1.0 1.19970
1.5 1.16111
2.0 1.12627

1.0 1.20631
1.5 1.17235
2.0 1.14041

Table 2. Comparative numerical values of the skin friction coefficient with published result with
changing values of α1 with P1 = Li = β = A1 = Nn1 = Nn2 = 0.

α1 Published Work [66] Present Work

5 0.7577 0.7569
10 0.8735 0.8736
15 0.9357 0.9357

Table 3. Numerical values of Nusselt number with varying values of the parameters
β, α1, λ, Pr, Rd, ε, Ec, Nn1, Nn2.

α1 λ β Pr Rd ε Ec Nn1 Nn2 Nu

0.4 0.3 0.3 6.8 0.4 0.1 0.1 0.5 0.5 0.331075
0.7 0.330973
1.0 0.330021

0.8 0.332224
1.3 0.332115
1.8 0.332006

0.7 0.332245
1.1 0.332158
1.5 0.332071

6.9 0.333827
10.0 0.335319

10.11 0.336809
0.6 0.379260
0.8 0.426063
1.0 0.472745

0.4 0.332614
0.7 0.332896
1.0 0.333177

0.4 0.334739
0.7 0.337145
1.0 0.339552

1.0 0.332088
1.5 0.331853
2.0 0.331625

1.0 0.333376
1.5 0.334405
2.0 0.335419
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Table 4. Numerical values of Sherwood number with varying values of the parameters α1, Sc, δ.

α1 Sc δ Sh

0.4 0.3 0.1 0.23643
0.7 0.23658
1.0 0.23661

0.8 0.23775
1.3 0.238104
1.8 0.238455

0.5 0.238244
0.9 0.239083
1.3 0.239915

6. Conclusions

The Darcy–Forchheimer hydromagnetic flow of thixotropic nanofluid through a
curved stretching sheet with thermal radiation and chemical reaction in the presence
of heat and mass transfer, gyrotactic microorganisms, and magnetic dipole is explored. The
present study contributes to the findings set out below.

• The velocity decreases with increasing values of ferromagnetic parameter β and a
curvature parameter α1, while it increases with increasing values of Nn1, Nn2 and P1.

• The temperature increases with increasing values of Ec, β, and Rd and decays with
increasing values of Pr.

• The nanoparticles concentration decreases with increasing values of Sc and δ, while it
increases with increasing values of Bi2 and α1.

• The distribution of the microorganism is decreased with increasing values of Pe
and Le.

• The non-Newtonian parameters Nn1 and Nn2 have the same decreasing effects on the
skin friction coefficient, while Nn1 decreases and Nn2 increases the heat transfer rate.

Author Contributions: Conceptualization, N.S.K.; methodology, A.H.; software, N.U.; validation,
A.S.; formal analysis, P.K.; investigation, Q.S.; resources, P.T.; data curation, P.T.; writing—original
draft preparation, A.H.U.; writing—review and editing, U.W.H.; visualization, P.K.; supervision,
N.S.K.; project administration, P.K.; funding acquisition, P.K. All authors have read and agreed to the
revised version of the manuscript.

Funding: This research is funded by the Center of Excellence in Theoretical and Computational
Science (TaCS-CoE), KMUTT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was partially supported by the International Research Partnerships:
Electrical Engineering Thai-French Research Center (EE-TFRC) between King Mongkut’s University
of Technology North Bangkok and Universite’ de Lorraine under Grant KMUTNB-BasicR-64-17.
The authors are cordially thankful to the honorable reviewers for their constructive comments to
improve the quality of the paper. The first author is thankful to the Higher Education Commission
(HEC) Pakistan for providing the technical and financial support. This research is supported by
the Postdoctoral Fellowship from King Mongkut’s University of Technology Thonburi (KMUTT),
Thailand. This project is supported by the Theoretical and Computational Science (TaCS) Center
under Computational and Applied Science for Smart Innovation Research Cluster (CLASSIC), Faculty
of Science, KMUTT.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ershkov, S.V. Non-stationary creeping flows for incompressible 3D Navier–Stokes equations. Eur. J. Mech. B/Fluids 2017, 61,

154–159. [CrossRef]
2. Hsiao, K.L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng.

2016, 98, 850–861. [CrossRef]

http://doi.org/10.1016/j.euromechflu.2016.09.021
http://dx.doi.org/10.1016/j.applthermaleng.2015.12.138


Crystals 2021, 11, 645 20 of 22

3. Hsiao, K.L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia
feature. Int. J. Heat Mass Transf. 2017, 112, 983–990. [CrossRef]

4. Hsiao, K.L. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous
dissipation effects. Appl. Therm. Eng. 2017, 112, 1281–1288. [CrossRef]

5. Hsiao, K.L. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using
Carreau-Nanofluid with parameters control method. Energy 2017, 130, 486–499. [CrossRef]

6. de Deus, H.P.A.; Dupim, G.S. On behavior of the thixotropic fluids. Phys. Lett. A 2013, 377, 478–485. [CrossRef]
7. Hayat, T.; Waqas, M.; Shehzad, S.A.; Alsaedi, A. A model of solar radiation and Joule heating in magnetohydrodynamic (MHD)

convective flow of thixotropic nanofluid. J. Mol. Liq. 2016, 215, 704–710. [CrossRef]
8. Hayat, T.; Waqas, M.; Khan, M.I.; Alsaedi, A. Analysis of thixotropic nanomaterial in a doubly stratified medium considering

magnetic field effects. Int. J. Heat Mass Transf. 2016, 102, 1123–1129. [CrossRef]
9. Zubair, M.; Waqas, M.; Hayat, T.; Ayub, M.; Alsaedi, A. Simulation of nonlinear convective thixotropic liquid with Cattaneo-

Christov heat flux. Results Phys. 2018, 8, 1023–1027. [CrossRef]
10. Khan, N.S.; Shah, Z.; Islam, S.; Khan, I.; Alkanhal, T.A.; Tlili, T. Entropy generation in MHD mixed convection non-Newtonian

second-grade nanoliquid thin film flow through a porous medium with chemical reaction and stratification. Entropy 2019, 21, 139.
[CrossRef]

11. Khan, N.S.; Gul, T.; Islam, S.; Khan, W. Thermophoresis and thermal radiation with heat and mass transfer in a magneto-
hydrodynamic thin film second-grade fluid of variable properties past a stretching sheet. Eur. Phys. J. Plus 2017, 132, 11.
[CrossRef]

12. Palwasha, Z.; Khan, N.S.; Shah, Z.; Islam, S.; Bonyah, E. Study of two dimensional boundary layer thin film fluid flow with
variable thermo-physical properties in three dimensions space. AIP Adv. 2018, 8, 105318. [CrossRef]

13. Khan, N.S.; Gul, T.; Islam, S.; Khan, A.; Shah, Z. Brownian motion and thermophoresis effects on MHD mixed convective thin film
second-grade nanofluid flow with Hall effect and heat transfer past a stretching sheet. J. Nanofluids 2017, 6, 812–829. [CrossRef]

14. Khan, N.S.; Zuhra, S.; Shah, Z.; Bonyah, E.; Khan, W.; Islam, S. Slip flow of Eyring-Powell nanoliquid film containing graphene
nanoparticles. AIP Adv. 2019, 8, 115302. [CrossRef]

15. Khan, N.S.; Gul, T.; Kumam, P.; Shah, Z.; Islam, S.; Khan, W.; Zuhra, S.; Sohail, A. Influence of inclined magnetic field on Carreau
nanoliquid thin film flow and heat transfer with graphene nanoparticles. Energies 2019, 12, 1459. [CrossRef]

16. Khan, N.S. Study of two dimensional boundary layer flow of a thin film second grade fluid with variable thermo-physical
properties in three dimensions space. Filomat 2019, 33, 5387–5405. [CrossRef]

17. Khan, N.S.; Zuhra, S. Boundary layer unsteady flow and heat transfer in a second grade thin film nanoliquid embedded with
graphene nanoparticles past a stretching sheet. Adv. Mech. Eng. 2019, 11, 1–11. [CrossRef]

18. Khan, N.S.; Gul, T.; Islam, S.; Khan, W.; Khan, I.; Ali, L. Thin film flow of a second-grade fluid in a porous medium past a
stretching sheet with heat transfer. Alex. Eng. J. 2017, 57, 1019–1031. [CrossRef]

19. Zahra, A.; Mahanthesh, B.; Basir, M.F.M.; Imtiaz, M.; Mackolil, J.; Khan, N.S.; Nabwey, H.A.; Tlili, I. Mixed radiated magneto
Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: Flow and sensitivity analysis. Alex. Eng. J.
2020, 57, 1019–1031.

20. Liaqat, A.; Asifa, T.; Ali, R.; Islam, S.; Gul, T.; Kumam, P.; Mukhtar, S.; Khan, N.S.; Thounthong, P. A new analytical approach for
the research of thin-film flow of magneto hydrodynamic fluid in the presence of thermal conductivity and variable viscosity.
ZAMM J. Appl. Math. Mech. Z. Angewwandte Math. Mech. 2020, 1–13. [CrossRef]

21. Khan, N.S.; Zuhra, S.; Shah, Z.; Bonyah, E.; Khan, W.; Islam, S.; Khan, A. Hall current and thermophoresis effects on magnetohy-
drodynamic mixed convective heat and mass transfer thin film flow. J. Phys. Commun. 2019, 3, 035009. [CrossRef]

22. Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 2006; p. 3.
23. Forchheimer, P. Wasserbewegung durch boden. Z. Ver. Dtsch. Ing. 1901, 45, 1782–1788.
24. Morris, M. The Flow of Homogeneous Fluids through Porous Media; J.W. Edwards Inc.: Ann Arbor, MI, USA, 1946; p. 191.
25. Kishan, N.; Maripala, S. Thermophoresis and viscous dissipation effects on Darcy–Forchheimer MHD mixed convection in a fluid

saturated porous media. Adv. Appl. Sci. Res. 2012, 3, 60–74.
26. Rauf, A.; Abbas, Z.; Shehzad, S.A.; Mushtaq, T. Thermally radiative viscous fluid flow over curved moving surface in Darcy–

Forchheimer porous space. Commun. Theor. Phys. 2019, 71, 259. [CrossRef]
27. Jagadha, S.; Amrutha, P. MHD boundary layer flow of Darcy-Forchheimer mixed convection in a nanofluid saturated porous

media with viscous dissipation. Int. J. Appl. Appl. Math. 2019, 4, 117–134.
28. Andersson, H.I.; Valnes, O.A. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech.

1998, 128, 39–47. [CrossRef]
29. Hayat, T.; Ahmad, S.; Khan, M.I.; Alsaedi, A. Exploring magnetic dipole contribution on radiative flow of ferromagnetic

Williamson fluid. Results Phys. 2018, 8, 545–551. [CrossRef]
30. Titus, L.R.; Abraham, A. Heat transfer in ferrofluid flow over a stretching sheet with radiation. Int. J. Eng. Res. Technol. 2014, 3,

2198–2203.
31. Kefayati, G.H. Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J. Mol. Liq. 2014, 191, 1–9. [CrossRef]
32. Afkhami, S.; Renardy, Y. Ferrofluids and magnetically guided superparamagnetic particles in flows: A review of simulations and

modeling. J. Eng. Math. 2017, 107, 231–251. [CrossRef]

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.05.042
http://dx.doi.org/10.1016/j.applthermaleng.2016.08.208
http://dx.doi.org/10.1016/j.energy.2017.05.004
http://dx.doi.org/10.1016/j.physleta.2012.12.011
http://dx.doi.org/10.1016/j.molliq.2016.01.005
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.06.090
http://dx.doi.org/10.1016/j.rinp.2017.12.016
http://dx.doi.org/10.3390/e21020139
http://dx.doi.org/10.1140/epjp/i2017-11277-3
http://dx.doi.org/10.1063/1.5053808
http://dx.doi.org/10.1166/jon.2017.1383
http://dx.doi.org/10.1063/1.5055690
http://dx.doi.org/10.3390/en12081459
http://dx.doi.org/10.2298/FIL1916387K
http://dx.doi.org/10.1177/1687814019884428
http://dx.doi.org/10.1016/j.aej.2017.01.036
http://dx.doi.org/10.1002/zamm.201900292
http://dx.doi.org/10.1088/2399-6528/aaf830
http://dx.doi.org/10.1088/0253-6102/71/3/259
http://dx.doi.org/10.1007/BF01463158
http://dx.doi.org/10.1016/j.rinp.2017.11.040
http://dx.doi.org/10.1016/j.molliq.2013.11.021
http://dx.doi.org/10.1007/s10665-017-9931-9


Crystals 2021, 11, 645 21 of 22

33. Mabood, F.; Khan, W.A.; Ismail, A.M. MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical
reaction and transpiration. Chem. Eng. J. 2015, 273, 430–437. [CrossRef]

34. Narayana, P.S.; Babu, D.H. Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with
chemical reaction and thermal radiation. J. Taiwan Inst. Chem. Eng. 2016, 59, 18–25. [CrossRef]

35. Hayat, T.; Zahir, H.; Tanveer, A.; Alsaedi, A. Influences of Hall current and chemical reaction in mixed convective peristaltic flow
of Prandtl fluid. J. Magn. Magn. Mater. 2016, 407, 321–327. [CrossRef]

36. Hayat, T.; Rashid, M.; Imtiaz, M.; Alsaedi, A. MHD convective flow due to a curved surface with thermal radiation and chemical
reaction. J. Mol. Liq. 2017, 225, 482–489. [CrossRef]

37. Khan, N.S.; Gul, T.; Islam, S.; Khan, I.; Alqahtani, A.M.; Alshomrani, A.S. Magnetohydrodynamic nanoliquid thin film sprayed
on a stretching cylinder with heat transfer. J. Appl. Sci. 2017, 7, 271. [CrossRef]

38. Khan, N.S.; Kumam, P.; Thounthong, P. Renewable energy technology for the sustainable development of thermal system with
entropy measures. Int. J. Heat Mass Transf. 2019, 145, 118713. [CrossRef]

39. Khan, N.S.; Kumam, P.; Thounthong, P. Second law analysis with effects of Arrhenius activation energy and binary chemical
reaction on nanofluid flow. Sci. Rep. 2020, 10, 1226. [CrossRef] [PubMed]

40. Khan, N.S.; Shah, Q.; Bhaumik, A.; Kumam, P.; Thounthong, P.; Amiri, I. Entropy generation in bioconvection nanofluid flow
between two stretchable rotating disks. Sci. Rep. 2020, 10, 4448. [CrossRef] [PubMed]

41. Khan, N.S.; Shah, Q.; Sohail, A. Dynamics with Cattaneo-Christov heat and mass flux theory of bioconvection Oldroyd-B
nanofluid. Adv. Mech. Eng. 2020, 12, 1–20. [CrossRef]

42. Khan, N.S.; Shah, Q.; Sohail, A.; Kumam, P.; Thounthong, P.; Bhaumik, A.; Ullah, Z. Lorentz forces effects on the interactions of
nanoparticles in emerging mechanisms with innovative approach. Symmetry 2020, 5, 1700. [CrossRef]

43. Liaqat, A.; Khan, N.S.; Ali, R.; Islam, S.; Kumam, P.; Thounthong, P. Novel insights through the computational techniques in
unsteady MHD second grade fluid dynamics with oscillatory boundary conditions. Heat Transf. 2020, 50, 2502–2524. [CrossRef]

44. Chamkha, A.J.; Rashad, A.M.; Kameswaran, P.K.; Abdou, M.M. Radiation effects on natural bioconvection flow of a nanofluid
containing gyrotactic microorganisms past a vertical plate with streamwise temperature variation. J. Nanofluids 2017, 6, 587–595.
[CrossRef]

45. Raju, C.S.; Seep, N. Dual solutions for unsteady heat and mass transfer in bio-convection flow towards a rotating cone/plate in a
rotating fluid. Int. J. Eng. Res. Afr. 2016, 20, 161–176. [CrossRef]

46. Hady, F.M.; Mahdy, A.; Mohamed, R.A.; Zaid, O.A.A. Effects of viscous dissipation on unsteady MHD thermo bioconvection
boundary layer flow of a nanofluid containing gyrotactic microorganisms along a stretching sheet. World J. Mech. 2016, 6, 505–526.
[CrossRef]

47. Khan, N.S. Bioconvection in second grade nanofluid flow containing nanoparticles and gyrotactic microorganisms. Braz. J. Phys.
2018, 48, 227–241. [CrossRef]

48. Ferdows, M.; Zaimi, K.; Rashad, A.M.; Nabwey, H.A. MHD bioconvection flow and heat transfer of nanofluid through an
exponentially stretchable sheet. Symmetry 2020, 12, 692. [CrossRef]

49. Khan, S.U.; Al-Khaled, K.; Bhatti, M.M. Bioconvection analysis for flow of Oldroyd-B nanofluid configured by a convectively
heated surface with partial slip effects. Surf. Interfaces 2021, 23, 100982. [CrossRef]

50. Majeed, A.; Zeeshan, A.; Amin, N.; Ijaz, N.; Saeed, T. Thermal analysis of radiative bioconvection magnetohydrodynamic flow
comprising gyrotactic microorganism with activation energy. J. Therm. Anal. Calorim. 2021, 143, 2545–2556. [CrossRef]

51. Zuhra, S.; Khan, N.S.; Alam, A.; Islam, S.; Khan, A. Buoyancy effects on nanoliquids film flow through a porous medium with
gyrotactic microorganisms and cubic autocatalysis chemical reaction. Adv. Mech. Eng. 2020, 12, 1–17. [CrossRef]

52. Palwasha, Z.; Islam, S.; Khan, N.S.; Ayaz, H. Non-Newtonian nanoliquids thin film flow through a porous medium with
magnetotactic microorganisms. Appl. Nanosci. 2018, 8, 1523–1544. [CrossRef]

53. Khan, N.S. Mixed convection in MHD second grade nanofluid flow through a porous medium containing nanoparticles and
gyrotactic microorganisms with chemical reaction. Filomat 2019, 33, 4627–4653. [CrossRef]

54. Zuhra, S.; Khan, N.S.; Shah, Z.; Islam, Z.; Bonyah, E. Simulation of bioconvection in the suspension of second grade nanofluid
containing nanoparticles and gyrotactic microorganisms. AIP Adv. 2018, 8, 105210. [CrossRef]

55. Khan, N.S.; Shah, Z.; Shutaywi, M.; Kumam, P.; Thounthong, P. A comprehensive study to the assessment of Arrhenius activation
energy and binary chemical reaction in swirling flow. Sci. Rep. 2020, 10, 7868. [CrossRef] [PubMed]

56. Khan, N.S.; Gul, T.; Khan, M.A.; Bonyah, E.; Islam, S. Mixed convection in gravity-driven thin film non-Newtonian nanofluids
flow with gyrotactic microorganisms. Results Phys. 2017, 7, 4033–4049. [CrossRef]

57. Liao, S.J. An explicit, totally analytic approximate solution for Blasius’ viscous flow problems. Int. J. Non-Linear Mech. 1999, 34,
759–778. [CrossRef]

58. Liao, S. Beyond Perturbation: Introduction to the Homotopy Analysis Method; CRC Press: Boca Raton, FL, USA, 2003.
59. Liao, S.J. Homotopy Analysis Method in Nonlinear Differential Equations; Higher Education Press: Beijing, China; Springer:

Berlin/Heidelberg, Germany, 2012.
60. Shah, Z.; Islam, S.; Gul, T.; Bonyah, E.; Khan, M.A. The electrical MHD and hall current impact on micropolar nanofluid flow

between rotating parallel plates. Results Phys. 2018, 9, 1201–1214. [CrossRef]
61. Zuhra, S.; Khan, N.S.; Khan, M.A.; Islam, S.; Khan, W.; Bonyah, E. Flow and heat transfer in water based liquid film fluids

dispensed with graphene nanoparticles. Result Phys. 2018, 8, 1143–1157. [CrossRef]

http://dx.doi.org/10.1016/j.cej.2015.03.037
http://dx.doi.org/10.1016/j.jtice.2015.07.014
http://dx.doi.org/10.1016/j.jmmm.2016.02.020
http://dx.doi.org/10.1016/j.molliq.2016.11.096
http://dx.doi.org/10.3390/app7030271
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118713
http://dx.doi.org/10.1038/s41598-020-57802-4
http://www.ncbi.nlm.nih.gov/pubmed/31988289
http://dx.doi.org/10.1038/s41598-020-61172-2
http://www.ncbi.nlm.nih.gov/pubmed/32157121
http://dx.doi.org/10.1177/1687814020930464
http://dx.doi.org/10.3390/sym12101700
http://dx.doi.org/10.1002/htj.21989
http://dx.doi.org/10.1166/jon.2017.1351
http://dx.doi.org/10.4028/www.scientific.net/JERA.20.161
http://dx.doi.org/10.4236/wjm.2016.612035
http://dx.doi.org/10.1007/s13538-018-0567-7
http://dx.doi.org/10.3390/sym12050692
http://dx.doi.org/10.1016/j.surfin.2021.100982
http://dx.doi.org/10.1007/s10973-020-10207-x
http://dx.doi.org/10.1177/1687814019897510
http://dx.doi.org/10.1007/s13204-018-0834-5
http://dx.doi.org/10.2298/FIL1914627K
http://dx.doi.org/10.1063/1.5054679
http://dx.doi.org/10.1038/s41598-020-64712-y
http://www.ncbi.nlm.nih.gov/pubmed/32398708
http://dx.doi.org/10.1016/j.rinp.2017.10.017
http://dx.doi.org/10.1016/S0020-7462(98)00056-0
http://dx.doi.org/10.1016/j.rinp.2018.01.064
http://dx.doi.org/10.1016/j.rinp.2018.01.032


Crystals 2021, 11, 645 22 of 22

62. Usman, A.H.; Khan, N.S.; Humphries, U.W.; Shah, Z.; Kumam, P.; Khan, W.; Khan, A.; Rano, S.A.; Ullah, Z. Development of
dynamic model and analytical analysis for the diffusion of different species in non-Newtonian nanofluid swirling flow. Front.
Phys. 2021, 8, 616790. [CrossRef]

63. Zuhra, S.; Khan, N.S.; Islam, S. Magnetohydrodynamic second-grade nanofluid flow containing nanoparticles and gyrotactic
microorganisms. Comput. Appl. Math. 2018, 37, 6332–6358. [CrossRef]

64. Usman, A.H.; Humphries, U.W.; Kumam, P.; Shah, Z.; Thounthong, P. Double diffusion non-isothermal thermo-convective flow
of couple stress micropolar nanofluid flow in a Hall MHD generator system. IEEE Access 2020, 8, 78821–78835. [CrossRef]

65. Ershkov, S.V.; Leshchenko, D. Dynamics of a charged particle in electromagnetic field with joule effect. Rom. Rep. Phys. 2020,
72, 120.

66. Hayat, T.; Sajjad, R.; Ellahi, R.; Alsaedi, A.; Muhammad, T. Homogeneous-heterogeneous reactions in MHD flow of micropolar
fluid by a curved stretching surface. J. Mol. Liq. 2017, 240, 209–220. [CrossRef]

http://dx.doi.org/10.3389/fphy.2020.616790
http://dx.doi.org/10.1007/s40314-018-0683-6
http://dx.doi.org/10.1109/ACCESS.2020.2986021
http://dx.doi.org/10.1016/j.molliq.2017.05.054

	Introduction
	Methods
	HAM Solution
	Convergence Analysis of the Homotopy Solution
	Discussion
	Conclusions
	References

