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Abstract: A substantial amount of attention has been paid to viscosity due to its substantial effect
on the fluid dynamics of molten blast furnace slag and slag metal reaction kinetics during the
pyrometallurgy process. To clarify the influence mechanism of unburned pulverized coal (UPC) on
blast furnace (BF) slag viscosity, the effects of different contents of UPC on the BF slag viscosity, free-
running temperature and viscous flow activation energy were investigated. The slag viscosity was
measured by the rotating cylinder method, and the microstructure of the cooled slag was observed
by SEM. As a result, the main reason for a change in the slag viscosity, free-running temperature and
viscous flow activation energy was that the UPC entering the slag formed a large number of white
particles that predominantly comprised deposited carbon and a high melting point solid solution. In
addition, the disintegration or polymerization of the SixOz−

y structure was also a contributing factor.
When the content of the UPC was 0.6%, the free-running temperature and viscous flow activation
energy of slag were 1623 K and 120.969 kJ/mol, respectively, which are lower than those of the slag
without UPC. However, the free-running temperature and viscous flow activation energy increased
to 1668 K and 286.625 kJ/mol, respectively, when the content of UPC increased to 4%, which are
higher than those of slag without UPC.

Keywords: unburned pulverized coal; blast furnace slag viscosity; free-running temperature; viscous
flow activation energy

1. Introduction

It is widely known that the development of pulverized coal injection (PCI) technology
is of revolutionary significance for modern BF ironmaking. This is specifically embodied
in: (1) the replacement of expensive and increasingly scarce metallurgical coke with low-
priced pulverized coal, which reduces the coke ratio of BF ironmaking and lowers the
cost of pig iron; (2) the reduction of the number of coke ovens and the amount of coke
produced, thereby reducing the environmental pollution caused by coking production;
(3) the improvement of the working conditions of the BF hearth to make the BF run
smoothly; (4) the creation of conditions for the BF to use a high blast temperature and
an oxygen-enriched blast; (5) PCI being an effective method to adjust the heat condition
system of BF; (6) the release of more hydrogen than coke in the process of pulverized
coal gasification, which improves the reduction ability and penetration diffusion ability
of coal gas, and is beneficial to ore reduction and the improvement of the BF operation
index. At present, the coal injection ratio of advanced BFs can reach 200 kg/tHM (per tonne
hot metal) [1], while the coal injection technology level of domestic BFs is still relatively
low, with the coal injection ratio basically being maintained at 140~180 kg/tHM, among
which Baosteel’s BF coal injection technology is the most advanced. Therefore, there is
still much room for improvement in domestic BF coal injection technology. On the other
hand, due to the increasing depletion of coking coal resources and the rising price of
metallurgical coke, the production cost of steel enterprises is also increasing [2]. This is
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forcing many steel enterprises to pursue high coal injection ratios to alleviate the pressure
of high production costs.

However, theoretical and experimental studies have found that the pulverized coal
cannot be completely burned in the narrow space of the tuyere raceway, and a large amount
of UPC appears in the BF as a result [3–6]. This is because the velocity of pulverized
coal passing through the tuyere of BF is very high (it usually reaches 240 m/s) [7]. In
addition, the hysteretic nature of the pulverized coal ignition process and the gasification
of volatile matter (shown in Figure 1) results in there being no time for the pulverized coal
to combust. The distribution of UPC in the BF and the various physical-chemical reactions
involved are shown in Figure 2, including (1) participation in the carbon gasification
reaction; (2) participation in the carburizing reaction of hot metal; (3) deposition in slag;
(4) deposition in the cohesive zone and stock column; and (5) escape from the BF with
the gas. Among these, UPC deposited in BF final slag affects the direct reduction reaction
of iron, the direct reduction reaction of nonferrous elements, and the deposition reaction
in the slag, thus affecting the BF slag viscosity [8–10]. BF slag viscosity has an important
influence on smooth operation, heat transfer and mass transfer during the ironmaking
process. These factors ultimately determine the rate of reaction, the discharge of impurities
in the hot metal, the loss of metals in the molten slag, the desulfurization of hot metal, and
the life of the BF lining. Therefore, BF slag must have an appropriate viscosity.
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Figure 1. The combustion and gasification of the pulverized coal in the tuyere.
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Figure 2. Behavior of UPC in a BF.

Many scholars at home and abroad have performed a lot of research on the behavior
of UPC in BF. For example, Li et al. [11] and Xiang et al. [12] found that CO2 will react with
UPC first, and then coke. Chai et al. [13] explored the influence of UPC on the gasification
reaction of coke in BF, and the results showed that, in the soft melting zone, the gasification
reaction model of coke blocks attached to the UPC corresponded to an unreacted core
model and a porous volume-reacted model, jointly. The results of Zan et al. [14] showed
that an increased heating rate is beneficial for the gasification reaction of the two UPCs.
Ref. [15] also studied the carbon gasification behavior of UPC and found that the reaction
mechanism of BUPC (UPC made from bituminous coal) with CO2 consists of random
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nucleation and growth, and the apparent activation energy is 96.24 kJ·mol−1; the reaction
mechanism of AUPC (UPC made from anthracite) with CO2 follows the shrinkage spherical
functional model, and the apparent activation energy is 133.55 kJ·mol−1. Ning et al. [2]
investigated the catalytic behavior of alkali vapor on UPC prepared from bituminous coal,
anthracite, semi coke and coke, and the results showed that the alkali metal vapor had a
catalytic effect on the gasification reaction of UPC. Diao et al. [16] studied the effect of UPC
on the BF slag viscosity in Panzhihua steel, and found that the reduction of TiO2 by UPC
in the slag was the restrictive step affecting the slag viscosity. Zhou et al. [17] found that
the BF slag increased with increasing UPC content under the same basicity, and the slag
viscosity increased with increasing slag viscosity under the same UPC content. However, in
Zhou’s research, all of the UPC in the BF entered the slag, which obviously did not conform
to the actual situation. The research results of Liang et al. [18] showed that a small amount
of UPC can decrease the viscosity and melting temperature of BF slag. Moreover, many
researchers [19–25] have focused on the effects of various chemical components on the slag
viscosity, including MgO, Al2O3 and CaO/SiO2. However, the previous research is too
superficial, only discussing the surface phenomena, is lacking in more in-depth theoretical
analysis. Additionally, the influence mechanism of UPC on the viscosity of BF slag has also
rarely been studied.

Based on the above analysis, in this paper the viscosity changes of BF slag with
different contents of UPC were measured, and the distribution of UPC in the BF slag was
analyzed. The mechanism of the effect of UPC on the BF slag viscosity is revealed by using
slag ionic theory and phase diagram theory.

2. Materials and Methods
2.1. Materials

The raw pulverized coal and the slag used in this study were provided by a 4070 m3

BF in China. It is impossible to obtain UPC from a BF. Therefore, the raw pulverized coal
was placed in a high-temperature heating furnace and heated to 1100 ◦C for 1 h to achieve
dry distillation under anaerobic conditions in the laboratory and then cooled to room
temperature under a nitrogen atmosphere to obtain the UPC. The UPC particle size less
than 0.074 mm accounted for 70% of the total. The proximate and composition analyses
of UPC are shown in Table 1. The slag was ground into a powder using a ball mill. The
composition of the slag is shown in Table 2.

Table 1. Proximate and chemical analyses of the UPC, wt%.

Proximate Analysis

Fixed Carbon Moisture Ash Volatile Matters

79.88 0.88 11.48 7.76

Analysis of ash

SiO2 CaO Al2O3 MgO TiO2 Fe2O3 K2O Na2O Others
47.12 4.92 35.55 1.04 1.99 6.11 0.72 0.71 1.84

Table 2. Chemical composition of the slag, wt%.

SiO2 CaO Al2O3 MgO TiO2 FeO MnO S Others

33.34 38.94 15.59 7.79 0.59 0.36 0.22 1.10 2.07
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2.2. Experimental Equipment and Methods
2.2.1. Proportion of UPC

The proportion of UPC is mainly determined according to the actual BF coal injection
ratio and slag iron ratio, as shown in Equation (1).

w f =
Q1 × (1 − Burnout)× w1

Q2
× 100% (1)

where wf is the proportion of UPC in the BF slag, wt%; w1 is the amount of UPC entering
BF slag, %; Q1 is the coal injection ratio, kg/tHM; Burnout is the burnout rate of pulverized
coal, %; Q2 is the slag iron ratio, kg/tHM.

According to the actual production data of the BF, the coal injection ratio is 130 kg/tHM
and the slag iron ratio is 290 kg/tHM. The burnout rate of pulverized coal was deter-
mined to be 70% based on Liu’s research results [26]. According to the research results
of Du et al. [27] and Zhao [28], combined with the progress of modern BF operation, it
was determined that the amount of UPC entering BF slag was 15%. Based on the above
analysis, the mass fractions of UPC to be added into the BF slag were determined to be 0,
0.6, 0.8, 2 and 4 wt%.

2.2.2. Experiment on Effect of UPC on BF Slag Viscosity

In this study, the slag viscosity was measured by the rotating cylinder method us-
ing a model RTW-10 physical property comprehensive testing instrument with a digital
viscometer developed by Northeastern University. The experimental apparatus is shown
in Figure 3. The viscometer system was calibrated by silicone oil standards. Before each
viscosity measurement, the analytical reagent castor oil with a known viscosity (0.451, 1.986,
and 2.148 Pa·s) at different temperatures was used to check the accuracy of the viscometer
equipment, and the relative error of the measurements was less than 1%.
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Figure 3. Experimental apparatus for slag viscosity measurement (a) and graphite crucible (b).

In each run, the mixed sample of slag and UPC was placed in a graphite crucible.
Then, the graphite crucible was placed in the furnace, and the furnace was programmed to
heat at a rate of 5 ◦C min−1. After the sample was completely melted, the temperature of
the slag was maintained for 10 min at approximately 1500 ◦C by using the molybdenum
bar to stir the slag for three minutes. Then the molybdenum probe connected to the torque
sensor was put into the molten slag to measure the slag viscosity. The system automatically
measured the viscosity every 1 K and recorded it.

Considering the actual production process of a BF, the molten slag herein was dis-
charged from the BF and flowed into the slag ladle through a slag runner. During this
process, the molten slag was exposed to the air, and there was not enough time to achieve
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chemical equilibrium. Therefore, the slag viscosity was measured during continuous cool-
ing. A total of 140 g of slag was mixed with different UPC contents (0, 0.6, 0.8, 2 and 4 wt%)
and used for each experiment.

2.2.3. Microscopic Characterization

The micromorphology of the BF slag after the experiment was characterized using a
scanning electron microscope JSM-6490LV (JEOL, Tokyo, Japan).

2.2.4. Definition of Slag Free-Running Temperature

The free-running temperature of a slag is the lowest temperature at which the slag
can flow freely after melting. It is defined as the temperature corresponding to the tangent
point of the viscosity–temperature curve and a 45 degree line, as shown in Figure 4.
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3. Results and Discussion
3.1. Effect of the UPC on the Slag Viscosity

Figure 5 shows the effect of the different UPC contents on BF slag viscosity. The
viscosity curve shows that there is a significant turning point during the cooling process.
Both the process of the formation of nuclei by ions and the formation of new crystalline
phases by mass transfer require little diffusion activation energy and time because the
molten slag contains a large number of complex ions with a small size and fast migration
rate. The temperature of the molten slag was cooled to the liquidus temperature as the
temperature decreased. Moreover, the molten slag quickly transforms to a heterogeneous
state with a continuous precipitation of crystalline phases that eventually decrease its
fluidity. When the BF is operating normally, the suitable viscosity range of BF slag is
between 0.3 and 0.5 Pa·s. It can be seen from Figure 5 that the viscosity of the BF slag
increases sharply when the viscosity is higher than 1.0 Pa·s.

It can be seen in Figure 5 that the effect of the UPC on slag viscosity is not obvious at
high temperatures (1698–1773 K), and the slag viscosity is basically stable at approximately
0.5 Pa·s. As the cooling progresses, the viscosity of the slag with the content of UPC ranging
from 0.6 wt% to 0.8 wt% begins to rise sharply at low temperatures compared with that
of the slag without UPC. However, the viscosity of the slag with UPC greater than 2 wt%
begins to rise sharply at high temperatures. The above results illustrate that the UPC can
dilute the slag viscosity when its content is low; that is, a low UPC content can reduce the
slag viscosity. This result is consistent with the findings of Liang et al. [18]. The UPC causes
the slag viscosity to increase when the UPC content in the slag exceeds a certain value. The
iso-viscosity curve is presented in Figure 6, where the iso-viscosity curve becomes sparse
when the content of UPC is in the region of approximately 1 wt%, which indicates that
UPC can reduce the influence of temperature on the viscosity. In addition, the iso-viscosity
curves become close when the content of UPC is in a high range, indicating that the slag
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viscosity increases sharply with a decrease in the temperature when the same UPC content
is present. That is, the thermal stability of the slag starts to deteriorate with increasing
UPC content.
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3.2. Effect of the UPC on the Free-Running Temperature of the Slag

The free-running temperatures of the slag with different UPC contents are shown
in Figure 7, and it can be seen that the free-running temperature of the slag with a UPC
content of 0.6–0.8 wt% is lower than that of the slag without UPC (1636 K), which indicates
that a small amount of UPC reduces the free-running temperature of the slag. When the
content of UPC in the slag is 2–4 wt%, the free-running temperature of the slag rises from
1650 K to 1668 K, which indicates that the UPC increases the free-running temperature of
the slag when the UPC content exceeds a certain value. Therefore, we can conclude that
when the content of UPC in BF slag is 4 wt%, the coal injection ratio is 257.78 kg/tHM
calculated according to Formula 1. At this time, in order to decrease the content of UPC in
BF slag to 2 wt%, it is necessary to increase the burnout rate of pulverized coal to 85%.
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3.3. Viscous Flow Activation Energy of the Slag

The viscosity of a homogeneous slag complies with the law of a Newtonian viscous
liquid. The viscosity depends on the activation energy of the moving particles, and the
relationship between the viscosity and activation energy can be described by Arrhenius-
type equation [29]:

η = B0exp(
Eη

RT
) (2)

where η is the viscosity, Pa·s; B0 is the Arrhenius constant; Eη is the viscous flow activation
energy, kJ/mol; R is the gas constant, 8.314 J/(mol·K); and T is the temperature, K.

The Arrhenius-type equation can be rearranged after taking the logarithm:

Lnη = LnB0 +
Eη

RT
(3)

Equation (3) shows that there is a linear relationship between Lnη and 1/T, and the
viscous flow activation energy Eη can be obtained from the slope of the line. This equation
is only applicable to homogeneous slags because the properties of slags change when
the temperature is lower than the free-running temperature. Therefore, the free-running
temperature is used as the critical temperature; that is, the viscosity between the free-
running temperature and 1773 K is used to calculate the viscous flow activation energy.
The calculation results are shown in Figure 8 and Table 3.

Table 3. Dynamics parameters of the viscous flow activation energy.

UPC Contents Fitting Line Eη (kJ/mol) B0/(N·s·m−2) R2

0.6 y = 14,550 x − 8.926 120.969 1.33 × 10−4 0.97

0.8 y = 14,965 x − 9.094 124.419 1.12 × 10−4 0.98

0 y = 22,506 x − 14.274 187.115 6.32 × 10−7 0.99

2 y = 25,513 x − 15.564 212.115 1.74 × 10−7 0.99

4 y = 34,475 x − 21.237 286.625 5.98 × 10−10 0.99
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Table 3 shows that when the content of UPC is 0.6 wt% and 0.8 wt%, the values of
viscous flow activation energy are 120.969 kJ/mol and 124.419 kJ/mol, respectively, which
are lower than that (187.115 kJ/mol) for the sample without UPC. However, when the
content of UPC increases to 2 wt% and 4 wt%, the viscous flow activation energy increases
to 212.115 kJ and 286.625 kJ, respectively. The above results show that a small amount of
UPC decreases the viscous flow activation energy of the slag, which improves the flow of
the slag. However, the flow of the slag becomes difficult when the content of UPC exceeds
a certain ratio. Moreover, this result is also consistent with a change in the slag viscosity.

3.4. Theoretical Analysis

Several theories about slag structure have been proposed, such as the molecular and
ion theories. The slag ion theory relies on the structure, electric conductivity, and ionic
migration number of a slag, and these values can be determined by modern detection
techniques, such as X-ray diffraction (XRD), electron microscopy, Raman spectroscopy,
and electrochemical methods. The slag ion theory holds that the slag is composed of
charged particles, and the force between ions comprises the Coulomb force. The forms of
the positive and negative ions in slag are related to the force between the charged particles.
The main existing states of the ions are shown in Reactions (4)–(6).

The existing forms of the simple positive and negative ions are shown as follows:

CaO � Ca2+ + O2−

MnO � Mn2+ + O2− (4)

MgO � Mg2+ + O2−

. . . . . .

The existing forms of complex anions are shown as follows:

SiO2 + 2O2− � SiO4−
4

Fe2O3 + O2− � 2FeO−
2

P2O5 + 3O2− � 2PO3−
4

. . . . . .

(5)
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The polymerizations and decompositions of complex anions are shown as follows:

SiO4−
4 + SiO4−

4 � Si2O6−
7 + O2−

3SiO4−
4 � Si3O8−

10 + 2O2−

. . . . . .

(6)

It is well known that SixOz−
y is the main composite anion and the main flow unit in

molten silicate melts. These SixOz−
y composite anions consist mainly of SiO4−

4 tetrahedra
units. The SixOz−

y structure is disintegrated or polymerized when the composition of a
molten slag changes; that is, the structure of SixOz−

y changes from a simple to a complex
one or from a complex to a simple one (as shown in Figure 9). This eventually leads to an
increase or decrease in the slag viscosity.
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Figure 9. Transformation process of the SixOz−
y structure.

It can be seen from the composition of the slag in Table 2 that (w (CaO)%)/(w(SiO2)%)
≈1.17. In addition, there is an obvious turning point in the viscosity–temperature curve in
Figure 5, and the temperature range of the slag solidification process is narrow; therefore,
the slag is determined to be a basic slag. According to the slag ion theory, the main reasons
for the decrease in the viscosity are as follows. (1) The basic oxides CaO and MgO in the
UPC enter the slag and dissociate into cations and oxygen ions (such as Ca2+, Mg2+ and
O2−), which destroy the bridging oxygen bonds in SixOz−

y , thus simplifying the structure
of the SixOz−

y . (Bridging oxygen is the oxygen that connects two tetrahedrons [30] and
plays a very important role in the SixOz−

y network structure, and its content has a direct
impact on the complexity of the system.) The transformation mechanism of the SixOz−

y
network structure is as follows: ≡Si—O—Si≡+MO�≡Si—O—M—O—Si≡ and ≡Si—O—
Si≡+MO�≡2(Si—O−) + M2+ [31]. (2) When the monovalent alkali oxides (such as Na2O,
K2O) enter the slag, they provide two monovalent cations (2Na+, 2K+) and one oxygen ion
(O2−). This results in a fracture in the network structure; that is, the effect of monovalent
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alkali oxides on reducing the slag viscosity is strong. At this time, the transformation
mechanism of the SixOz−

y network structure is as follows: Si—O—Si ≡ + M2O�2 ≡
Si—O—M. (3) When K2O and Na2O enter the CaO-SiO2 system, they form a series of
low-melting compounds, as shown in Figure 10, which reduce the melting point and
viscosity of slag. (4) The Fe2O3 entering the slag is reduced to FeO by carbon. According
to the ternary phase diagram of SiO2-CaO-FeO (Figure 11), the liquidus temperature of
CaO-SiO2 and 2CaO-SiO2 solid solutions decreases with increasing FeO content; that is,
FeO can effectively reduce the melting point of the slag, thus reducing the viscosity. In
addition, iron oxide can provide free oxygen ions through the following reactions to break
the structure of the silicate anions: FeO = Fe2+ + O2−, Fe2O3 = 2FeO2+ + O2−.
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When the content of UPC in the slag is approximately 2–4 wt% (as in the present BF
slag), the slag viscosity and viscous flow activation energy increase significantly. The main
reasons are as follows. (1) The content of SiO2 and Al2O3 entering the slag is relatively high,
and the following reactions occur in a basic slag: SiO2 + 2O2−�SiO4−

4 and Al2O3 + O2− =
2AlO1−

2 , resulting in an increase in the n(Si)/n(O) atomic ratio. Moreover, SiO2 is converted
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into a complex ion by consuming O2−, and thus many SiO4−
4 units share one O2− to form

a more complex ion. As more SiO4−
4 is polymerized, more O2− is shared, and the structure

of the silica–oxygen complex ion becomes more complex (from the point, line and surface
of the body). In addition, the empirical formula of anions in the range of Si/O = 0.25–0.33
is shown in Table 4 [32], which indicates that the structure of the silica–oxygen complex
ions tends to increase in complexity with an increase in the Si/O atomic ratio. (2) Al2O3
can absorb oxygen ions to form AlO5−

4 complex ion groups, forming complex compounds
with strong crystallinity and a high melting point. As described in several published
studies [33–36], Al3+ cations can replace the tetrahedrally coordinated Si4+ polyanions to
form Al3+ polyanions of [AlO4]5− tetrahedra. Upon the further addition of Al2O3, Al3+ no
longer exists in tetrahedral sites as a substitute for Si4+ but behaves as a network modifier
and exists in the [AlO6]9− octahedral configuration, similar to the behavior of Ca2+, as
depicted by Sohn and Min [37]. In this study, Al2O3 behaves as a network former and
increases the slag viscosity. (3) The main reason is that the UPC entering the slag exists
as suspended solid particles. Figure 12a shows a molybdenum probe after measuring the
viscosity of the slag containing 4 wt% UPC. Some slag adhered to the molybdenum probe,
and some undissolved carbon adhered to the slag. Figure 12b shows the molten state of the
slag containing 4 wt% UPC at high temperature, and the UPC (the blue circle in the picture)
exists as a suspension and can be clearly observed in the slag. These solid particles have a
high dispersion and large specific surface area. Therefore, surplus surface energy can cause
these solid particles to strongly adsorb onto other particles, which undoubtedly increases
the volume of the particles and ultimately leads to a sharp increase in the slag viscosity.

Table 4. Empirical formulas of the anions in the range of Si/O = 0.25–0.33 (66–50% MO).

Si/O CaO/SiO2 Percentage of Molar Oxide Length of Chain (
◦
A) Empirical Formula

0.250 2 CaO·SiO2 66 1 SiO4−
4

0.286 3 CaO·2SiO2 60 2 SiO6−
7

0.300 4CaO·3SiO2 57 3 SiO8−
10

0.307 5CaO·4SiO2 55 4 SiO10−
13

0.312 6CaO·6SiO2 54 6 SiO12−
16

0.322 11CaO·10SiO2 52 10 SiO22−
31

0.333 CaO·SiO2 50 ∞ SinO2n−
3n

Crystals 2021, 11, x FOR PEER REVIEW 12 of 15 
 

 

Al3+ no longer exists in tetrahedral sites as a substitute for Si4+ but behaves as a network 
modifier and exists in the [AlO6]9− octahedral configuration, similar to the behavior of Ca2+, 
as depicted by Sohn and Min [37]. In this study, Al2O3 behaves as a network former and 
increases the slag viscosity. (3) The main reason is that the UPC entering the slag exists as 
suspended solid particles. Figure 12a shows a molybdenum probe after measuring the 
viscosity of the slag containing 4 wt% UPC. Some slag adhered to the molybdenum probe, 
and some undissolved carbon adhered to the slag. Figure 12b shows the molten state of 
the slag containing 4 wt% UPC at high temperature, and the UPC (the blue circle in the 
picture) exists as a suspension and can be clearly observed in the slag. These solid particles 
have a high dispersion and large specific surface area. Therefore, surplus surface energy 
can cause these solid particles to strongly adsorb onto other particles, which undoubtedly 
increases the volume of the particles and ultimately leads to a sharp increase in the slag 
viscosity. 

Table 4. Empirical formulas of the anions in the range of Si/O = 0.25–0.33 (66–50% MO). 

Si/O CaO/SiO2 Percentage of Molar Ox-
ide 

Length of Chain (A
 ) Empirical For-

mula 
0.250 2 CaO·SiO2 66 1 SiO4− 

4  
0.286 3 CaO·2SiO2 60 2 SiO6− 

7  
0.300 4CaO·3SiO2 57 3 SiO8− 

10  
0.307 5CaO·4SiO2 55 4 SiO10− 

13  
0.312 6CaO·6SiO2 54 6 SiO12− 

16  
0.322 11CaO·10SiO2 52 10 SiO22− 

31  
0.333 CaO·SiO2 50 ∞ SinO2n− 

3n  

 
Figure 12. The molybdenum probe after experiment (a), and the slag in molten stage (b). 

3.5. Analysis of the Slag Microstructure 
Figure 13 shows the surface micromorphology of the slag cooled with different con-

tents of UPC. It is obvious that the number of white particles in the slag increases with 
increasing UPC content. When the content of UPC in the slag is 0.6 wt% and 0.8 wt%, the 
white particles decrease and punctate. However, when the content of UPC is increased to 
2 wt% and 4 wt%, the number of white particles increases, and they transform from “punc-
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flow activation energy and slag viscosity. Figure 14 shows an energy-dispersive spectros-
copy (EDS) analysis of the white particles in the slag (Point 1 in Figure 13c), and the result 
indicates that the white particles mainly comprise deposited carbon and a high-melting-
point solid solution around it. These white particles form heterogeneous phases during 
slag cooling, which ultimately lead to the increase in the slag viscosity, free-running tem-
perature, and viscous flow activation energy. 
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3.5. Analysis of the Slag Microstructure

Figure 13 shows the surface micromorphology of the slag cooled with different con-
tents of UPC. It is obvious that the number of white particles in the slag increases with
increasing UPC content. When the content of UPC in the slag is 0.6 wt% and 0.8 wt%, the
white particles decrease and punctate. However, when the content of UPC is increased
to 2 wt% and 4 wt%, the number of white particles increases, and they transform from
“punctiform” to “schistose” in character. This is the main reason for the increase in the
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viscous flow activation energy and slag viscosity. Figure 14 shows an energy-dispersive
spectroscopy (EDS) analysis of the white particles in the slag (Point 1 in Figure 13c), and
the result indicates that the white particles mainly comprise deposited carbon and a high-
melting-point solid solution around it. These white particles form heterogeneous phases
during slag cooling, which ultimately lead to the increase in the slag viscosity, free-running
temperature, and viscous flow activation energy.
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4. Conclusions

1. When the content of UPC in the slag is less than 0.8 wt%, the slag viscosity, free-
running temperature and viscous flow activation energy decrease. This is due to the
breakdown of the complex spatial network structure of SixOz− y in the slag and the
formation of a series of complex compounds with low melting points. Thus, the low
content of UPC has the function of diluting the slag to some extent.
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2. When the content of UPC is in the range of approximately 0.5–1 wt%, the UPC reduces
the effect of the temperature on the slag viscosity. When the content of UPC is in the
range of approximately 2–4 wt%, the thermal stability of the slag begins to deteriorate,
and the UPC has a negative effect on the slag viscosity. To decrease the content of
UPC in BF slag to 2 wt%, it is necessary to increase the burnout rate of pulverized
coal to 85%.

3. The free-running temperature and viscous flow activation energy of slag without
UPC are 1626 K and 187.115 kJ/mol, respectively. When the content of UPC in the
slag is 0.6 wt%, the free-running temperature and viscous flow activation energy
decrease to 1623 K and 120.969 kJ/mol, respectively. However, when the content of
UPC increases to 4 wt%, the free-running temperature and viscous flow activation
energy increase to 1668 K and 286.625 kJ/mol, respectively.

4. When the content of UPC in the slag is high, the main factor affecting the change in
the slag viscosity, free-running temperature and viscous flow activation energy is that
the UPC entering the slag forms a large number of white particles that are composed
of deposited carbon and a high melting point solid solution. These white particles
form heterogeneous phases during slag cooling.
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