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Abstract: Pervious concrete is made of cementitious materials, coarse aggregate, water and additives,
with characteristic macro- and meso-connected pore structure, which enables the acceptable mechan-
ical properties and high water permeability for pavement and road applications. In this study, the
effect of rheology of fresh alkali-activated slag paste on the sedimentation of paste on the bottom of
pervious concrete, meso-structure, connected porosity, mechanical properties and water permeability
was investigated by a range of analytical techniques through varying the equivalent alkali content to
control the rheology of fresh paste in the pervious concrete. The compressive strength of pervious
concrete was related to the percentage area of paste and the average thickness of paste on the surface
of coarse aggregate. The tensile strength and water permeability were correlated to the connected
porosity of pervious concrete and the rheology of fresh paste. A relative lower fluidity, higher vis-
cosity and shear stress of fresh alkali-activated slag paste favoured lower sedimentation of paste on
the bottom of pervious concrete, higher connected porosity, tensile strength and water permeability.
There was no correlation between compressive strength and tensile strength of pervious concrete.

Keywords: rheology; sedimentation; thickness of paste; connected porosity; water permeability

1. Introduction

Pervious concrete is an eco-friendly construction material that consists of cementitious
materials, coarse aggregate, water and additives [1]. The characteristic connected macro-
pore structure of pervious concrete enables the high water permeability and acceptable
mechanical properties as pavement materials, which are widely used in car parks, gardens
and sometimes roads [2,3]. The porosity of pervious concrete is usually between 15% and
35%, with a water permeability of 2–70 mm·s−1, compressive strength of 5–30 MPa and
tensile strength of 2–5 MPa [4–10]. Pervious concrete could also immobilize heavy metals
in the water, absorb noise and isolate heat, according to previous studies [11–15].

Alkali-activated materials are made of alkali-activators and aluminosilicate materials
as precursors, which react to form Si–O–Al bonding in the materials [16–20]. The most
common alkali activators include sodium hydroxide, sodium silicate, sodium sulphate and
their potassium counterparts. The aluminosilicate precursors are usually natural minerals
or industrial by-products, such as calcined clay, metakaolin, fly ash, bottom ash, slag and
rice husk ash. Due to the industrial by-products’ nature as the precursors of alkali-activated
materials, pervious concrete is usually treated as an eco-friendly construction materials
that could potentially partially or even fully replace Portland cement in the future [21].
High early and late age strength, low creep and shrinkage and high sulphate resistance
are the characteristic advantages of alkali-activated materials [20,22–26]. There are also
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disadvantages associated with the alkali-activated materials, such as efflorescence during
the service life and higher risk in handling alkaline solutions during preparation.

The fluidity, viscosity of the fresh paste, setting time and mechanical properties of
alkali-activated materials were affected by the equivalent alkali content, modulus of water
glass and water:binder ratio [19,27–32]. A previous study on the equivalent alkali content
and modulus of activator on the properties of fresh paste suggested that the fluidity
changed with the increase in equivalent alkali content [27]. Another research on the
relationship between the fresh and hardened properties and the equivalent alkali content
suggested that the fluidity and compressive strength increased with the equivalent alkali
content [33]. The differences of rheology between various cementitious materials were also
investigated and the results indicated that the shear stress of water glass-activated slag was
higher than that of Portland cement and sodium hydroxide-activated slag, which could be
related to the formation of C–S–H in the former [30].

Preparing pervious concrete with alkali-activated materials has been investigated
previously [13], and the mechanical properties, water permeability, durability and heavy
metal removal efficiency of alkali-activated fly ash-based pervious concrete have been
reported. There are also researches focused on the macro- and mesopore structures of
pervious concrete [34], which is vital for the properties. The macropores are in the size of
centimetres and the mesopores are in the size of millimetres. The macro- and mesopore
structure of pervious concrete defines the mechanical properties and water permeability.
Due to the nature of mesostructure of pervious concrete, where layers of cementitious
materials cover the surface of coarse aggregate [34], the rheology properties of cementitious
materials are important for the pervious concrete as they control the homogeneity, thickness
of paste on the surface of aggregate and the connected pore structure, which in turn affects
the mechanical properties and water permeability of pervious concrete [4,5,8,15]. However,
there are few literatures on the effect of fluidity and rheology of alkali-activated materials
on the mesostructure of pervious concrete, particularly the properties of it.

In this study, aiming to utilize the industrial by-product so as to reduce the energy
demand of Portland cement production and save resources, pervious concrete was designed
and prepared by using alkali-activated slag as cementitious materials, and the effect of
equivalent alkali content (as Na2O content) of paste in pervious concrete on the rheology
of paste, sedimentation of paste on the bottom of pervious concrete, mesostructures,
mechanical properties and water permeability of pervious concrete were investigated by
a range of analytical techniques. The relationship between the rheology of paste and the
sedimentation of paste on the bottom of pervious concrete, the mesostructure and the
thickness distribution of paste were discussed. The aim of this study is to shed some light
on the relationship between the rheology of paste and the meso- and macrostructure of
pervious concrete, particularly the mechanical properties and water permeability.

2. Materials and Methods
2.1. Materials

Ground granulated blast furnace slag of grade S95 from Huaxin Cement Co., Yichang,
China, was used as precursor in this study. The chemical composition and particle size
distribution are shown in Table 1 and Figure 1, respectively. The particle size distribution of
slag was characterized by Malvern Mastersizer 2000 laser diffraction particle size analyser
(Malvern Panalytical, Malvern, UK) through dispersing slag particles in water.

Table 1. Chemical composition of slag.

Oxide CaO Si2O Al2O3 MgO SO3 TiO2 Fe2O3 Na2O L.O.I. *

wt% 38.7 35.5 14.8 6.7 2.2 0.79 0.27 0.26 0.88
* L.O.I.: loss on ignition.
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 Figure 1. Particle sized distribution of slag used in this study.

The particle size distribution of slag is similar to that of Portland cement. Chemical
and physical properties of water glass used are shown in Table 2, which were provided by
the supplier. Industrial grade sodium hydroxide with purity of 99% from Yihua Chemicals
Co., Xining, China, was used in this study. AR grade calcium gluconate from Sinopharm,
Shanghai, China, was used as retarder in this study. Limestone coarse aggregate in the size
of 4.75–9.5 mm from Wuhan, China, was used in this study (Figure 2), and the properties are
shown in Table 3, which were tested according to Chinese standard GB/T 14685-2011 [35].

Table 2. Chemical and physical properties of water glass.

Modulus Solid
Content

Na2O
Content

SiO
Content Density Transparency Fe

Content

2.2 53 wt% 24.5 wt% 53.9 wt% 1495 kg/m3 88% 0.08%
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Table 3. Properties of coarse aggregate.

Type Bulk
Density

Apparent
Density

Crushing
Value

Water
Absorption

Moisture
Content

Limestone 1560.5 kg/m3 2680 kg/m3 4.57% 3.2% 0.3%

2.2. Experimental Details
2.2.1. Specimen Preparation

The mix design of pervious concrete with various equivalent alkali content is shown
in Table 4. The water:slag ratio was set to 0.3. The method of mix design of pervious
concrete followed the previous study by Sun [36]. The microstructure of pervious concrete
was separated into various components, from which the volumes of components were
calculated, as shown in Figure 3.

Table 4. Mix design of pervious concrete (kg/m3).

Mix Slag Equivalent Na2O
Content NaOH Water Glass Retarder Water Aggregate DVR §

A4 305 4% 5.01 49.11 0.3 68.42 1529 22%
A6 305 6% 7.51 73.66 0.3 56.88 1529 21.5%
A8 305 8% 10.02 98.22 0.3 45.34 1529 21%
A10 305 10% 12.52 122.77 0.3 33.80 1529 20.4%

§ DVR: designed void ratio.

Crystals 2021, 11, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 2. Image of limestone coarse aggregate used in this study. 

Table 3. Properties of coarse aggregate. 

Type Bulk Density 
Apparent  

Density 

Crushing  

Value 

Water  

Absorption 

Moisture  

Content 

Limestone 1560.5 kg/m3 2680 kg/m3 4.57% 3.2% 0.3% 

2.2. Experimental Details 

2.2.1. Specimen Preparation 

The mix design of pervious concrete with various equivalent alkali content is shown 

in Table 4. The water:slag ratio was set to 0.3. The method of mix design of pervious 

concrete followed the previous study by Sun [36]. The microstructure of pervious concrete 

was separated into various components, from which the volumes of components were 

calculated, as shown in Figure 3. 

Table 4. Mix design of pervious concrete (kg/m3). 

Mix Slag 

Equivalent 

Na2O  

Content 

NaOH 
Water 

Glass 
Retarder Water Aggregate DVR § 

A4 305 4% 5.01 49.11 0.3 68.42 1529 22% 

A6 305 6% 7.51 73.66 0.3 56.88 1529 21.5% 

A8 305 8% 10.02 98.22 0.3 45.34 1529 21% 

A10 305 10% 12.52 122.77 0.3 33.80 1529 20.4% 
§ DVR: designed void ratio. 

 

Figure 3. The method of mix design of pervious concrete used in this study. Figure 3. The method of mix design of pervious concrete used in this study.

The mix design of pervious concrete in this study can be calculated by the following
equation according to the method suggested above:

MG
ρG

+
MSg

ρSg
+

MWg

ρWg
+

MNaOH + MW
ρNaOH,liquid

+ VVoid = 1, (1)

where MG, MSg, MWg, MNaOH and MW are the weight of coarse aggregate, slag, water glass,
sodium hydroxide and water per cubic meter of pervious concrete (kg), respectively; ρG,
ρSg, ρWg and ρNaOH,liquid are the apparent density of aggregate and slag, density of water
glass and sodium hydroxide solution, respectively; and VVoid is the designed void ratio (%).

The activator was prepared by thoroughly mixing water glass, water, sodium hydrox-
ide and retarder. A horizontal concrete mixer was used to prepare fresh concrete. During
the preparation of pervious concrete, the coarse aggregate and slag were dry mixed at
revolution speed of 62 ± 5 rpm and rotation speed of 140 ± 5 rpm for 1 min before the
activator was added and mixed at revolution speed of 125 ± 10 rpm and rotation speed of
285 ± 10 rpm for another 2 min. Then, the pervious concrete was transferred into moulds
sized 100 mm × 100 mm × 100 mm for compressive strength test and water permeability
test, and 100 mm × 100 mm × 400 mm for tensile strength test, sealed with polyethylene
film and stored in the laboratory at 20 ± 2 ◦C before being demoulded after 1 day of curing.
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The demoulded specimens were transferred to a curing room to be cured under standard
curing conditions at a temperature of 20 ± 2 ◦C and relative humidity of more than 95%
RH. The preparation of tensile strength test specimen was shown in Figure 4.
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Figure 4. Preparation of tensile strength test specimen.

A laboratory cement mixer was used to prepare fresh paste. Pastes of the same mix
design as those in Table 4 but without coarse aggregate were also prepared by mixing slag
with activator at revolution speed of 125 ± 10 rpm and rotation speed of 285 ± 10 rpm
for 2 min and transferring the paste into the moulds sized 40 mm × 40 mm × 160 mm
for compressive and tensile strength tests. The specimens in the moulds were sealed with
polyethylene film and stored in the laboratory under 20 ± 2 ◦C before being demoulded
after 1 day of curing. The demoulded specimens were transferred to a curing room to
be cured under standard curing conditions at a temperature of 20 ± 2 ◦C and relative
humidity of more than 95% RH.

2.2.2. Analytical Techniques

The fluidity of fresh pastes was measured according to Chinese standard GB/T 2419–
2005 [37] and the method used by Puertas [30]. Truncated cone for mortar fluidity test was
used to measure the fluidity of alkali-activated slag in this study. Firstly, a cone sized 70 mm
in inner diameter on top, 100 mm in inner diameter on bottom and 50 mm in height was
placed on the even glass surface. Secondly, fresh paste was filled in the cone immediately
after mixing. Thirdly, the cone was quickly and steadily lifted to let the paste flow on the
glass surface. Finally, the diameters of two cross directions of paste were measured and the
average was calculated as the fluidity of fresh paste.

The viscosity and shear stress of fresh pastes were evaluated by a Brookfield R/S-SST
rotary viscosimeter with a V20×10 vane spindle rotor from Brookfield, Middleboro, MA,
USA. The pastes were firstly pre-sheared under shear speed of 15 s−1 for 30 s, and then the
measurement of rheological properties was performed as follows. The shear speed was
gradually increased from 0 s−1 to 100 s−1 in 60 s, and then the shear speed was gradually
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decreased from 100 s−1 to 0 s−1 in 60 s. The viscosity and shear stress were analysed by
Rheo2000 software (Version 2.8, Brookfield, Middleboro, MA, USA). The shear history of
paste for rheology test is shown in Figure 5.
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Figure 5. Shear procedure for the rheology test on the paste.

The sedimentation of paste on the bottom of pervious concrete sized 100 mm ×
100 mm × 100 mm was evaluated by calculating the percentage of area of paste on the
bottom of pervious concrete after scanning and binarizing the images on the bottom of
pervious concrete as shown in Figure 6.
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Figure 6. (a) The diagram of surfaces for sedimentation of paste and mesostructure analysis, and (b) the real specimen
after cutting.

The mesostructure of pervious concrete was evaluated by vertically cutting the pervi-
ous concrete sized 100 mm × 100 mm × 100 mm (Figure 7). Then the images of cut surfaces
were taken by optical microscope and analysed in ImageJ and Matlab to obtain the images
of aggregate, paste and pore distribution.
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Figure 7. (a) The diagram of the method of cutting the surfaces for the thickness distribution of the paste analysis, and
(b) the real specimen after cutting.

The thickness distribution of paste on the top and bottom of pervious concrete were
analysed by horizontally cutting the pervious concrete at one-third and two-thirds of the
height (Figure 7). Then, the thickness of paste on the coarse aggregate was measured
by hand on the top and bottom cut surfaces. The methodology of measurement was
the same as that reported by Torres [38]. Approximately 300 points were measured for
each surface. The average thickness of each surface was calculated, and the thickness
distribution was analysed.

The total porosity and connect porosity of pervious concrete were measured ac-
cording to the methodology suggested by Jang [34] and multiple standards [39,40] and
reports [41,42], where the total porosity, i.e., all the porosity in the pervious concrete, was
suggested to correlate to the strength of pervious concrete, and the connect porosity, i.e.,
the pores with at least one open to the surface of pervious concrete, was suggested to
correlate to the permeability of pervious concrete. Presumably, a pervious concrete with
higher connect porosity could result in higher water permeability. The total porosity and
connect porosity were calculated as follows:

Vconnect =

[
1 − (W2 − W1)ρW

V1

]
× 100%, (2)

Vtotal =

[
1 − (W3 − W1)ρW

V1

]
× 100%, (3)

where W1 is the weight of specimens in water, W2 is the weight of specimens after being
dried in air for 24 h, W3 is the weight of specimens after being dried under 105 ◦C for 24 h,
V1 is the volume of specimens and ρw is the density of water.

The compressive and tensile strength tests of pervious concrete were performed on
the specimens cured under standard curing conditions for 28 days, according to Chinese
standard JTG E30-2005 [43]. Specimens sized 100 mm × 100 mm × 100 mm were used for
the compressive strength test, and those sized 100 mm × 100 mm × 400 mm were used
for the tensile strength test. Three specimens were tested for each batch. The compressive
strength and tensile strength were calculated by the average of three specimens.

According to Chinese standard JTG E30-2005, during the compressive strength test,
the specimens were placed in the middle of the loading part of testing machine. The
loading rate was set to 0.3–0.5 MPa·s−1. Then, the force at the point of broken of specimen
was recorded and the compressive strength was calculated as follows for standard-sized
150 mm cubic specimens:

fcu =
F
A

, (4)
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where fcu is the compressive strength (MPa), F the force at the point of broken (N) and A
the cross section area of specimen (mm2).

For nonstandard-sized 100 mm cubic specimens, the compressive strength calculated
from Equation (3) should be timed at 0.95 as the compressive strength of pervious concrete.

For the tensile strength test, the specimens were bended with three-point bending
equipment and the setup is shown in Figure 8. The specimens were bended with a loading
rate of 0.02–0.5 MPa·s−1. Then, the force at the point of broken of specimen was recorded
and the tensile strength was calculated by Equation (4) for standard-sized 150 mm ×
150 mm × 600 mm specimens.

ft =
FL
bh2 , (5)

where ft is the tensile strength (MPa), F is the force at the point of broken (N), L is the
distance between the unmovable and moving supports (mm), b is the width of specimen
(mm) and h is the height of specimen (mm).

Crystals 2021, 11, x FOR PEER REVIEW 8 of 20 
 

 

The compressive and tensile strength tests of pervious concrete were performed on 

the specimens cured under standard curing conditions for 28 days, according to Chinese 

standard JTG E30-2005 [43]. Specimens sized 100 mm × 100 mm × 100 mm were used for 

the compressive strength test, and those sized 100 mm × 100 mm × 400 mm were used for 

the tensile strength test. Three specimens were tested for each batch. The compressive 

strength and tensile strength were calculated by the average of three specimens. 

According to Chinese standard JTG E30-2005, during the compressive strength test, 

the specimens were placed in the middle of the loading part of testing machine. The 

loading rate was set to 0.3–0.5 MPa·s−1. Then, the force at the point of broken of specimen 

was recorded and the compressive strength was calculated as follows for standard-sized 

150 mm cubic specimens: 

cu

F
f

A
 , (4) 

where fcu is the compressive strength (MPa), F the force at the point of broken (N) and A 

the cross section area of specimen (mm2). 

For nonstandard-sized 100 mm cubic specimens, the compressive strength calculated 

from Equation (3) should be timed at 0.95 as the compressive strength of pervious 

concrete. 

For the tensile strength test, the specimens were bended with three-point bending 

equipment and the setup is shown in Figure 8. The specimens were bended with a loading 

rate of 0.02–0.5 MPa·s−1. Then, the force at the point of broken of specimen was recorded 

and the tensile strength was calculated by Equation (4) for standard-sized 150 mm × 150 

mm × 600 mm specimens. 

 

Figure 8. Setup of tensile strength test for standard-sized specimens, where 1 and 2 are single steel 

balls, 3 and 5 are double steel balls, 4 is the specimen, 6 is the unmovable support, 7 is the moving 

support, 8 is the bottom of equipment and 9 is the moving support. 

2t

FL
f

bh
 , (5) 

where ft is the tensile strength (MPa), F is the force at the point of broken (N), L is the 

distance between the unmovable and moving supports (mm), b is the width of specimen 

(mm) and h is the height of specimen (mm). 

For nonstandard-sized 100 mm × 100 mm × 400 mm specimens, the tensile strength 

calculated from Equation (4) should be timed at 0.85 as the tensile strength of pervious 

concrete. 

Specimens sized 100 mm × 100 mm × 100 mm at 28 days were used for the water 

permeability test. The diagram of water permeability test is shown in Figure 9. In this 

study, two types of water head, namely constant head and falling head, were used to 

Figure 8. Setup of tensile strength test for standard-sized specimens, where 1 and 2 are single steel
balls, 3 and 5 are double steel balls, 4 is the specimen, 6 is the unmovable support, 7 is the moving
support, 8 is the bottom of equipment and 9 is the moving support.

For nonstandard-sized 100 mm × 100 mm × 400 mm specimens, the tensile strength cal-
culated from Equation (4) should be timed at 0.85 as the tensile strength of pervious concrete.

Specimens sized 100 mm × 100 mm × 100 mm at 28 days were used for the water
permeability test. The diagram of water permeability test is shown in Figure 9. In this study,
two types of water head, namely constant head and falling head, were used to evaluate the
water permeability of pervious concrete. The detailed methodology is outlined in Ref. [44].

In this study, the constant and falling head were set to 160 mm. The water permeability
of pervious concrete under constant head was calculated as follows:

K =
L
h
× Q

A(t2 − t1)
, (6)

where K (mm·s−1) is the water permeability of pervious concrete under constant head,
L (mm) is the length of specimen, Q (mm3) is the weight of water collected from the outlet
during time of t2−t1, h (mm) is the water head, t2−t1 (s) is the time of test and A (mm2) is
the area of top surface of specimen. In this study, t2−t1 was set to 30 s.
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and (b) the real setup.

The water permeability of pervious concrete under falling head was calculated as follows:

K =
Atube × L

A × t
× ln

(
h1

h2

)
, (7)

where K (mm·s−1) is the water permeability of pervious concrete under falling head,
L (mm) is the length of specimen, Atube (mm2) is the area of cross section of tube on top of
specimen, A (mm2) is the area of cross section of specimen and t (s) is the time duration
from the water head of h1 (mm) to h2 (mm). In this study, h1 and h2 were set to 160 mm
and 50 mm, respectively.

3. Results and Discussion
3.1. Workability of Fresh Paste

The effect of the amount of water glass on the workability of fresh paste in this study
is shown in Figure 10. The fluidity gradually increased with the amount of water glass (as
Na2O content) from 214 mm with 4 wt% Na2O to 338 mm with 8 wt% Na2O, then slightly
decreased to 322 mm with 10 wt% Na2O (Figure 10a). The increase in fluidity with the
water glass is due to the adsorption of silicate anions from sodium silicate on the surface of
slag particles, resulting in the formation of an electric double layer separating slag particles
with repulsive forces [45,46]. With the addition of 10 wt% Na2O, the pH of the liquid phase
increased and became supersaturated, resulting in the formation of C–S–H gel, which in
turn reduced the fluidity of the paste [45].

The development of apparent viscosity and shear stress of paste with the amount of
sodium silicate addition was due to the similar reason (Figure 10b,c). The viscosity and
shear stress gradually decreased with the amount of sodium silicate due to the formation of
an electric double layer between the slag particles, and then decreased with the addition of
10 wt% Na2O due to the supersaturation of liquid phase and formation of C–S–H gel [47].
The decrease in viscosity with the increase in water glass content could also be due to the
lower solid content, resulting from the higher degree of dissolution of slag with higher
content of activator [48]. The sharp change at the beginning of the curve of 6 wt% and
10 wt% composition could be due to the delay during the experiments when setting the
shear rate from 100 to 0 s−1 at the end of 0 to 100 s−1.
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3.2. Sedimentation of Paste

The fresh paste on the surface of aggregate in the pervious concrete could flow down
to the bottom of the specimen due to the gravity. With a suitable rheology of fresh paste,
the distribution of paste in the pervious concrete could reach homogeneity, which in turn
results in the ideal mechanical properties and water permeability. The fluidity, viscosity
and shear stress of fresh paste were vital to control the ideal and homogenous mechanical
properties and water permeability of pervious concrete. The ideal fresh paste should form a
homogenous thin layer of paste on the coarse aggregate, resulting in acceptable mechanical
properties and high water permeability.

To evaluate the effect of water glass amount on the sedimentation of fresh paste in
pervious concrete, the area percentage of paste and aggregate on the bottom of pervious
concrete with the same amount of fresh paste was measured to identify the suitable water
glass content for the pervious concrete. The optical and binary images of bottom of pervious
concrete with different water glass content (as Na2O content) are shown in Figure 11, and
the area percentage of paste and aggregate on the bottom of pervious concrete prepared
with different water glass content is shown in Figure 12.
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Figure 11. Optical (a–d) and respectively binary (e–h) images of the bottom of pervious concrete with different water glass
content (as Na2O content). The side length of images is 100 mm. (a,e) 4 wt% Na2O; (b,f) 6 wt% Na2O; (c,g) 8 wt% Na2O;
(d,h) 10 wt% Na2O.
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Figure 12. Sedimentation degree (as percent area of paste and aggregate) on the bottom of pervious
concrete with different water glass content.

The optical and respective binary images of the bottom of pervious concrete with
different water glass content are shown in Figure 11. It seems that both the pores and
paste were well connected in the bottom of the pervious concrete with 4 wt% Na2O content
(Figure 11a,e). In addition, the sedimentation of fresh paste on the bottom of pervious
concrete increased with the Na2O content (Figures 11f–h and 12). The area percentage
of paste and aggregate increased with the water glass content, from 58% for 4 wt% of
Na2O to 80% for 10 wt% of Na2O (Figure 12). It seems that the degree of sedimentation
is not directly related to the fluidity or viscosity but could be related to yield stress of
paste. With a higher fluidity, the fresh paste is easier to flow through the space between
coarse aggregates and fully cover the surface of coarse aggregate, and with a higher yield
stress, the paste does not flow by gravity to the bottom of pervious concrete to result
in a higher degree of sedimentation. The yield stress of fresh alkali-activated slag paste
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depends on the suspension composition, such as the composition of activator, the content
of activator, the particle shape and grading [49–53]. Fresh water glass-activated slag paste
can be described as Herschel–Bulkley liquid instead of Bingham liquid for fresh Portland
cement paste [30]. A lower content of slag in the fresh paste could result in a lower yield
stress [48], and the fresh paste with 10 wt% Na2O equivalent content of water glass has the
lowest slag/activator ratio, which in turn resulted in the highest sedimentation.

3.3. Mesostructure

The typical mesostructure of pervious concrete with 8 wt% Na2O as water glass
content is shown in Figure 13. The specimens of pervious concrete were vertically cut and
the percentages of aggregate, paste and pore were characterized by analysing the grey scale
of image of surface.
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Figure 13. Typical analysis of mesostructure on the pervious concrete with 8 wt% Na2O as water glass content. The side
length of images is 100 mm. (a) Optical image and binary images of (b) aggregate, (c) paste and (d) pore.

The percent areas of aggregate, paste and pore are shown in Figure 14a. The areas of
aggregate were similar for all pervious concrete with different water glass content, which
agrees well with the designed aggregate content, indicating that the aggregate was evenly
distributed. The percent areas of paste slightly increased and those of pores decreased
with the increase in water glass content in the pervious concrete. The trend of pore areas
agrees with the designed void ratio, which slightly decreased with the increase in water
glass content, although the calculated pore areas were higher than the designed void ratio,
possibly due to the wall effect where the specimens contacted the mould, resulting in the
increase in pore volume.
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The distribution of paste on the top, middle and bottom of vertically cut surface of
pervious concrete was evaluated (Figure 14b). With the increase in water glass content, so
as to the fluidity according to Figure 10a, firstly the middle areas were the highest percent
areas and increased with the water glass content (4 wt% and 6 wt% Na2O content), then the
bottom area was the highest percent area of paste due to the increased fluidity, resulting
in more sedimentation (8 wt% Na2O content) as seen in Figures 10 and 12. For 10 wt%
Na2O content, the percent areas of paste on the top and middle were similar and that on
the bottom was slightly lower because of the decrease in fluidity and increase in viscosity
and shear stress of fresh paste according to the results from rheology of paste.

3.4. Thickness of Paste on the Surface of Coarse Aggregate

The thickness of paste on the surface of coarse aggregate in the pervious concrete was
characterized to evaluate the homogeneity of paste and aggregate distribution. For each
specimen, the thickness of paste on the top and bottom sections of pervious concrete was
measured. A total of more than 300 points were measured for each specimen. According to
the results in Table 5, for each mix, the average thickness of paste on the top and bottom
sections was similar, with a slight increase in thickness of paste on the bottom section,
which agrees well with the results from sedimentation and mesostructure analysis. The
slight increase in thickness of paste could be due to the gravity which caused the flow
of paste from top to bottom. These results also indicated the favoured rheology of paste,
which improved the homogeneity of the thickness of paste.

Table 5. Thickness of paste on the surface of aggregate.

Part N Average Thickness (mm)
Thickness Distribution

0.2–0.6
mm

0.6–1
mm

1–1.4
mm

1.4–1.8
mm

1.8–2.2
mm

2.2–2.6
mm

2.6–3
mm

3–5
mm

5–9
mm

A4
Up 144 0.919 15% 19% 22% 14% 11% 4% 4% 1% 3%

Dn 212 0.929 16% 20% 19% 18% 7% 10% 3% 2% 2%

A6
Up 120 0.941 3% 27% 20% 22% 8% 3% 3% 5% 0%

Dn 182 1.003 8% 20% 15% 29% 11% 7% 3% 7% 0%

A8
Up 158 1.123 8% 22% 6% 22% 9% 8% 6% 15% 0%

Dn 174 1.151 15% 29% 11% 13% 8% 6% 5% 9% 0%

A10
Up 132 1.089 15% 17% 21% 9% 6% 8% 6% 11% 3%

Dn 172 0.965 10% 27% 20% 15% 10% 5% 2% 7% 1%

Note: Up and Dn: top and bottom of the specimens; N: number of thickness measured; Thickness distribution: percentage of points
measured with thickness in the ranges.

The average thickness of paste firstly increased with the water glass content and
reached the maximum of approximately 1.1 mm at 8 wt% Na2O content, and then decreased
slightly at 10 wt% Na2O content (Figure 15). For all mixes, the thickness of paste on the
coarse aggregate ranged from 0.919 mm to 1.151 mm, indicating the similar average
thickness of paste on the surface of aggregate. A previous study by Jang indicated that the
average paste thickness on the surface of coarse aggregate was in the range of 1.08–1.29 mm
for pervious concrete prepared with Portland cement and 0.63–4.31 mm for those with
geopolymer by analysis under optical microscope under 35× magnification [34]. The
results obtained in this study had a narrow range of distribution for paste thickness.

Although there was no big difference between the average thickness of paste between
the mixes with the various Na2O content, the results of thickness distribution seem to
reveal more information on the homogeneity of paste distribution. It seems that the mix
with 6 wt% Na2O content had better homogeneity of thickness of paste than other mixes.
There are more points with thickness of paste close to the average thickness and less
thick or thinner paste in the mix with 6 wt% Na2O content. For the mix with 4 wt%
Na2O content, there were 15% and 16% of points measured with much thinner thickness



Crystals 2021, 11, 593 14 of 20

(0.2–0.6 mm) on the top and bottom of the specimen, respectively. For the mixes with 8 wt%
and 10 wt% Na2O content, there were more thinner (0.2–0.6 mm thickness) and thicker
(3–5 mm thickness) layers of paste on the surface of coarse aggregate in the top and bottom
of specimens. These results indicate that the homogeneity of paste in the pervious concrete
is complex and controlled by many factors, such as rheology of paste. There was no clear
relationship between the fluidity and homogeneity of paste in the pervious concrete.
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3.5. Strength and Water Permeability

The compressive strength and tensile strength of alkali-activated slag prepared with
different water glass content (as alkali equivalent) at 28 days are shown in Figure 16. The
paste with 8 wt% Na2O content had the highest compressive strength at 28 days, followed
by those with 4 wt%, 6 wt% and 10 wt% Na2O content. The tensile strength decreased with
the increase in Na2O content. The reason could be due to the excess amount of SiO2 from
the overdosed water glass at high water glass content. The mechanical properties of alkali-
activated slag could reach the maximum when the optimum Si/Al was satisfied [54]. Either
higher or lower Si/Al could result in lower mechanical properties. Another reason could
be that the high water glass content resulted in the high OH− concentration in the paste,
which in turn resulted in the thicker layer of calcium hydroxide formation on the surface
of slag particles, preventing further resolution of slag particles and the formation of more
hydration products [32,55,56]. These two reasons resulted in the decrease in mechanical
properties of alkali-activated slag with higher equivalent Na2O content.

The compressive and tensile strength of pervious concrete prepared with pastes with
different equivalent Na2O contents are shown in Figure 17. The trend of compressive
strength of pervious concrete at 28 days was similar to that of paste. The pervious concrete
prepared with paste of 4 wt% equivalent Na2O content had the highest compressive
strength among the specimens studied, which is followed by those of 6 wt%, 8 wt%
and 10 wt% equivalent Na2O content. For the tensile strength of pervious concrete with
4 wt% Na2O, the specimens showed similar tensile strength of approximately 3.5 MPa
at 28 days. The mechanical properties of pervious concrete were controlled not only by
the properties of cementitious materials but also by the pore structures, especially macro-
and mesopore structures. There was correlation between the mechanical properties of
paste and that of pervious concrete. It is interesting that there is no correlation between
the compressive strength and the tensile strength of either paste or pervious concrete,
indicating a different mechanism behind the mechanical properties between pervious
concrete and normal concrete. The relationship between the thickness distribution of
paste on the coarse aggregate and the mechanical properties of pervious concrete warrant
further study.
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Figure 17. Compressive strength and tensile strength of pervious concrete prepared with various
equivalent Na2O content at 28 days.

For normal cement-based pervious concrete, the porosity of pervious concrete greatly
affects the mechanical properties, and the other differences in properties/components also
result in the variation of mechanical properties, such as the type and size of aggregate, the
type and content of cement and admixtures, the formula of cementitious materials and the
water/cement ratio. Generally, for cement-based pervious concrete, the permeability is
0.2–7.0 cm/s, the porosity is 15–35%, and the compressive strength is 5–30 MPa [1,2,6–9].

The DVR, total porosity and connect porosity of pervious concrete at 28 days are
shown in Figure 18. There are similar trends for the DVR and total porosity measured,
with a slightly higher porosity for the latter. The total porosity decreased with the increase
in equivalent Na2O content of paste. It is interesting that the trend of total porosity is
similar to that of compressive strength of pervious concrete. Usually, the higher porosity
indicates lower compressive strength for concrete. These results suggested that the rela-
tionship between the compressive strength, total porosity and thickness distribution of
paste on the surface of coarse aggregate is more complex than expected. The total porosity
from other previous studies ranges from 31% to 45%, with the compressive strength of
1.1–6.45 MPa [55,56]. The pervious concrete in this study had lower total porosity but
much higher compressive strength. As suggested by Barnhous and Srubar III [55], the
permeability could be sharply increased with porosity when the porosity is over 30%
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but together with a decrease in compressive strength. The design of pervious concrete is
basically a balance between the compressive/tensile strength and permeability.
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The connect porosity of pervious concrete had a similar trend of total porosity, except
that the connect porosity of pervious concrete with paste of 10 wt% Na2O content was
slightly higher than that of 8 wt% Na2O content. The connect porosity is a defining factor
for the water permeability of pervious concrete. According to the water permeability
results of pervious concrete in Figure 19, the water permeability of pervious concrete
under both falling head and constant head decreased with the increase in equivalent
Na2O content of paste, which agrees well with the trend of connect porosity of pervious
concrete. These results are reasonable because water can only permeate through the
pervious concrete by the connected pore, which was characterized as connect porosity.
There is a correlation between the connected porosity, water permeability and tensile
strength of pervious concrete, which all decreased with the increase in equivalent alkali
content by up to 8 wt% Na2O and slightly decreased when Na2O content reached 10 wt%.
A previous study [34] on the porosity of pervious concrete prepared with geopolymer
indicated that the pervious concrete with a total porosity of 24.1–40.2% had connect porosity
of 18.4–34.1%, together with a lower compressive strength compared with this study. A
higher total porosity usually results in a lower compressive strength for concrete.
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Figure 19. Water permeability of pervious concrete under falling head and constant head.
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The intrinsic permeability based on Darcy’s law can be descripted as the follow-
ing equations:

Q = −KA
∆h
L

, (8)

K = k
ρg
η

, (9)

where Q is the total discharge rate (m3/s); K is the hydraulic conductivity (m/s); A is
the area of cross section of the flume (m2), which is the cross section area of specimen of
pervious concrete in the manuscript; ∆h is the height difference (m), which is the water
head in the manuscript; L is the length of specimen of pervious concrete in the manuscript
(m); k is the intrinsic permeability (m2); ρ is the density of fluid (kg/m3); g is the gravity
(m/s2); η is the dynamic viscosity of the fluid (Pa·s).

The term “water permeability” used in this study is hydraulic conductivity in Darcy’s
law, which is used to descript how easily the water can move through the connected pores
in the pervious concrete. The intrinsic permeability can be calculated from hydraulic
conductivity according to Equation (9). Considering that only water permeates through
pervious concrete under normal atmospheric pressure and the temperature for the test was
20 ◦C, the hydraulic conductivity is usually used to describe the permeability of pervious
concrete, which is termed as water permeability in the field of cement and concrete research.
The relationship between these two is as follows:

K = 9.75 × 106 · k (10)

4. Conclusions

In this study, pervious concrete was prepared with high fluidity alkali-activated slag of
various alkali equivalent. The effect of alkali equivalent on the fluidity and sedimentation
of paste, pore structure, mechanical properties and water permeability of pervious concrete
was characterized by a range of analytical techniques. According to the results obtained,
the following conclusions can be drawn.

The fluidity of water glass-activated slag increased with the equivalent alkali content
by up to 8 wt% Na2O content and slightly decreased by 10 wt% Na2O content, while the
effect of equivalent alkali content on the viscosity and shear stress of fresh pastes was
more complex, where the viscosity and shear stress firstly decreased with the increase in
equivalent alkali content and then increased when equivalent alkali content increased to
10 wt% Na2O content under a shear rate of 20–80 s−1. With a shear rate over 80 s−1, the
viscosity and shear stress drastically decreased for paste with 4 wt% Na2O content.

The sedimentation of fresh paste on the bottom of pervious concrete was related to the
rheology of fresh paste, which had a similar trend to that of fluidity. A higher fluidity and
lower viscosity and shear stress will result in a more severe sedimentation of fresh paste
on the bottom of pervious concrete, which worsens the homogeneity of mesostructure of
pervious concrete, resulting in lower tensile strength and water permeability.

The percentage area of paste and the average thickness of paste on the surface of
coarse aggregate had a similar trend to that of fluidity, which increased with the equivalent
alkali content and slightly decreased when the Na2O content reached 10 wt%. There was
a relationship between the compressive strength with the percentage area of paste or the
average thickness of paste on the surface of coarse aggregate, but there was no obvious
relationship for the tensile strength with the latter.

The water permeability of pervious concrete was governed by the connected porosity,
which had good correlation with the tensile strength. A relative lower fluidity, higher
viscosity and shear stress of fresh alkali-activated slag paste favoured lower sedimentation
of paste on the bottom of pervious concrete, higher connected porosity, tensile strength
and water permeability.
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The findings in this study are potentially beneficial for the optimized design of per-
vious concrete prepared with alkali-activated materials, especially in the application of
pavement, where the tensile strength is more important than compressive strength.
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