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Abstract: Frazil particles, ice crystals or slushy granules that form in turbulent water, change the
freezing properties of ice to create “frazil ice”. To understand the microstructural characteristics
of these particles and the physical properties of frazil ice in greater depth, an in situ sampler was
designed to collect frazil particles in the Yellow River. The ice crystal microstructural characteristics
of the frazil particles (morphology, size, air bubble, and sediment) were observed under a microscope,
and their nucleation mechanism was analyzed according to its microstructure. The physical properties
of frazil ice (ice crystal microstructure, air bubble, ice density, and sediment content) were also
observed. The results showed that these microstructures of frazil particles can be divided into four
types: granular, dendritic, needle-like, and serrated. The size of the measured frazil particles ranged
from 0.1 to 25 mm. Compared with columnar ice, the crystal microstructure of frazil ice is irregular,
with a mean crystal diameter less than 5 mm extending in all directions. The crystal grain size and
ice density of frazil ice are smaller than columnar ice, but the bubble and sediment content are larger.

Keywords: frazil particles; frazil ice; microstructure; Yellow River; ice crystal; air bubble; density;
sediment content

1. Introduction

The existence of frazil particles contributes greatly to the formation and evolution
of river ice sheets [1]. Not only do they influence the ice physical properties, but they
may also cause disasters such as ice jams, formed after the frazil ice accumulation, and ice
discs, which can reduce the cross-sectional area of a river and further intensify riverbed
scouring [2]. They can also raise upstream water levels, which may cause significant
flooding [3,4] and the destruction of dykes [5]. In addition, frazil ice poses a threat to
bottom fauna [6] and hydraulic structures [7].

Most research on frazil particles has been carried out in laboratories and is mainly
related to the supercooling process, frazil nucleation [8,9], frazil ice formation and evo-
lution [10–13], the size distribution of disk-shaped frazil particles under different flow
conditions [14,15], and the concentration of suspended particles [16]. Many experiments
also studied the factors affecting the formation, evolution, size, and concentration of
frazil particles, mainly included temperature, supercooling process [17–19], turbulence
intensity [17–20], and particle rise velocities [21,22].

Due to uncertainties associated with field experiments, it is extremely difficult to
observe frazil particles directly, meaning that the quantitative results of field work are much
less than those from laboratory research. Osterkamp [23] has reported on the nucleation of
frazil particles, and, Schaefer [24], Osterkamp and Gosink [25] has took underwater images
of frazil particles in a river channel. They observed particles of various sizes and gave brief
descriptions of their crystalline shape; however, the specific observation method was not
described and images of the cold, nucleated particles were not given. Field observations of
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frazil ice size were also conducted by Dubé et al. [26] and Kempema and Ettema [27]. A new
type of diving imaging system, the FrazilCam provided the first quantitative measurements
of the size distribution of frazil particles in a river [28], and, in recent years, upward-facing
sonar devices have been used to estimate the size of frazil particles in rivers [29–31].

In addition, Omstedt and Svensson [32–34] used mathematical models to simulate the
formation of frazil ice and grease ice on water surfaces. Later, a simulation model for the
formation and evolution of ice in open channels was developed by Hammar and Shen [35].
More recently, frazil and anchor ice formation was theoretically simulated by Makkonen
and Tikanmaki [36]. It is worth noting that the mechanisms proposed in this study partly
differ from the conventional views in the literature.

In summary, due to the different longitudes and latitudes of rivers and the different
meteorological and hydrological conditions in flow areas, the size and distribution of
frazil particles very [37,38]. Although some researchers have produced images of frazil
particles, there have been no detailed reports on their morphology, which, to some extent,
affects the accuracy of numerical models of their formation and evolution. As such, it is
necessary to measure the microstructural characteristics of frazil particles in different rivers
to determine the properties of frazil ice (ice crystal microstructures, air bubbles, ice density,
and sediment content) [39], which can affect the physical, mechanical, thermodynamic,
and optical properties of ice [40–43].

Here, a field observation of the Yellow River ice was carried out and its findings
are presented in this paper. The river is located in a mid-latitude region in China and is
known as the river with the world’s largest sediment content. In previous studies, the ice
microstructure of the river ice was observed [44,45], but our study present the results of
observing the microstructural and physical properties of frazil particles and frazil ice in the
Inner Mongolia section of the Yellow River for 46 days during the winter of 2020–2021.

2. Materials and Methods
2.1. Technology of Unidirectional Freezing

When an ice block is artificially frozen, such as when a bucket filled with water is
directly placed in a low-temperature environment, heat will be transmitted to the inside of
the bucket from all directions. Ice crystals will also start to grow from the surface, bottom,
and side walls of the bucket toward the inside. To achieve unidirectional ice freezing, a
unidirectional freezing experiment was carried out in an indoor low-temperature laboratory
by Li et al. [46]. According to the thermostatic technology proposed by Li, a freezing
device to prevent ice growing from the plexglass bucket’s side and bottom was designed
(Figure 1a). In order to ensure the plexiglass was in full contact with the water, we punched
some holes through the bracket, besides, the plexglass had no bottom, i.e., a plexiglass
tube was used. The water in the bucket and the plexiglass were the same medium. The
working principle is that the water served as an insulation layer, and the plexiglass bucket
was surrounded by water that was not directly in contact with the cold air. As the freezing
point of water is 0 ◦C, as long as the water in contact with the side walls and bottom of the
plexiglass bucket did not freeze, ice crystals in the plexiglass bucket will not grow from the
side walls and bottom. It should be noted that, during the freezing process, the resistance
wire was heated every 1 h to melt the ice in tube to release the pressure caused by freezing.
Finally, a unidirectional frozen ice crystal may be obtained, as shown in Figure 1b,c.
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Figure 1. Experiment of unidirectional freezing in a low-temperature indoor laboratory: (a) the 
unidirectional freezing device; (b) ice crystal microstructure parallel to the direction of ice growth; 
(c) ice crystal microstructure perpendicular to the direction of ice growth at 0.5 and 15cm. 

2.2. Preparation of Frazil Ice Materials 
The field testing of frazil particles and frazil ice was carried out at Toudaoguai 

section in the Inner Mongolia of the Yellow River. Based on the field water extractor 
structure [47], a frazil particle sampler was designed and the process of frazil particles 
collection is shown in Figure 2. First of all, the frazil particle extraction position was 
selected and the position was marked by a GPS. Second, two holes were manually drilled: 
the ice hole upstream was used to collect the particles, while the downstream hole was 
used to pump water into a plastic bucket. Third, wooden brackets were fixed in the 
plastic bucket, and the plastic bucket was filled with water from the Yellow River. Then, 
the bottom of the frazil particle sampler was gently placed along the edge of the 
upstream hole into the bottom of the frazil particles. Next, a plexiglass tube was placed in 
the hole alongside a lead screw. In the following step, the plexiglass cylinder was slowly 
moved up and down to ensure that it was well sealed with the bottom of the sampler. 
Finally, the frazil particles were lifted out of the water and placed on the wooden 
brackets in the plastic bucket for subsequent observation or unidirectional freezing of 
frazil ice in a natural environment. 

Figure 1. Experiment of unidirectional freezing in a low-temperature indoor laboratory: (a) the
unidirectional freezing device; (b) ice crystal microstructure parallel to the direction of ice growth;
(c) ice crystal microstructure perpendicular to the direction of ice growth at 0.5 and 15cm.

During the winter of 2020–2021, this device was used in the Yellow River field experi-
ments, and observations of the ice crystal microstructure at a depth of 40–54 cm showed
that the ice in the sampler was formed with unidirectional freezing (Figure 11).

2.2. Preparation of Frazil Ice Materials

The field testing of frazil particles and frazil ice was carried out at Toudaoguai section
in the Inner Mongolia of the Yellow River. Based on the field water extractor structure [47],
a frazil particle sampler was designed and the process of frazil particles collection is shown
in Figure 2. First of all, the frazil particle extraction position was selected and the position
was marked by a GPS. Second, two holes were manually drilled: the ice hole upstream
was used to collect the particles, while the downstream hole was used to pump water into
a plastic bucket. Third, wooden brackets were fixed in the plastic bucket, and the plastic
bucket was filled with water from the Yellow River. Then, the bottom of the frazil particle
sampler was gently placed along the edge of the upstream hole into the bottom of the
frazil particles. Next, a plexiglass tube was placed in the hole alongside a lead screw. In
the following step, the plexiglass cylinder was slowly moved up and down to ensure that
it was well sealed with the bottom of the sampler. Finally, the frazil particles were lifted
out of the water and placed on the wooden brackets in the plastic bucket for subsequent
observation or unidirectional freezing of frazil ice in a natural environment.
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Figure 2. Process of frazil particle collection in the field: (a) drilling the hole in the ice; (b) fixing the 
wooden brackets and collecting the Yellow River water; (c) placement of the frazil particle sampler; 
(d) plexiglass tube insertion; (e) adjusting the ice sampler; (f) retrieval of the frazil particles. 

2.3. Observation Method of Frazil Particles Morphology 
A digital image processing system, developed by Morris in 2003 [48] and improved 

and modified by Clark [14] and McFarlane et al. [28,49], was used to analyze the images 
taken in the series of experiments. A similar method of image processing can be found in 
[50]. Before obtaining the images, the frazil particles in the sampler needed to be 
separated. Through many experiments, we proved that the most appropriate 
temperature for separating frazil particles is between −4 and −8 °C. When the 
temperature is lower than −8 °C, the particles freeze together quickly when taken out and 
can not be separated easily. When the temperature is higher than −4 °C, the separated 
particles melt and easily evaporate. When the temperature was between −4 and −8 °C, we 
took some particles from the sampler and put them on a black acrylic plate with a ruler, 
where they were gently separated by tweezers. It is worth noting that while separating 
the frazil particles, it was necessary to throw away those that had been artificially 
damaged. Next, the separated frazil particles were placed on a microscope platform. 
Magnification was set at about 200× until they could be clearly observed. At the same 
time, the frazil particle images were recorded by a computer and the images were 
enhanced by Adobe Photoshop CS. Finally, the microstructures of the frazil particle 
images were statistically analyzed by a MATLAB algorithm. Figure 3 shows the process 
for the frazil particle observation. 

 
Figure 3. Process of frazil particles observation: (a) frazil particles on the black acrylic plate; (b) 
separated frazil particles; (c) the setup to observe the frazil particles under the microscope. 

2.4. Ice Crystal Microstructure and Air Bubble Observation Method 
As shown in Figure 4a, the ice block in the sampler was obtained. In the field 

laboratory, where the temperature was below −6°C, ice slices were made by referring to 
the observation technique for ice crystal microstructure shown in [44]. The standard 

Figure 2. Process of frazil particle collection in the field: (a) drilling the hole in the ice; (b) fixing the
wooden brackets and collecting the Yellow River water; (c) placement of the frazil particle sampler;
(d) plexiglass tube insertion; (e) adjusting the ice sampler; (f) retrieval of the frazil particles.

2.3. Observation Method of Frazil Particles Morphology

A digital image processing system, developed by Morris in 2003 [48] and improved
and modified by Clark [14] and McFarlane et al. [28,49], was used to analyze the images
taken in the series of experiments. A similar method of image processing can be found
in [50]. Before obtaining the images, the frazil particles in the sampler needed to be
separated. Through many experiments, we proved that the most appropriate temperature
for separating frazil particles is between −4 and −8 ◦C. When the temperature is lower
than −8 ◦C, the particles freeze together quickly when taken out and can not be separated
easily. When the temperature is higher than −4 ◦C, the separated particles melt and easily
evaporate. When the temperature was between −4 and −8 ◦C, we took some particles
from the sampler and put them on a black acrylic plate with a ruler, where they were gently
separated by tweezers. It is worth noting that while separating the frazil particles, it was
necessary to throw away those that had been artificially damaged. Next, the separated
frazil particles were placed on a microscope platform. Magnification was set at about 200×
until they could be clearly observed. At the same time, the frazil particle images were
recorded by a computer and the images were enhanced by Adobe Photoshop CS. Finally,
the microstructures of the frazil particle images were statistically analyzed by a MATLAB
algorithm. Figure 3 shows the process for the frazil particle observation.
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Figure 3. Process of frazil particles observation: (a) frazil particles on the black acrylic plate; (b) sepa-
rated frazil particles; (c) the setup to observe the frazil particles under the microscope.

2.4. Ice Crystal Microstructure and Air Bubble Observation Method

As shown in Figure 4a, the ice block in the sampler was obtained. In the field labo-
ratory, where the temperature was below −6 ◦C, ice slices were made by referring to the
observation technique for ice crystal microstructure shown in [44]. The standard method
for observing ice microstructures is the universal stage proposed by Langway [51], which
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was used to observe the ice crystal microstructure and air bubbles. In a dark environment,
the ice slices were placed on a universal stage as shown in Figure 4b. The ice crystal
microstructure was observed under polarized light and air bubbles were observed under
natural light; meanwhile, the ice crystal microstructure and air bubble images were saved.
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Figure 4. Observation of frazil ice crystal microstructure: (a) the original ice block; (b) universal stage
for ice slice observation.

2.5. Ice Density and Mud Content Observation Methods

The measurement of ice density mainly includes mass/volume, submersion, specific
gravity, freeboard, and ice thickness method [52]. Considering that the sediment content in
ice also needs to be measured, a mass/volume method was used to obtain the ice density.
Along the growth direction of the ice thickness, the ice sample was segmented by a bone
saw into small test blocks with a height of 5–10 cm from the surface to the bottom. The test
block was processed into a cuboid with a size of 10 × 10 cm × height. Then, the length and
height of the test block were measured with a vernier caliper; its mass was measured with
an electronic scale; and its density was calculated using the $ = m/v formula. After the test
block was melted in a plastic box, the dry sediment weight was measured after filtering
and drying, and the sediment content per unit volume of ice was obtained.

3. Results
3.1. Frazil Ice Nucleation

In the observation experiment of the frazil particles, the ice particles shown in
Figure 5a and the materials wrapped in frazil particles, shown in Figure 5b, were locally
enlarged under a microscope.
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Figure 5. Nucleation of frazil particles: (a) ice particles; (b) other cold particles.

It can be seen in Figure 5a that the equivalent diameter of the enlarged ice particles
is 1.2 mm. There were many microbubbles in the ice particles after local enlargement
because of the highly turbulent natural water [53,54]. Makkonen and Tikanmaki [36], and
Chow et al. [55] suggested that the nucleation of ice may be produced by turbulence in
slightly supercooled cases, and Chow et al. [55] suggested that the bubbles that initiated
nucleation did not disappear. As such, these bubbles were probably wrapped in the crystal
during the nucleation of the frazil particles. The locally enlarged image in Figure 5b shows
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numerous sediment particles and other impurities. Due to the limited magnification of
the microscope, it was impossible to measure the size of these particles accurately, but it
could be determined that the equivalent diameters of these particles were less than 0.1 mm.
McFarlane et al. [28] and Kempema et al. [56] found that the sediment concentration in
the water decreases when frazil particles are formed. This may be caused by part of
the sediment is wrapped in the frazil crystals, or by frazil particles being formed with
sediment as a nucleus. In addition, Reimnitz et al. [22] observed that frazil flocs can collect
more sediment.

Hence, we also suggested that frazil ice nuclei can be ice particles or other cold
particles such as microbubbles, organic material, or sediment. In addition, Hanley [8],
Daly [9], Osterkamp and Gosink [25], and McFarlane et al. [28] also suggested that ice
crystals and snow that have fallen from the air into rivers could act as seed crystals.

3.2. Microstructural Characteristics of Single Frazil Particles

The area, perimeter, major axis, and minor axis data for each frazil particle were
extracted by MATLAB, and the equivalent diameter, slenderness ratio, and roundness of
each frazil particle were calculated using the following formulae.

D = 2
√

S/π (1)

Sr = M1/M2 (2)

R = 4πS/l2 (3)

where D is the equivalent diameter; Sr is the slenderness ratio; R is the roundness; S is the
area; M1 is the length of the minor axis; M2 is the length of major axis; and l is the perimeter.

Based on the analysis and the threshold segmentation of the shape, diameter, slen-
derness radio, and roundness of the frazil particles in the Yellow River, the frazil particles
can be divided into four types as shown in Figure 6 and Table 1, i.e., granular, dendritic,
needle-like, and serrated.
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Table 1. Microstructural classification of the frazil particles.

Shape # of Images Percentage (%) Diameter (mm) Slenderness Ratio Roundness

Granular 298 77.8 3.2 ± 2.1 0.6 ± 0.1 0.6 ± 0.1
Serrated 43 11.2 15.6 ± 4.3 0.3 ± 0.1 0.3 ± 0.1

Needle-like 35 9.2 8.3 ± 2.6 0.2 ± 0.1 0.2 ± 0.1
Dendritic 7 1.8 14.1 ± 3.2 0.3 ± 0.1 0.2 ± 0.1

Granular frazil particles are shown in Figure 6a–d, and are similar to an ellipse.
Compared with other types of frazil particles, their equivalent diameters were the smallest,
but the slenderness ratio and the roundness were the largest. The equivalent diameters of
the serrated frazil particles shown in Figure 6g,h were larger, and the equivalent diameter
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of the largest serrated frazil particle can be up to 25 mm. A needle-like frazil particle is
shown in Figure 6f. Its slender shape results in the lowest slenderness ratio and roundness,
which were both less than 0.2. The dendritic frazil particle shown in Figure 6e features
a larger grain perimeter, which leads to smaller roundness, and a larger area results in a
larger equivalent diameter than the granular and needle-like frazil particles.

In the research of frazil particles mentioned in the introduction of this paper, the
field measurements of the major particle size ranged from 0.1 to 6 mm, and the laboratory
measurements of that ranged from 0.022 to 5.5 mm. Here, the mean equivalent diameter of
the granular frazil particles was 3.2 mm, and the standard deviation was 2.1 mm, which
was similar to previous observations, especially the mean diameter of 3.15 mm and the
standard deviation of 2.5 mm observed by Morse and Richard in the field [37].

The percentages of different particles were also calculated, among which the percent-
age of granular frazil particles was the largest (77.8%), indicating that the majority of frazil
particles observed in the field were granular. In previous studies, the majority of particles
were described by researchers as disk-shaped. In this study, we found that there were still a
large number of particles where the boundaries were not smoothly disk-shaped, thus were
described as granular. As such, the percentage of major frazil particles in the Yellow River
were consistent with the laboratory measurements of McFarlane et al. (2015) [20], who
found that the percentage of the major frazil particles was 75%, and the field measurements
of McFarlane et al. (2017) [28] who found the percentage of the major frazil particles to be
between 61 and 87%. The serrated and needle-like frazil particles had similar percentages
of around 10%. The percentage of dendritic frazil particles was the lowest with less than
2%. As shown in Figure 6e, the structure of the dendritic frazil particles was obviously
unstable. Under the action of turbulence, dendrites are easily broken.

In addition, our findings were similar to those of Schaefer [24]. Until the diameters of
the frazil particles reached 2 mm, it was rare to find secondary protruding structures devel-
oping around the edges. As the frazil particles grew, though, such secondary structures
appeared, and may formed the dendritic and serrated particles, as shown in Figure 6e–g.

The diameter, slenderness ratio, and roundness values for the granular, serrated and
dendritic frazil particles were fitted by a log-normal distribution; however, the content
of dendritic frazil particles was too low, and the observation of dendritic frazil particles
was insufficient, which did not allow a reasonable fit for the data; thus, the fitting of
data for dendritic frazil particles was not performed. All of the characteristic parameter
distributions were well described by a log-normal distribution, which was consistent with
the measurements of many previous studies [14,20,28,49]. As can be seen from Table 1, the
distribution range of slenderness ratio and roundness were similar, and their log-normal
distribution results also showed a high degree of similarity. The log-normal distribution
fitting results for the diameter and roundness of granular frazil particles are shown in
Figure 7.
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3.3. Microstructural Characteristics of Accumulated Frazil Particles

Frazil particles are free-floating particles in early development. As their number
increases, they agglomerated together with weakly bonding in turbulent streams. Some
representative frazil particles that agglomerated together are shown in Figures 8–10. Under
the effect of turbulence, varying agglomeration angles were formed and with an increase in
the number of agglomerations, the maximum angle between two adjacent frazil particles
gradually decreases and should not exceed 150◦; for three frazil particles, the angle should
not exceed 120◦. When multiple frazil particles aggregated, the maximum angle between
two adjacent frazil particles should not exceed 90◦. The shape and size of agglomerated
frazil particles will change. An increase in agglomerated frazil particles will also produce
an increase in the size, roundness, and slenderness ratio. Finally, due to the influence of
temperature and submersion in water, the particles will gradually freeze together to form
frazil ice.
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3.4. Ice Crystal Microstructure and Air Bubble in Frazil Ice

The ice crystal microstructure and air bubbles are shown in Figure 11. The microstruc-
ture of the ice corresponds to the original block of ice shown in Figure 5a, which shows
that an ice thickness of 34 cm is an obvious boundary; the color of the original ice block at
0–34 cm is turbid; and the color of the original ice block at 34–54 cm is transparent. From
the microstructure of the ice, it is obvious that the ice crystal microstructure at 0–34 cm is
completely different from that at 34–54 cm.

Frazil ice was found in the 0–34 cm range. No mater whether the ice crystal mi-
crostructure was perpendicular or parallel to the ice surface, the shapes of ice crystals were
extremely irregular. The grain sizes of most of the ice crystals were small, accompanied by a
small number with a large grain size, and there were overlapping crystals at the grain edge.
This was related to the formation of frazil ice formed by freezing frazil particles through the
connection with Yellow River water. Due to the different shape of frazil particles, the ice
crystals may not form one individual frazil particle, but may instead contain overlapping
parts of other frazil particles. As such, the crystal microstructure of frazil ice is messy. In
addition, some crystals in the frazil ice were inclined at certain angles, but the direction of
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the tilt was irregular, which may be related to the effect of turbulence under the ice cover
of the Yellow River during the freezing period. According to the classification of river ice
and lake ice by Michel and Ramseier [57], this ice structure belongs to the P3 category.
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microstructure (top) and air bubbles (bottom) in the ice parallel to the ice surface.

The ice crystals in the range of 34–37 cm were regular. It could be seen that the ice
crystals perpendicular to the ice surface were close to rectangles, while the ice crystals
parallel to the ice surface were granular with clear boundaries. Although their sizes were
small, they were uniform and there were no large ice crystals. This represents the transition
stage from granular ice to columnar ice, and the ice crystals gradually extended along
the direction of heat conduction. With the increase of ice thickness, a preferred growth
orientation of some crystals appeared due to geometric selection. The growth in this
preferred direction extended past the growth in other directions, causing the formation of
columnar crystals [58], which can be seen in Figure 11 when the ice thickness is 37–54 cm.
The ice crystals perpendicular to the ice surface continuously extended along the direction
of heat conduction, while the ice crystals parallel to the ice surface were nearly elliptical
and featured clear boundaries. According to the classification of river ice and lake ice by
Michel and Ramseier [57], this ice structure belongs to the S1 category.

To further analyze the characteristics of the ice crystal grain size and bubble content,
the ice crystal microstructure and air bubble images in Figure 11 were processed by Adobe
Photoshop CS and MATLAB, and, their ice crystal grain size and bubble content were
measured. The variation in the mean equivalent diameter of the ice crystals and bubble
content in ice along the depth was obtained as shown in Figure 12.



Crystals 2021, 11, 617 10 of 13

Crystals 2021, 11, x FOR PEER REVIEW 11 of 14 
 

 

and that of columnar ice is 2.57 ± 1.09%. The formation of bubbles in ice is related to the 
formation of ice sheets, and is primarily produced in two ways [60,61]. In the initial 
stage of freezing, powerful wind and water turbulence bring a large amount of air into 
the water, forming a air–water mixing layer where rapid and sudden freezing captures 
most of the air. After the ice sheet is formed, bubbles dissolved in water are released and 
rise to the downward–moving freezing front (the ice–water interface) to be incorporated 
into the ice. As shown in Figure 5a, a large number of bubbles were wrapped in ice 
particles during supercooling, which is when the bonding force between ice crystals is 
lower, and, this caused frazil ice pores increase. This is the main reason that there are 
more bubbles in frazil ice than in columnar ice. 

 
Figure 12. Variation in crystal grain size and bubble content with depth: (a) ice crystal grain size; 
(b) bubble content. 

3.5. Ice Density and Sediment Content in Ice 
The variation in ice density and sediment content with depth is shown in Figure 13. 

Note that the density values of the frazil and columnar ice were both lower than that of 
pure ice (917 kg/m3) [40]. The density of frazil ice ranged from 856.4 to 880.3 kg/m3, which 
was less than that of columnar ice, which ranged from 891.1 to 896.0 kg/m3; however, the 
sediment content of frazil ice ranged from 0.538 to 0.854 kg/m3, which was larger than 
that of columnar ice, which ranged from 0.063 to 0.104 kg/m3. These results were also 
consistent with the statistical results of Zhang et al. [59]. The density and sediment 
content of frazil ice fluctuated strongly, but the general trend was a gradual increase with 
depth. It was also found that the trend for frazil ice density was similar to the trend for 
sediment content in frazil ice. When the sediment content in ice was large, the ice density 
was also relatively large. In contrast, the sediment content in the columnar ice was very 
low, but the density of the columnar ice gradually increased with depth. This is because 
ice density is not only affected by sediment content, but also by bubble content. The 
bubble content of frazil ice was larger and its density was lower. The influence of 
sediment content on columnar ice density was not significant; and the bubble content of 
columnar ice was very low; thus, the ice density of columnar ice was greater than that of 
frazil ice. 

Figure 12. Variation in crystal grain size and bubble content with depth: (a) ice crystal grain size;
(b) bubble content.

It can be seen that the mean equivalent diameters of frazil ice crystals ranged from
2.2 to 2.6 mm and fluctuated slightly according to depth. The equivalent diameters of
columnar ice ranged from 3.6 to 24.8 mm, which was slightly larger than that previously
reported in other regions [44], and obviously increased with depth. With the growth of
columnar ice, ice thickness gradually increased, and thus heat conduction became weaker.
The growth rate of ice crystals became slower, such that the ice crystals had sufficient time
to develop. These ice crystals restricted one another and competed for growth. The number
of ice crystals constantly decreased as their equivalent diameter of the ice crystals grew
larger; however, the frazil ice here was formed by a combination of ice particles and Yellow
River water, where the equivalent diameters of frazil ice were mainly related to the size of
the frazil particles; and thus, the equivalent diameters of frazil ice are small.

Regarding the bubble content in ice, the bubble content in frazil ice varied from 3.72
to 5.68% and fluctuated at depth larger than that of columnar ice; however, the bubble
content in columnar ice varied from 1.63 to 2.07% and decreased gradually with depth.
This was consistent with the statistical results of Zhang et al. [59] for Yellow River ice
from 2015 to 2020, which suggested that the bubble content of frazil ice is 5.29 ± 2.57%
and that of columnar ice is 2.57 ± 1.09%. The formation of bubbles in ice is related to the
formation of ice sheets, and is primarily produced in two ways [60,61]. In the initial stage
of freezing, powerful wind and water turbulence bring a large amount of air into the water,
forming a air–water mixing layer where rapid and sudden freezing captures most of the
air. After the ice sheet is formed, bubbles dissolved in water are released and rise to the
downward–moving freezing front (the ice–water interface) to be incorporated into the ice.
As shown in Figure 5a, a large number of bubbles were wrapped in ice particles during
supercooling, which is when the bonding force between ice crystals is lower, and, this
caused frazil ice pores increase. This is the main reason that there are more bubbles in frazil
ice than in columnar ice.

3.5. Ice Density and Sediment Content in Ice

The variation in ice density and sediment content with depth is shown in Figure 13.
Note that the density values of the frazil and columnar ice were both lower than that of
pure ice (917 kg/m3) [40]. The density of frazil ice ranged from 856.4 to 880.3 kg/m3, which
was less than that of columnar ice, which ranged from 891.1 to 896.0 kg/m3; however, the
sediment content of frazil ice ranged from 0.538 to 0.854 kg/m3, which was larger than
that of columnar ice, which ranged from 0.063 to 0.104 kg/m3. These results were also
consistent with the statistical results of Zhang et al. [59]. The density and sediment content
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of frazil ice fluctuated strongly, but the general trend was a gradual increase with depth. It
was also found that the trend for frazil ice density was similar to the trend for sediment
content in frazil ice. When the sediment content in ice was large, the ice density was also
relatively large. In contrast, the sediment content in the columnar ice was very low, but
the density of the columnar ice gradually increased with depth. This is because ice density
is not only affected by sediment content, but also by bubble content. The bubble content
of frazil ice was larger and its density was lower. The influence of sediment content on
columnar ice density was not significant; and the bubble content of columnar ice was very
low; thus, the ice density of columnar ice was greater than that of frazil ice.
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4. Conclusions

The ice conditions of the Yellow River are complex, and it is necessary to understand
the physical properties of Yellow River ice, which is of great significance for further
study. The microstructural characteristics of frazil particles and the physical properties of
frazil ice in the Yellow River were observed in this work, and the main conclusions are
summarized below.

(1) Frazil ice nuclei can be ice particles or other cold particles, such as microbubbles,
organic material, or sediment particles;

(2) Based on their shape, diameter, slenderness ratio, and roundness, the frazil par-
ticles may be divided into four types as seen in Table 1, where each has its own
characteristic parameters;

(3) A large number of frazil particles may agglomerate in turbulent streams. As the num-
ber of agglomerated particles increases, the maximum angle between two adjacent
frazil particles will gradually decrease;

(4) Following the unidirectional freezing technology summarized in the laboratory, uni-
directionally_frozen frazil and columnar ice were obtained. Compared with the
columnar ice, the ice crystal structure of frazil ice is disorderly; the crystal size is
small; and the diameter is 2.2–2.6 mm;

(5) Ice density is affected by both the bubble and sediment contents. The nucleation
mechanism of frazil particles, coupled with the large amount of sediment in the
Yellow River, resulted in significantly larger bubbles and sediment content in frazil
ice than in columnar ice.
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