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Abstract: Control of solidification structure and crystallographic texture during metal additive
manufacturing is a challenging work which attracts the increasing interest of researchers. In the
present work, two kinds of scanning strategies (i.e., single-directional scanning (SDS) and cross-
directional scanning (CDS) were used to control the solidification structure and crystallographic
texture during quasi-continuous-wave laser additive manufacturing (QCW-LAM) of Inconel 718.
The results show that the solidification structure and texture are strongly dependent on scanning
strategies. The SDS develops a typical fiber texture with unidirectional columnar grains, whereas the
CDS develops a more random texture with a mixture of unidirectional and multidirectional grains.
In addition, the SDS promotes the continuously epitaxial growth of columnar dendrites and results
in the linearly distributed Laves phase particles, while the CDS leads to the alternately distributed
Laves phase particles with chain-like morphology and discrete morphology. The changed stacking
features of molten-pool boundary and the switched heat flow direction caused by different scanning
strategies plays a crucial role on the epitaxial growth of dendrites and the final solidification structure
of the fabricated parts.

Keywords: additive manufacturing; nickel-based superalloy; microstructure; crystallographic texture

1. Introduction

Nickel-based superalloys are widely used in nuclear reactors, gas turbines, aero-
engines and other high-temperature components due to their superior high-temperature
mechanical properties and microstructural stability [1,2]. Laser additive manufacturing
(LAM) has become more and more popular for fabricating or repairing of these components
by a layer-by-layer fashion using metal powders [3–5]. LAM of nickel-based alloy generally
utilizes a high-power laser, running in a continuous-wave (CW) mode (CW-LAM), to melt
nickel-based powders onto a substrate to fabricate 3D components layer-by-layer. The me-
chanical properties of CW-LAM fabricated nickel-based superalloy are strongly dependent
on the solidification structure and crystallographic texture. Therefore, it is crucial to control
the microstructure and crystallographic texture for improving the mechanical properties of
nickel-based superalloy.

Many works have been conducted to control the solidification structure and crystal-
lographic texture of CW-LAM fabricated parts. These studies mainly include the change
of laser processing parameters [6,7], the optimization of scanning strategies [2,8–11], the
variation of substrate orientation [12,13], the forced cooling of the substrate [14,15], the
electromagnetic oscillation [16], the change of laser input angles [17], etc. Among these
studies, scanning strategy is considered to be an effective way to alter the molten-pool
solidification conditions to achieve different grain structures and crystallographic texture.
Liu et al. [8] found that single-directional scanning promotes the directional growth of
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columnar dendrites and the cross-directional scanning results in an increase in orientation
deviation of dendrites. Both scanning strategies provide almost similar ultimate strength,
while the cross-directional scanning exhibits higher ductility. Dinda et al. [2] found that a
single-directional scanning produces a fiber texture with fine columnar grains, while a bidi-
rectional scanning develops a rotated cube texture with coarse “zigzag” grains. Ishimoto
et al. [10] reported that bidirectional scanning with and without a rotation of 90◦ between
the layers result in different textures with preferential orientations of <001> and <011> and
along the building direction, respectively. Sun et al. [11] found that single-crystalline-like
texture can be produced via bidirectional scanning along one axis and bidirectional scan-
ning with a 90◦ rotation in each layer, while only fiber texture was formed in bidirectional
scanning with a 67◦ rotation. However, the control of grain structures and texture requires
a good combination of scanning strategies and laser processing parameters. For example,
under the same bidirectional scanning, a columnar grain structure with a strong <001> fiber
texture was obtained at the high laser power, whereas a mixture of fine uniform and large
columnar grains with a nearly random texture was achieved at the low laser power [18].

The solidification parameters, molten-pool geometry and orientation of dendrites in
the substrate or the previous layer have been regarded as underlying factors in determining
the formation of grain structures and crystallographic texture of LAM processed parts.
Andreau et al. [19] found that the crystallographic texture strongly depends on the molten-
pool geometry. The shallow conduction melt pool produces a strong {110}<001> Goss
texture, while a deeper melt pool develops a weaker {110}<001> Goss texture in addition
to a <100> fiber texture parallel to the scanning direction. Wang et al. [20] found that the
solidification structure of LAM is also influenced by the substrate orientation. Liu et al. [21]
found that the formation of stray grain is closely dependent on the substrate orientation and
the molten-pool geometry. The desired microstructure can be obtained by a careful selection
of process parameters to control the molten-pool geometry. Recently, researchers found
that quasi-continuous-wave (QCW) LAM (QCW-LAM) was able to produce a smaller
heat affected zone, a lower dilution ratio and a more refined grain structure than CW-
LAM for a variety of materials, such as stainless steel [22], titanium alloy [23], aluminum
alloy [24] and nickel alloy [4], due to the increased cooling rate of the molten pool. Our
previous work [25] found that the QCW-LAM is featured by a high cooling rate, a periodic
melting and solidification of the molten pool and a controllable molten-pool geometry. In
addition, the QCW-LAM process refines microstructure and reduces element segregation
of the fabricated parts [4]. As one of the most important processing variables of LAM,
scanning strategy is crucial to modifiy molten-pool solidification condition and to control
the microstructure of QCW-LAM. However, to the best of the author’s knowledge, effects of
scanning strategy on the microstructure, crystallographic texture and mechanical property
of QCW-LAM fabricated nickel-based superalloy are still unclear.

In the present work, two typical samples were fabricated by QCW-LAM with different
scanning strategies. Role of scanning strategies on the solidification structure, crystallo-
graphic texture and mechanical property of LAM-fabricated Inconel 718 was evaluated.
This work provides a method to control the microstructure and texture and also deepens
the understanding of the microstructural formation in QCW-LAM.

2. Materials and Methods

In this work, the experiments were conducted on LAM system with coaxial powder
feeding. The LAM system consists of a 4 KW laser, a coaxial powder nozzle, a six-axis
robot and an atmosphere control system. Gas atomized Inconel 718 powders (Ni-19Cr-
18Fe-5Nb-3Mo-1Ti-0.5Al) with the size of 45–150 µm were employed as the depositing
materials. The 316L stainless steel plate was used as the substrate. Bulk samples were
fabricated using QCW-LAM. During QCW-LAM, the laser was modulated by a square wave
with laser pulse frequencies of 50 Hz, at a constant duty cycle of 50%. Other processing
parameters include scanning speed of 6 mm s−1, laser beam diameter of 0.5 mm, powder
feeding rate of 9.05 g min−1, overlapping ratio of 50% and delivering and shielding



Crystals 2021, 11, 591 3 of 12

gas (Pure argon) of 8 L min−1. Two kinds of scanning strategies (i.e., single-directional
scanning (SDS) and cross-directional scanning (CDS) were used, as shown in Figure 1.
The temperature variation of the molten pool during QCW-LAM was measured using
two two-color pyrometers. One pyrometer was fixed on the workbench to record the
temperature variation at the center of the scanning path, and another moved with the laser
beam focusing on the molten pool. The detailed set-up parameters can be found in our
previous works [25].

Figure 1. Schematic diagrams showing two different scanning strategies used in the present work:
(a) single-directional scanning (SDS) and (b) cross-directional scanning (CDS).

The metallographic samples were mechanically polished and then chemically etched
with a solution of 100 mL H2O2, 100 mL HCl and 100 mL H2O for both optical micrograph
(OM) observation and scanning electron microscopy (SEM) observation. Samples were
also electrolytically polished with 10 vol% perchlorate alcohol solution at 20 V for 30 s for
electron back scatter diffraction (EBSD) tests at an accelerating voltage of 20 kV and a step
size of 1 µm.

3. Results and Discussion
3.1. Grain Structure and Solidification Texture

Figure 2 shows the optical micrographs of QCW-LAM fabricated samples with dif-
ferent scanning strategies. The SDS sample shows a typical layer-by-layer deposition
pattern. In addition, there are many periodic discrete bands in each layer of the SDS
sample (Figure 2a). These discrete bands represent the fusion zone boundaries formed
in each laser pulse. The SDS sample is dominated by columnar dendrites which grow
epitaxially from the previous layer. Most columnar dendrites can grow through many
layers. The growth direction of columnar dendrites inclines to the laser scanning direction.
The average primary dendrite arm spacing of the SDS sample is 4–5 µm (Figure 2b).
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Figure 2. Longitudinal cross-sectional optical micrographs of as-fabricated samples under different
scanning strategies: (a,b) SDS and (c–f) CDS.

The CDS sample shows mixed grain morphologies (Figure 2c). The microstructure
in the longitudinal section (parallel to the scanning direction) is dominated by columnar
dendrites, which is similar with that of the SDS sample. The microstructure in the cross
section (vertical to the scanning direction) is dominated by periodically arranged cell
structure. Each cell structure consists of multidirectional equiaxed dendrites which grow
from the molten-pool boundary toward the molten-pool center (Figure 2d). The average
diameter of equiaxed dendrites is also 4–6 µm (Figure 2e) and the average primary dendrite
arm spacing of columnar dendrites is 4–6 µm (Figure 2f).

In order to understand the orientated degree of grains, EBSD investigations were
performed on the longitudinal cross-sections of the fabricated samples. Figure 3a,b shows
the orientation image maps (OIM) of SDS and CDS samples, respectively. The EBSD maps
are analogous to that of OM images in terms of orientation of grains. The SDS sample
shows a highly oriented columnar grain structure. Most of grains are aligned in one
direction (Figure 3a). The average width of columnar grain is 0.1 mm. Figure 3b shows
the OIM of the CDS sample. A typical mixed grained morphology of highly orientated
columnar grains and multi-directional grains alternated layer-by-layer are observed in
the CDS sample. Note that the epitaxial growth between two adjacent layers is obviously
disappeared and a more random grain structure is obtained.
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Figure 3. Electron back scatter diffraction (EBSD) maps of as-fabricated samples: (a) Inverse pole
figure (IPF) colored orientation image map (OIM) and (b) OIM map of CDS sample, (c) (100) pole
figure of SDS sample and (d) (100) pole figure of CDS sample.

The (100) pole figures of longitudinal cross-sections of the SDS and CDS samples are
shown in Figure 3c,d, respectively. It can be found that the SDS sample shows a typical
fiber texture (Figure 3c), because only one of the <100> directions of columnar dendrites
was oriented parallel to the heat flow direction. The (100) pole figure in Figure 3d shows
the existence of a random cubic texture. The change of heat flow direction layer-by-layer
caused by the CDS contributes to the alternately arranged grains and the formation of
random texture in the CDS sample. In this situation, the continuously epitaxial growth is
greatly suppressed.

According to the above results, we may conclude that the SDS develops unidirectional
columnar grains with a typical fiber texture. The CDS produces a mixture of unidirectional
and multidirectional grains with a random texture.

3.2. Dendrite Structure

Figure 4 shows the SEM micrographs of as-fabricated samples under different scanning
strategies. In accordance with the results shown Figure 2a, the SDS sample is dominated
by columnar dendrites (Figure 4a). Figure 4a shows the SEM morphology at the layer
interface of the SDS sample. The directly epitaxial growth of columnar dendrites is pro-
moted between two adjacent layers under SDS. Figure 4b shows the SEM morphology
at the discrete band. The highly ordered columnar dendrites directly grow epitaxially
over the curved discrete band in an identical layer. Figure 4c shows the layer-boundary
microstructure of the CDS sample. Similar to the OM results (Figure 2c), the microstructure
of the longitudinal section and the cross section is dominated by columnar morphology
and equiaxed morphology, respectively (Figure 4c,d). These results show that the epitaxial
growth between two adjacent layers is suppressed under CDS.
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Figure 4. Longitudinal cross-sectional SEM micrographs of as-fabricated samples under different
scanning strategies: (a,b) SDS and (c,d) CDS.

3.3. Nb Segregation and Laves Phase Formation

Figure 5 shows the typical SEM morphologies of SDS and CDS samples after electrolyt-
ically polishing, respectively. The distribution of bright particles is related to the dendrite
morphology. In the SDS sample, most of bright particles are interconnected (Figure 5a,b),
showing a chain-like morphology. The bright particles in the longitudinal section of the
CDS sample is linearly distributed at interdendritic regions (Figure 5c), which is similar
with that of the SDS sample. Whereas the bright particles in the cross section of the CDS
sample is featured by discrete morphology (Figure 5d).

Figure 5. SEM micrographs of samples after electrolytically polishing. (a,b) Particle morphology of
the SDS sample; (c,d) particle morphology of two adjacent layers of the CDS sample.

Figure 6 shows the secondary electron micrograph and correspondingly elemental
distributions of the SDS sample. The long-chain-like particles are rich in Nb and Mo atoms,
and depleted in Cr and Fe atoms, whereas the core region of the dendrite is depleted in
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Nb and Mo atoms (Figure 6b–f). Such long-chain-like particles are commonly identified as
Laves-phase according to its composition and morphology characteristics [26].

Figure 6. The typical SEM micrographs (a) and elemental distributions of as-fabricated sample: Fe
(b), Cr (c), Nb (d), Mo (e) and Ti (f).

3.4. Mechanical Property

Table 1 shows the mean ultimate tensile strength (UTS), yield strength (YS) and
elongation (EL%) of samples. The UTS of the SDS sample and the CDS sample is 929.5
and 938.4 MPa, respectively. The UTS of as-fabricated samples is higher than that of the
cast Inconel 718 (862 MPa) [27], but it is much lower than that of the wrought Inconel
718 (1276 MPa) [28]. The EL% of the SDS sample and the CDS sample is 18.3% and
24.8%, respectively, higher than that of the wrought Inconel 718 (12%). The as-deposited
samples show low tensile strength and good ductility, attributed to the lack of γ” hardening
phase [29]. The rapid solidification of molten pool during LAM usually inhibits the
formation of γ” strengthening phase. Compared to the SDS sample, the CDS sample
exhibits higher tensile strength and plasticity. The higher tensile properties of the CDS
sample attributes to the more random and refiner grain structure and modified Laves phase
morphology, and it will be discussed in Section 3.5.5.

Table 1. Tensile properties of specimens under different processing conditions.

Sample UTS (MPa) YS (MPa) EL% (%)

SDS 929.5 ± 17.6 580.2 ± 18.2 18.3 ± 1.8
CDS 938.4 ± 19.2 582.5 ± 17.3 24.8 ± 2.0

UTS: ultimate tensile strength; YS: yield strength; EL: elongation; SDS: single-directional scanning; CDS: cross-
directional scanning.

3.5. Solidification in QCW-LAM
3.5.1. Molten-Pool Thermal Behavior in QCW-LAM

Figure 7a shows the transient temperature variations of the molten pool during QCW-
LAM. The transient temperature of the molten pool in QCW-LAM exhibits periodically
oscillations due to the periodical laser energy input, which indicates the periodical melting
and solidification of the molten pool. The temperature rapidly increases to the peak tem-
perature of about 1920 ◦C as the laser switches on, and then rapidly cools to the minimum
temperature of about 1415 ◦C. Note that the minimum molten-pool temperature (~1415 ◦C)
of QCW-LAM is obviously higher than the melting point of Inconel 718 alloy (~1350 ◦C). It
means that the molten pool is not completely frozen before the next laser pulse.
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Figure 7. Temperature variations of the molten pool during QCW-LAM: (a) Transient temperature
curve and (b) fixed-point temperature curve.

Figure 7b shows the thermal variations of the fix point measured at the center of
a path where the laser beam scans across during QCW-LAM. The measured point of
the samples undergoes many thermal cycling treatments. The peak temperatures of the
treatments increases with the approach of the laser beam and decreases as the laser beam
away from. In order to understand the thermal behavior of the molten pool under different
pulse frequency, the average cooling rate and solidification time of molten pool during
solidification stage were calculated. The average cooling rate and the solidification time of
the molten pool is 6.15 × 103 ◦C/s and 13 ms, respectively.

3.5.2. Periodic Re-Melting of the Molten Pool in QCW-LAM

Compared with the unidirectional and quasi-steady state solidification mode in CW-
LAM [25], the solidification in QCW-LAM is dynamic and more complex. Pulsed heat
source modulation will result in periodic melting and solidification of the molten pool.
The molten pool forms and expands as the moving laser beam radiates the substrate in
laser-on stage. Then the molten pool rapidly cools and solidifies in laser-off stage. During
QCW-LAM, the next pulse will re-melt partial of the solidified molten pool. The horizontal
displacement of the molten pool is short in a single pulse period and the remained zone
after re-melting is small. The remained zone is beneficial for the directional heat dissipation.
In this situation, the continuously epitaxial growth of columnar dendrite in identical
layers can be guaranteed, only if the columnar dendrite can grow at a relatively short
and appropriate distance, because the re-melting of molten pool can eliminate the stray
or mis-oriented grains formed far from molten-pool boundary or near molten-pool center.
In addition, the highly directional columnar dendrite provides a highly good substrate
orientation for the direct epitaxial growth of dendrites during next laser pulse.

3.5.3. Epitaxial Growth in QCW-LAM under Different Scanning Strategies

In the present work, different scanning strategies result in various solidification struc-
ture and crystallographic texture which attribute to the different molten-pool boundary and
local heat flow direction. Figure 8 shows the schematic diagram of molten-pool boundary,
heat dissipation and dendrite growth under different scanning strategies.
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Figure 8. Schematic diagrams showing microstructural formation in QCW-LAM under different
processing conditions: (a) SDS and (b) CDS.

The SDS develops unidirectional columnar grains with a typical fiber texture. During
QCW-LAM, a QCW laser irradiates the substrate and powder to form a molten pool. The
melt pool dissipates heat into the substrate, creating a curved melt-pool boundary. The
heat flow direction is substantially perpendicular to the molten pool boundary. During
solidification of molten pool, columnar dendrite grows parallel to the opposite direction
of heat flow and inclines to laser scanning direction. Under SDS condition, the scanning
strategies between two adjacent layers are identical. The heat input and the heat dissipation
mode (molten pool boundary and heat flow direction) of the current depositing layer are
substantially consistent with the previous deposited layer, which is favorable for the
directional growth of the dendrites (Figure 8a). As a result, a large number of columnar
grains are formed and grow through many layers in the SDS sample.

The CDS develops a mixed morphology of alternating unidirectional columnar den-
drites and multidirectional dendrites with a more random texture. In the case of QCW-LAM
with a CDS, the laser beam scanning direction is normal to that of the previous deposited
layer. For the first layer, the microstructure is dominated by directional columnar grains
because the nucleation and dendrite growth mechanism is similar with that of SDS. How-
ever, in the next layer of deposition, the molten-pool boundary, the heat flow direction
(the direction of the total temperature gradient) and the substrate orientation (or dendritic
orientation in the deposited layer) of the molten pool are significantly changed, because
of the change in the laser scanning direction. Thus, the dendrites, which grow preferably
the previous deposited layer, will lose their growth superiority in the presented depositing
layer, since their growth direction is largely deviated from the temperature gradient of the
molten pool in the present depositing layer (Figure 8b). Thus, the columnar to equiaxed
transition will occur in the present depositing layer, which depends on the deviation scale
between the growth direction of the previous dendrites and the temperature gradient in
the present depositing layer. Therefore, the second layer of the CDS sample is featured by
periodic cell structure in which multidirectional and random dendrites are promoted. As a
result, the CDS sample shows a mixed grained morphology of alternating unidirectional
columnar dendrites and multidirectional dendrites.

3.5.4. Laves Phase Formation

Inconel 718 is a Nb-bearing nickel-based superalloy. During LAM, the non-equilibrium
solidification of the highly localized molten pool results in micro segregations of high
concentration refractory elements such as Nb, and eutectic Laves phases in LAM fabricated
Inconel 718 alloy. Generally, the Nb segregation and the formation of Laves phase is highly
undesirable as it reduces the mechanical properties of fabricated parts [30,31]. In addition,
the chain-like Laves phase aids susceptibility to hot cracking. In the present work, the
continuously distributed Laves phase was observed in the SDS sample, while the linearly
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distributed Laves phase is interrupted when the CDS is used. The changed morphology of
Laves phase is considered to be related to the dendritic growth morphology [32] under two
different scanning strategies. The continuously epitaxial growth of columnar dendrites in
the SDS sample produces the linearly distributed interdendritic regions and finally results
in the long-chain-like Laves phase. For the CDS sample, the continuously epitaxial growth
of columnar dendrites was interrupted between two adjacent layers. In this situation, the
alternating interdendritic regions of columnar and equiaxed morphology results in the
chain-like and the discrete Laves phase particles at two adjacent layers, respectively.

3.5.5. Enhanced Tensile Property of CDS Sample

Compared with the SDS sample, the CDS sample shows better tensile properties,
especially the high tensile ductility, which is due to the modified grain structure and
Laves phase morphology. For the SDS sample, the highly-oriented coarse columnar grains
and the long-chain-like Laves phase particles are obtained. The coarse columnar grains
often results in the low tensile strength of the SDS sample. Moreover, the formation of
coarsely long-chain-like Laves phase significantly reduces the tensile ductility and fracture
toughness as it promotes the crack initiation and propagation [26]. In contrast, both UTS
and EL are enhanced for CDS sample. On the one hand, the more random and finer grain
structure with a mixture of columnar dendrites and equiaxed dendrites is beneficial for
the enhancement of tensile properties. The continuously distributed Laves phase particles
were broken under CDS, which is beneficial for the enhancement of tensile plasticity as it
provides obstacles for crack propagation.

4. Conclusions

Inconel 718 samples were fabricated by QCW-LAM with different scanning strate-
gies. Role of scanning strategies on solidification structure, crystallographic texture and
mechanical property were evaluated. The following conclusions can be drawn:

1. The QCW-LAM is characterized by a periodic temperature variation, a periodic
melting and solidification, a high cooling rate and a periodic re-melting of the molten
pool due to the periodic energy input. The periodic remelting in QCW-LAM promotes
the epitaxial growth of columnar dendrites.

2. The SDS develops unidirectional columnar grains with a typical fiber texture due to
the continuously epitaxial growth of dendrites. But the CDS develops a mixture of
unidirectional and multidirectional grains with a random texture owing to the change
of heat flow direction between adjacent layers.

3. The Laves phase morphology is strongly dependent on the dendrite morphology. The
SDS results in linearly distributed Laves phase particles, while the CDS produces the
alternately distributed Laves phase particles of chain-like and discrete morphology.

4. The changed stacking features of molten-pool boundary and the switched heat flow
direction caused by different scanning strategies play a crucial role on the epitaxial
growth of dendrites and the final solidification structure of the fabricated parts.

5. Compared with the SDS sample, the CDS sample shows better tensile properties such
as higher UTS and EL, than that of the SDS sample, due to the more random and finer
grain structure and the modified Laves phase morphology.
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