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Abstract: The water-soluble colorless compound NaY[SO4]2 · H2O was synthesized with wet meth-
ods in a Teflon autoclave by adding a mixture of Na2[SO4] and Y2[SO4]3 · 8 H2O to a small amount of
water and heating it up to 190 ◦C. By slow cooling, single crystals could be obtained and the trigonal
crystal structure of NaY[SO4]2 · H2O was refined based on X-ray diffraction data in space group
P3221 (a = 682.24(5) pm, c = 1270.65(9) pm, Z = 3). After its thermal decomposition starting at 180 ◦C,
the anhydrate NaY[SO4]2 can be obtained with a monoclinic crystal structure refined from powder
X-ray diffraction data in space group P21/m (a = 467.697(5) pm, b = 686.380(6) pm, c = 956.597(9) pm,
β = 96.8079(5), Z = 2). Both compounds display unique Y3+-cation sites with eightfold oxygen
coordination (d(Y–Os = 220–277 pm)) from tetrahedral [SO4]2− anions (d(S–O = 141–151 pm)) and
a ninth oxygen ligand from an H2O molecule (d(Y–Ow = 238 pm) in the hydrate case. In both
compounds, the Na+ cations are atoms (d(Na–Os = 224–290 pm) from six independent [SO4]2−

tetrahedra each. Thermogravimetry and temperature-dependent PXRD experiments were performed
as well as IR and Raman spectroscopic studies. Eu3+-doped samples were investigated for their
photoluminescence properties in both cases. The quantum yield of the red luminescence for the
anhydrate NaY[SO4]2:Eu3+ was found to be almost 20 times higher than the one of the hydrate
NaY[SO4]2 · H2O:Eu3+. The anhydrate NaY[SO4]2:Eu3+ exhibits a decay time of about τ1/e = 2.3 µm
almost independent of the temperature between 100 and 500 K, while the CIE1931 color coordinates
at x = 0.65 and y = 0.35 are very temperature-consistent too. Due to these findings, the anhydrate is
suitable as a red emitter in lighting for emissive displays.

Keywords: sodium yttrium oxosulfate; X-ray diffraction; crystal structure; rare-earth metal com-
pounds; luminescence; temperature- and time-dependent photoluminescence

1. Introduction

Eu3+-doped luminescence materials based on complex oxides are very impor-
tant in application [1,2] and show a red emission with typical 5D0 → 7FJ transi-
tions between 610 and 620 nm [3]. They could be prepared on “classic” solid-state
routes at high temperatures, as has been done for the examples of Y2[MoO4]3:Eu3+

and Y2[MoO4]2[Mo2O7]:Eu3+ [4], GdSb2O4Br:Eu3+ [5], as well as YNbO4:Eu3+ and
YTaO4:Eu3+ [6]. Another energy-saving synthesis route to get Eu3+-doped lumi-
nescence materials without heating uses wet synthesis strategies. For example the
Eu3+-doped xenotime-type yttrium oxoarsenate Y[AsO4]:Eu3+ [7], the oxophosphate
Y[PO4]:Eu3+ [8], and the oxocarbonate Y2[CO3]3:Eu3+ · n H2O [9] were synthesized
following a wet route.

With NaCe[SO4]2 · H2O (trigonal, P3121), Lindgren reported for the first time in 1977
the crystal structure of a sodium rare-earth metal oxosulfate monohydrate yielded from
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a wet synthesis by adding Ce[OH]3 and Na2[SO4] to aqueous sulfuric acid (H2SO4) and
heating it to 230 ◦C for 7 days [10]. In later works of other groups, the crystal structure
of the sodium rare-earth (RE) metal oxosulfate monohydrates NaRE[SO4]2 · H2O for the
elements RE = La—Nd and Sm—Dy was solved either in space group P3121 (no. 152) or its
enantiomorphic analog P3221 (no. 154). The samples were produced by different syntheses
routes [11–18] and an Indian paper from 1989 deals with these double sulfates of trivalent
plutonium, as well as the rare-earth metals RE = La—Nd, Sm—Yb, and Y, but does not
give some detailed crystallographic information except for the space group derived from
powder X-ray diffraction data [19].

By changing the alkali metal sodium to the next bigger one, potassium namely,
KLa[SO4]2 · H2O emerges as the only known alkali-metal rare-earth metal oxosulfate
monohydrate with the mentioned trigonal structure [20]. For the smaller rare-earth
metals (RE = Ce—Nd, Sm—Dy), the potassium-containing oxosulfate monohydrates
KRE[SO4]2 · H2O crystallize monoclinically in space group P21/c [20–23] in analogy
to the isotypic rubidium compounds RbRE[SO4]2 · H2O with RE = Ce, Gd, Ho and
Yb [24–26]. For silver instead of an alkali-metal cation also AgRE[SO4]2 · H2O repre-
sentatives with the crystal structure of NaCe[SO4]2 · H2O were found [27] and by the
exchange of the rare-earth metal cation with trivalent bismuth, its oxosulfate monohy-
drate NaBi[SO4]2 · H2O [28] shows the same trigonal structure as the related rare-earth
metal compounds NaRE[SO4]2 · H2O.

In 2006, the photoluminescence spectrum of NaEu[SO4]2 ·H2O (excited at λ = 393 nm) [11]
and in 2016 analogous spectra of NaTb[SO4]2 ·H2O (excited at λ = 320 nm) and NaDy[SO4]2
· H2O (excited at λ = 387 nm) were measured at room temperature [12]. In 2011, Ce3+-
and Tb3+-doped samples of NaY[SO4]2 · H2O were the subject of a luminescence inves-
tigation [29]. Moreover, in 2015, the sodium rare-earth metal oxosulfate monohydrates
NaRE[SO4]2 ·H2O with RE = La, Nd, and Gd could be successfully tested as heterogeneous
redox catalysts for the selective oxidation of organic sulfides [13]. It is worth mentioning
that NaY[SO4]2 · H2O even occurs as a mineral with the name chinleite-(Y) [30], naturally
containing all the lanthanoids with roughly the same size as yttrium. The crystallographic
data from a structure refinement in space group P3221 have never been deposited at a
common database, however.

For the anhydrous sodium rare-earth metal oxosulfates NaRE[SO4]2, their monoclinic
crystal structure was solved in space group P21/m for RE = Er [31] and Tm [32] and the
triclinic one in space group P1 for RE = La [33] and Nd [31]. For trivalent gold instead of
RE3+ cations, the monoclinic crystal structure of NaAu[SO4]2 was described in space group
P21/n [34], but Au3+ in square planar oxygen coordination causes marked topological
differences. Not so different from the Na+ analogs, for triclinic AgEu[SO4]2 (space group:
P1) with Ag+ in eightfold oxygen coordination, its Eu3+ bulk luminescence was also
measured very recently [35].

In the following contribution, we report on the preparation of NaY[SO4]2 · H2O
via wet synthesis, its trigonal crystal structure, and the red luminescence of Eu3+-doped
samples. After thermal decomposition, we obtained its monoclinic anhydrate NaY[SO4]2,
which shows an even stronger red luminescence, when Eu3+-doped.

2. Materials and Methods
2.1. Synthesis

Sodium yttrium oxosulfate monohydrate NaY[SO4]2 · H2O was obtained from a
wet synthesis by adding 6.6 mmol Na2[SO4] (ChemPur, 99.9%) and 5.5 mmol Y2[SO4]3
· 8 H2O, which means an excess of Na2[SO4], to about 4 ml demineralized water and
heated the obtained wet powder to 190 ◦C in a 25 ml Teflon autoclave overnight, with
a yield only limited by the solubility of the monohydrate. Thus, the yield was about
2/3 of the theoretical possible quantity. It could be increased by evaporating the water,
but the change of contamination with Y2[SO4]3 · 8 H2O becomes higher then. By slowly
cooling the solution down (5 ◦C per 1 h), single crystals in a size up to 0.3 mm edge length
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(Figure 1) of the water-soluble colorless compound NaY[SO4]2 · H2O could be isolated
(Equation (1)) and washed with ethanol (Brüggemann, denaturized with petrol ether). The
starting material Y2[SO4]3 · 8 H2O was synthesized by evaporating a solution of Y2O3
(ChemPur, 99.9%) in 96% sulfuric acid H2SO4 (Scharr, pure) according to Equation (2).
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The anhydrous oxosulfate NaY[SO4]2 can be obtained by heating NaY[SO4]2 · H2O in
air at a temperature of 180 ◦C or higher (Equation (3)). The powder, which was used for the
crystal structure refinement, was drained at 550 ◦C. For the luminescence measurements, a
Eu3+-doped sample of NaY[SO4]2 · H2O (0.5% Eu instead of Y) was produced by adding
Eu2[SO4]3 · 8 H2O (synthesis analogous to Y2[SO4]3 · 8 H2O with Eu2O3 (ChemPur, 99.9%)
instead of Y2O3) to the process, which is described in Equation (1), and NaY[SO4]2:Eu3+

has been prepared by draining the doped sample at 550 ◦C in air.

Na2[SO4] + Y2[SO4]3 · 8 H2O→ 2 NaY[SO4]2 · H2O + 7 H2O (1)

RE2O3 + 3 H2SO4 + 5 H2O→ RE2[SO4]3 · 8 H2O (RE = Y and Eu) (2)

NaY[SO4]2 · H2O→ NaY[SO4]2 + H2O ↑ (3)

2.2. X-ray Experiments and Crystal-Structure Solution

For single-crystal X-ray diffraction experiments, a suitable crystal was selected under
a light microscope and fixed inside of a glass capillary with an outer diameter of 0.1 mm
and a length of about 15 mm. The crystal was measured with a κ-CCD four-circle X-ray
diffractometer (Bruker Nonius, Karlsruhe, Germany) with Mo-Kα radiation (λ = 71.07 pm)
at 293 K (room temperature). Crystal-structure solution and refinement for NaY[SO4]2 ·
H2O (CSD-2016596) in the trigonal space group P3221 were carried out with the program
package SHELX-97 [36,37] by Sheldrick, and the program HABITUS by Bärninghausen
and Herrendorf was applied [38] for a numerical absorption correction.

For X-ray powder diffraction (PXRD), part of the sample was fixed on a STADI-
P diffractometer (Stoe & Cie, Darmstadt, Germany) and measured with Cu-Kα radi-
ation (λ = 154.06 pm) in transmission setting. The monohydrate was measured from
2θ = 10–90◦ for checking phase purity and the anhydrate NaY[SO4]2 (CSD-2072719) was
measured from 2θ = 8–110◦ for solving its crystal structure in the NaEr[SO4]2-type arrange-
ment [31] with the program FULLPROF [39,40]. The measured powder X-ray diffraction
pattern of NaY[SO4]2 · H2O can be seen in Figure 2 (top) and the measured PXRD pat-
tern together with the difference plot of the Rietveld refinement for NaY[SO4]2 is shown
in Figure 2 (bottom).
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Figure 2. Rietveld refinement based on PXRD data of NaY[SO4]2 · H2O (top) for checking its phase
purity and NaY[SO4]2 (bottom) for crystal-structure determination and refinement.

Temperature-depending powder X-ray diffraction data were measured in the interval
2θ = 10–90◦ with a RIGAKU SmartLab diffractometer (Neu-Isenburg, Germany) using
Cu-Kα radiation (λ = 154.06 pm) in reflection setting from 25 up to 900 ◦C.

While all the atomic displacement parameters of NaY[SO4]2 · H2O could be refined
anisotropically based on single-crystal X-ray diffraction data, the atomic displacement
parameters of NaY[SO4]2 were only treated isotropically with Rietveld refinement based
on PXRD data.
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2.3. Thermal Analysis

Thermal analysis (thermogravimetry) was performed with about 36 mg of a NaY[SO4]2
· H2O samples with a Netzsch device of the type STA-449C (Selb, Germany) in a corun-
dum crucible under argon atmosphere. The sample was heated with 5 K/min from 25 to
1400 ◦C.

2.4. Luminescence Spectroscopy

Excitation and emission spectra were collected using a fluorescence spectrometer
FLS920 (Edinburgh Instruments, Livingston, UK) equipped with a 450 W ozone-free xenon
discharge lamp (Osram, München, Germany) and a cryostat “MicrostatN” from Oxford In-
struments (Abingdon, UK) as the sample chamber. Additionally, a mirror optic for powder
samples was applied. For detection, an R2658P single-photon-counting photomultiplier
tube (Hamamatsu, Hamamatsu, Japan) was used. All photoluminescence spectra were
recorded with a spectral resolution of 0.5 nm and a dwell time of 0.5 s in 0.5 nm steps.

The photoluminescence decay times were measured on an FLS920 spectrometer (Edin-
burgh Instruments, Livingston, UK). A Xe µ-flash lamp µF920 was used as an excitation
source. For detection, an R2658P single-photon-counting photomultiplier tube (Hama-
matsu Photonics, Hamamatsu, Japan) found application.

For the reflection spectra, the investigated samples were placed into an integrating
sphere, and FLS920 spectrometer (Edinburgh Instruments, Livingston, UK) equipped
with a 450 W Xe lamp, and a cooled (−20 ◦C) single-photon-counting photomultiplier
(Hamamatsu R928) was used. Ba[SO4] was applied as the reflectance standard. The
excitation and emission bandwidths were 10.00 and 0.06 nm, respectively. Step width was
0.5 nm and integration time 0.5 s.

Quantum yields were determined according to the method published by Kawamura
et al. [41] upon excitation at 395 nm using a 7 nm excitation and 0.5 nm emission slit.
The scan steps were 0.5 nm, while the respective emission intensity from 370 to 750 nm
was recorded.

The CIE1931 color coordinates and luminous efficacy (LE) values were calculated from
the temperature-dependent emission spectra of NaY[SO4]2:Eu3+ using the Color Calculator
6.75 software from Osram (Osram, München, Germany) [42].

The LE value (unit: lm/W) is a parameter describing, how bright the radiation is
perceived by an average human observer at a photopic illumination situation. It scales with
the photopic human eye sensitivity curve V(λ) and can be calculated from the normalized
emission spectrum I(λ) of the sample as follows [43]:

LE(lm/W) = 683 (lm/W) ·
∫ 780nm

380nm I(λ)V(λ)dλ∫ 780nm
380nm I(λ)dλ

2.5. IR and Raman Spectra

Infrared spectra for powder samples of NaY[SO4]2 · H2O and NaY[SO4]2 was mea-
sured from 700 to 4000 cm−1 with a NICOLET iS5 device from Thermo Scientific (Karlsruhe,
Germany). Raman spectroscopy was performed with a DXR SmartRaman spectrometer
from Thermo Scientific (Karlsruhe, Germany) with a red laser (λ = 780 nm) and a laser
power of 10 mW from 200 to 1800 cm−1.

3. Results and Discussion
3.1. Structure Refinement and Description of NaY[SO4]2 · H2O and NaY[SO4]2

The most relevant crystallographic data of the wet synthesized NaY[SO4]2 · H2O
compared to its anhydrate NaY[SO4]2 are shown in Table 1. The given lattice parameters
of NaY[SO4]2 · H2O stems from single-crystal data, while its lattice parameters from PXRD
experiments amount to a = 682.82(3) pm and c = 1270.77(6) pm (c/a = 1.861).
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Table 1. Crystallographic data of NaY[SO4]2 · H2O (left) and NaY[SO4]2 (right).

Compound NaY[SO4]2 · H2O NaY[SO4]2

Crystal system trigonal monoclinic
Space group P3221 (no. 154) P21/m (no. 11)
Lattice parameters,
a [pm] 682.24(5) 467.697(5)
b [pm] = a 686.380(6)
c [pm] 1270.65(9) 956.597(9)
β [◦] 90 96.8079(5)
Number of formula units, Z 3 2
Unit-cell volume, Vuc [nm3] 0.51219(4) 0.304919(5)
Molar volume, Vm [cm3 ·mol−1] 102.81 91.81
Calculated density, Dx [g · cm−3] 3.132 3.311
Diffraction method single crystal powder
Instrument κ-CCD Stadi-P (transmission)
Radiation Mo-Kα, λ = 71.07 pm Cu-Kα, λ = 154.06 pm
Structure resolution and refinement SHELX-97 FULLPROF
Range in ±h, ±k, ±l 8, 8, 16 4, 7, 10
Range of 2θ [◦] 3–55 8–110
Absorption coefficient, µ [mm−1] 19.25 −
Extinction coefficient, g 0.0174(15) −
Reflections collected 8159 438
and unique 786 −
Rint / Rσ 0.080/0.036 −
R1 / wR2 for all reflections 0.031/0.070 −
Goodness of Fit (GooF) 1.074 −
Residual e— density (max. / min.) 0.60 and −0.48 −
Flack-x parameter −0.021(9) −
Rp − 4.67
Rwp − 7.52
Rexp − 4.33
χ2 − 3.02
CSD number 2016596 2072719

Table 2 shows the fractional atomic coordinates with the site symmetry for all atoms
and Ueq or Uiso values of NaY[SO4]2 · H2O and NaY[SO4]2.

While NaY[SO4]2 · H2O crystallizes in the trigonal space group P3221 (no. 154)
with a = 682.24(5) pm, and c = 1270.65(9) pm (c/a = 1.862) for Z = 3, NaY[SO4]2 adopts
the monoclinic space group P21/m (no. 11) with a = 467.697(5) pm, b = 686.380(6) pm,
c = 956.597(10) pm, and β = 96.8079(5)◦ for Z = 2. The b-axes of both compounds differ by
only 0.6% and the c-axis of the monohydrate is about 4/3 of the one of the anhydrate. While
in the hydrate monolayers of Na+ and Y3+ cations take turns along [001], in the anhydrate
double layers of each Na+ and Y3+ alternate along [001]. Extended unit cells of NaY[SO4]2
· H2O and NaY[SO4]2 can be seen in Figure 3.

In NaY[SO4]2 · H2O, the Y3+ cations are coordinated by nine oxygen atoms (eight from
oxosulfate anions (d(Y–O) = 237–248 pm) and one from a water molecule (d(Y–O5w) = 238 pm).
Only eight oxygen atoms covalently bonded to sulfur in [SO4]2–, and units occur as Y3+

coordination sphere (d(Y–O) = 220–277 pm) in NaY[SO4]2.
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Table 2. Fractional atomic coordinates, site symmetry and U values * of NaY[SO4]2 · H2O (top) and
NaY[SO4]2 (bottom).

Atom Wyckoff
Site Symmetry x/a y/b z/c U/pm2

Na 3b .2. 0.5299(3) 0 1/6 211(5)
Y 3a .2. 0 0.56341(8) 1/3 145(2)
S 6c 1 0.9864(2) 0.5437(2) 0.09243(6) 134(2)

O1 6c 1 0.1273(5) 0.5055(5) 0.0180(2) 217(7)
O2 6c 1 0.8273(5) 0.5829(5) 0.0316(2) 210(7)
O3 6c 1 0.8677(5) 0.3517(5) 0.1655(2) 192(7)
O4 6c 1 0.1249(5) 0.7408(5) 0.1610(2) 196(7)

O5w 3a .2. 0 0.9123(8) 1/3 369(14)
H 6c 1 0.063(11) 0.957(11) 0.042(4) 554(36)

Na 2e m 0.6289(11) 1/4 0.3506(4) 195(12)
Y 2e m 0.6536(3) 1/4 0.82110(12) 167(3)
S1 2e m 0.1619(7) 1/4 0.5875(3) 163(9)
S2 2e m 0.1407(6) 1/4 0.0715(3) 183(9)
O1 2e m 0.8254(13) 1/4 0.0738(6) 114(18)
O2 2e m 0.2317(13) 1/4 0.9259(6) 105(17)
O3 4f 1 0.3075(10) 0.0730(6) 0.6574(4) 177(14)
O4 4f 1 0.2628(10) 0.0699(6) 0.1470(4) 176(13)
O5 2e m 0.8757(14) 1/4 0.6311(6) 119(18)
O6 2e m 0.1881(13) 1/4 0.4401(6) 106(18)

* U values for NaY[SO4]2 · H2O: Ueq = 1/3 [U33 + 4/3 (U11 + U22 − U12)] [44], but for all atoms of NaY[SO4]2 and
H of NaY[SO4]2 · H2O: Uiso.
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Y3+ in NaY[SO4]2 · H2O resides on the Wyckoff site 3a with C2 symmetry (Figure 4,
left), whereas Y3+ in NaY[SO4]2 occupies the 2e position on a mirror plane (Figure 4, right).

In Y2[SO4]3 · 8 H2O [45], the unique Y3+ cations are also surrounded by eight oxygen
atoms (four from water molecules and four more from oxosulfate anions) with distances
between 230 and 247 pm, while in the anhydrous oxosulfate Y2[SO4]3, Y3+ is surrounded
octahedrally by only six oxygen atoms from oxosulfate groups with distances between
220 and 224 pm [46]. While Y3+ is coordinated by just one oxygen atom per [SO4]2– anion
in both Y2[SO4]3 · 8 H2O [45] and Y2[SO4]3 [46], the same is observed in NaY[SO4]2 ·
H2O and NaY[SO4]2, but now with two oxygen atoms of the same oxosulfate unit. In
Y2[SO4]3 [46], NaY[SO4]2 · H2O and NaY[SO4]2 six [SO4]2– anions coordinate the Y3+
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cations, while in Y2[SO4]3 · 8 H2O [45] there are only four of them. Compounds of the type
ARE[SO4]2 ·H2O with A = Na crystallize trigonally in space group P3221 (or P3121) [10–18],
but monoclinically in space group P21/c with A = K for RE = Ce—Nd, Sm—Dy [20–23].
The water molecule in NaY[SO4]2 · H2O is only coordinated to yttrium, whereas in the
KRE[SO4]2 · H2O examples [20–23], it further coordinates the alkali-metal cation. The
crystal structure of the anhydrous potassium rare-earth metal oxosulfates are described
triclinically in space group P1 for RE = Pr [47] and Nd [48], but monoclinically in space
group P21/c for RE = Nd [49] and Er [50]. In the triclinic structure, the coordination
number of RE3+ is eight, while in the monoclinic one, it surprisingly increases to nine. Two
oxosulfate anions coordinate with two oxygen atoms each in the monoclinic KRE[SO4]2
representatives, while in the triclinic cases only one [SO4]2– group has two contacts to
the rare-earth metal cations. The coordination environments of those in the two title
compounds are compared to the other alkali-metal rare-earth metal oxosulfates in Figure 5.
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The sodium cations in both title compounds are surrounded by eight oxygen atoms
from six different oxosulfate units as a bicapped octahedron. While Na+ in NaY[SO4]2 ·H2O
is only connected with [SO4]2− anions and no water molecules, in the related potassium
compound the K+ cation has contact with six of them and one water molecule [20–23]. The
anhydrous potassium rare-earth metal oxosulfates show a coordination sphere around the
alkali-metal cation erected by ten oxygen atoms from six oxosulfate anions in case of the
triclinic examples [47,48] and seven terminal [SO4]2– units in the monoclinic cases [49,50].
In the orthorhombic salt Na2[SO4], the sodium cations show six oxygen atoms from five
oxosulfate groups as next neighbors [51], while in its decahydrate Na2[SO4] · 10 H2O, Na+

is only surrounded by six water molecules octahedrally [52] (Figure 6).
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title compounds NaY[SO4]2 · H2O and NaY[SO4]2.

While NaY[SO4]2 · H2O exhibits only one singular crystallographic [SO4]2− anion,
its anhydrate has two different ones of them (Figure 7). All oxygen atoms in NaY[SO4]2
· H2O are surrounded approximately in a plane triangular fashion by Y3+, Na+, and S6+,
while in NaY[SO4]2 O2 and O6 differ from this scheme since O2 is coordinated by one S6+

and two Y3+ and O6 by one S6+ and two Na+ cations. Even O5w has one Y3+ and two H+

cations, three neighbors. The triangular environments of the oxygen atoms in NaY[SO4]2
· H2O and NaY[SO4]2 can be seen in Figure 8. Selected interatomic distances (d/pm) are
summarized in Table 3.
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Table 3. Selected interatomic distances (d/pm) in the crystal structures of NaY[SO4]2 · H2O (left)
and NaY[SO4]2 (right).

NaY[SO4]2 · H2O NaY[SO4]2

d(Y–O2) (1×) 236.7(3) d(Y–O5) (1×) 219.8(7)
d(Y–O2) (1×) 239.7(4) d(Y–O4) (2×) 224.5(4)

d(Y–O5W) (1×) 238.0(3) d(Y–O2) (1×) 231.7(6)
d(Y–O1) (2×) 239.1(3) d(Y–O3) (2×) 243.9(4)
d(Y–O4) (2×) 224.0(3) d(Y–O1) (1×) 245.5(6)
d(Y–O3) (2×) 247.9(3) d(Y–O2) (1×) 277.0(6)

d(Y–O) (C.N. = 9) 241.5 d(Y–O) (C.N. = 8) 238.8
d(Na–O3) (2×) 235.4(4) d(Na–O3) (2×) 223.9(4)
d(Na–O4) (2×) 242.5(4) d(Na–O6) (1×) 232.4(8)
d(Na–O1) (2×) 253.6(3) d(Na–O6) (1×) 265.4(8)
d(Na–O2) (2×) 287.9(3) d(Na–O4) (2×) 273.2(5)
d(Na–O) (C.N. = 8) 254.9 d(Na–O5) (1×) 279.3(7)

d(Na–O1) (1×) 290.4(7)

d(Na–O) (C.N. = 8) 257.7
d(S–O1) (1×) 146.2(3)
d(S–O2) (1×) 146.2(4) d(S1–O6) (1×) 141.0(7)
d(S–O3) (1×) 147.4(3) d(S1–O5) (1×) 144.9(8)
d(S–O4) (1×) 148.0(3) d(S1–O3) (2×) 151.0(4)

d(S–O) (C.N. = 4) 147.2 d(S1–O) (C.N. = 4) 147.4
d(S2–O1) (1×) 147.7(7)
d(S2–O2) (1×) 150.4(7)
d(S2–O4) (2×) 150.9(4)

d(S2–O) (C.N. = 4) 150.0

For confirmation of the Na+ and Y3+ sites in NaY[SO4]2 · H2O and NaY[SO4]2, bond-
valence calculations were carried out with the parameters used by Brese and O’Keeffe [53].
With calculated charges of 3.06 in NaY[SO4]2 · H2O and 3.19 in NaY[SO4]2 for the Y3+ sites
next to 1.20 in NaY[SO4]2 · H2O and 1.23 in NaY[SO4]2 for the Na+ sites, their positions
can just be confirmed. More details of these calculations can be seen in Table 4. The bond-
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valence equation for the calculation of the charge given by Brese and O’Keeffe [53] is vij =
exp[(Rij – dij)/b] with the valence vij, the universal constant b = 0.37 Å, the bond-valence
parameter Rij, and the Ångström distance of the considered atoms dij between the atoms i
and j. The sum ∑(vij) represents the charge of the regarded ion.

Table 4. Results of the bond-valence calculations for NaY[SO4]2 · H2O and NaY[SO4]2.

NaY[SO4]2 · H2O
for Y O2 O2’ O5 O1 O1’ O4 O4’ O3 O3’

d(Y–O) [pm] 236.68 236.70 238.03 239.12 239.13 243.98 244.06 247.86 247.93 ∑(vij)
vij 0.385 0.385 0.372 0.361 0.361 0.316 0.316 0.285 0.284 3.065

for Na O3 O3’ O4 O4’ O1 O1’ O2 O2’
d(Na–O) [pm] 235.35 235.35 242.50 242.50 253.58 253.66 287.92 287.99 ∑(vij)

vij 0.224 0.224 0.185 0.185 0.137 0.137 0.054 0.054 1.199

for S O1 O2 O3 O4 for H O5w
d(S–O) [pm] 101.46 101.46 101.47 101.48 ∑(vij) d(H–O) [pm] 97.86

vij 1.550 1.549 1.500 1.477 6.076 vij 0.926

NaY[SO4]2
for Y O5 O4 O4 O2 O3 O3 O1 O2

d(Y–O) [pm] 219.77 224.48 224.48 231.68 243.87 243.87 245.53 277.00 ∑(vij)
vij 0.609 0.536 0.536 0.441 0.317 0.317 0.303 0.130 3.189

for Na O3 O3’ O6 O6’ O4 O4’ O5 O1
d(Na–O) [pm] 223.94 223.94 232.42 265.37 272.18 273.18 279.25 290.39 ∑(vij)

vij 0.305 0.305 0.242 0.100 0.083 0.081 0.068 0.051 1.234

for S1 O6 O5 O3 (2×) for S2 O1 O2 O4 (2×)
d(S1–O) [pm] 142.97 144.85 150.96 ∑(vij) d(S2–O) [pm] 147.74 150.39 150.93 ∑(vij)

vij 1.691 1.607 1.362 6.022 vij 1.486 1.383 1.363 5.597

Rij constant from [53] for Y Na S H

distance to O 2.014 1.80 1.624 0.95 Å

The motifs of mutual adjunction for the atoms in both title compounds NaY[SO4]2 ·
H2O and NaY[SO4]2 can be seen in Table 5.

Table 5. Motifs of mutual adjunction for NaY[SO4]2 · H2O (top) and NaY[SO4]2 (bottom).

NaY[SO4]2 · H2O O1 O2 O3 O4 O5w C.N.

Y 2/1 2/1 2/1 2/1 1/1 9
Na 2/1 2/1 2/1 2/1 0/0 8
S 1/1 1/1 1/1 1/1 0/0 4
H 0/0 0/0 0/0 0/0 1/2 1

C.N. 3 3 3 3 3

NaY[SO4]2 O1 O2 O3 O4 O5 O6 C.N.

Y 1/1 2/2 2/1 2/1 1/1 0/0 8
Na 1/1 0/0 2/1 2/1 1/1 2/2 8
S1 0/0 0/0 2/1 0/0 1/1 1/1 4
S2 1/1 1/1 0/0 2/1 0/0 0/0 4

C.N. 3 3 3 3 3 3

We became aware of a competing structure refinement for trigonal NaY[SO4]2 · H2O
(a = 681.91(3) pm, c = 1270.35(11) pm, c/a = 1.863) in space group P3121 that was already
in the progress of publication [54], simultaneous to our activities writing this article. The
lower CSD deposition number (ours for NaY[SO4]2 · H2O in space group P3221: 2016596
versus the Chinese competitor one for NaY[SO4]2 · H2O in space group P3121: 2058909)
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should grant us a priority, despite the almost identical results in both papers from the
year 2021.

3.2. Thermal Analysis

A thermogravimetrical curve for the decomposition of NaY[SO4]2 · H2O between 25
and 1400 ◦C is depicted in Figure 9.
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Figure 9. Thermogravimetrical curve of NaY[SO4]2 ∙ H2O between 25 and 1400 °C. 

The first mass-loss at about 180 °C with 5.6% represents the release of water and the 
transformation from NaY[SO4]2 ∙ H2O (100% mass; M = 322.036 g/mol) to NaY[SO4]2 (94.4% 

Figure 9. Thermogravimetrical curve of NaY[SO4]2 · H2O between 25 and 1400 ◦C.

The first mass-loss at about 180 ◦C with 5.6% represents the release of water and the
transformation from NaY[SO4]2 ·H2O (100% mass; M = 322.036 g/mol) to NaY[SO4]2 (94.4%
mass; M = 304.021 g/mol). The second decomposition leads to a mixture of Y2O2[SO4] [55]
with the crystal structure of monoclinic La2O2[SO4] [56] and Eu2O2[SO4] [57] or orthorhom-
bic Nd2O2[SO4] [58] together with Na2[SO4] [51,59], confirmed by powder X-ray diffraction
experiments (Figures S1 and S2 in the Supplementary Information). For Y2O2[SO4], there
are no known or other good crystal-structure data available, so there are differences in
intensity and position, but the final decomposition step leads to a mixture of cubic Y2O3
with a bixbyite-type structure [60] and orthorhombic Na2[SO4] [51,59] (Figure S3). The
TG curve (Figure 9) appears to be similar to that of NaRE[SO4]2 · H2O with RE = La, Ce,
Nd, and Sm, which have been measured in 1994 by Kolcu and Zümreoǧlu-Karan [18]. The
dehydration temperature of the lanthanum compound is 297 ◦C and gets lower with de-
creasing RE3+-cation radius along with the lanthanoid contraction [61]. With a dehydration
temperature of 265 ◦C for the samarium compound, this trend is further confirmed with
our yttrium analog at 180 ◦C.

Additional to the thermogravimetry, temperature-dependent X-ray diffraction experi-
ments were performed (Figure 10).
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Figure 10. Temperature-dependent PXRD data of NaY[SO4]2 ∙ H2O in the range from 25 to 900 °C 
measured with Cu-Kα radiation (λ = 154.06 pm) in a reflection setting. 

While the TG curve (Figure 9) shows a phase transformation from NaY[SO4]2 ∙ H2O 
to NaY[SO4]2 at 180 °C, the temperature-depending PXRD indicates the anhydrous com-
pound for the first time at 350 °C. At 550 °C the water-containing compound could not be 
detected anymore. The XRD intensities became lower again with rising temperatures and 
suggest a starting decomposition of NaY[SO4]2 to Y2O2[SO4] and Na2[SO4]. The reflection 
at 12.8° resulted from the X-ray powder-diffractometer setting.  

  

Figure 10. Temperature-dependent PXRD data of NaY[SO4]2 · H2O in the range from 25 to 900 ◦C
measured with Cu-Kα radiation (λ = 154.06 pm) in a reflection setting.

While the TG curve (Figure 9) shows a phase transformation from NaY[SO4]2 · H2O
to NaY[SO4]2 at 180 ◦C, the temperature-depending PXRD indicates the anhydrous com-
pound for the first time at 350 ◦C. At 550 ◦C the water-containing compound could not be
detected anymore. The XRD intensities became lower again with rising temperatures and
suggest a starting decomposition of NaY[SO4]2 to Y2O2[SO4] and Na2[SO4]. The reflection
at 12.8◦ resulted from the X-ray powder-diffractometer setting.

3.3. Luminescence-Spectroscopic Properties

Eu3+-doped samples of NaY[SO4]2 · H2O and NaY[SO4]2 under UV irradiation
(λ = 254 nm) can be seen in Figure 11.
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Both compounds display a reflection spectrum, which is in line with plain white
powders of good optical quality and high crystallinity, due to the lack of greying or defect
bands. The absorption edge of the anhydrous compound at about 270 nm is assigned to
the LMCT (ligand-to-metal charge-transfer) absorption band of Eu3+, which is a typical en-
ergetic position of the LMCT process of Eu3+ in an oxidic environment [62]. The reflectance
values at longer wavelengths were close to unity, pointing to a high optical quality of the
prepared materials. In both reflection spectra (Figure 12), the typical Eu3+ absorption lines
originating from the 7F0 → 5L6 and 7F0 → 5D2 transitions could be observed in the ranges
of 395–397 nm and 450–470 nm, respectively [63].
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Figure 12. Reflection spectra of NaY[SO4]2 ·H2O:Eu3+ (black curve) and NaY[SO4]2:Eu3+ (red curve).

Temperature-dependent excitation spectra of NaY[SO4]2 ·H2O:Eu3+ and NaY[SO4]2:Eu3+

reveal the typical intraconfigurational 4f–4f transitions of Eu3+ between 280 and 550 nm [63,64]
and the position of the LMCT of Eu3+ in the anhydrous compound. The LMCT band was
located at 270 nm and was in good agreement with the position derived from the reflection
spectrum. The excitation spectra of both compounds are plotted in Figure 13.

Noteworthy was the temperature-dependent excitation spectra of NaY[SO4]2 ·H2O:Eu3+,
since a closer look at the UV-A range revealed a distinct change of the pattern of 7F0→ 5L6
(390–405 nm) and 7F0→ 5L8 + 5GJ + 5L9 + 5L10 (J = 2–6) (373–387 nm) transitions [65]. The
thermal population of the 7F1 level could explain some changes in the excitation line
pattern. However, the shift and broadening of the most intense line of the 7F0 → 5L6
multiplet at 394 nm from 400 K onwards pointed to a phase transition. This finding could
be explained by the loss of water and the transformation of NaY[SO4]2 · H2O:Eu3+ to
NaY[SO4]2:Eu3+ in good accordance with the results from thermal gravimetry (Figure 9).
Temperature-dependent emission spectra of NaY[SO4]2 · H2O:Eu3+ and NaY[SO4]2:Eu3+

are shown in Figure 14.
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Figure 13. Excitation spectra of NaY[SO4]2 ∙ H2O:Eu3+ (top) and NaY[SO4]2:Eu3+ (bottom) as a func-
tion of temperature between 100 and 500 K. 
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Figure 13. Excitation spectra of NaY[SO4]2 · H2O:Eu3+ (top) and NaY[SO4]2:Eu3+ (bottom) as a
function of temperature between 100 and 500 K.

The emission spectra of Eu3+-comprising materials consisted of the orange allowed
magnetic-dipole (MD) transition 5D0 → 7F1, the red parity-forbidden electric-dipole (ED)
transition 5D0 → 7F2, and further line multiplets in the deep red spectral range around
650 and 695 nm due to the ED transitions 5D0 → 7F3 and 5D0 → 7F4. For light sources and
emissive displays, the emission spectrum should consist mainly of emission lines resulting
from the 5D0 → 7F2 transitions [66,67]. This means that the Eu3+ cation has to occupy a
crystallographic site without inversion symmetry (see Figure 4 for symmetry examination).
This also induces the deep red emission lines. Fortunately, the 5D0 → 7F2 transition
is hypersensitive and small deviations of the inversion symmetry strongly enhance the
probability of the 5D0 → 7F2 transitions. The intensity of the strongly forbidden transition
5D0 → 7F0 is known to correlate with the linear terms of the crystal-field parameter and
polarizability of the Eu3+ cation [67].

However, the emission spectrum of NaY[SO4]2 · H2O:Eu3+ upon 395 nm excitation
revealed the typical emission line pattern between 580 and 720 nm due to the 5D0 → 7FJ
(J = 0–4) transitions of Eu3+ [62,63,68]. Unfortunately, the signal-to-noise ratio is rather low,
which points to a low quantum yield. Indeed, the determination of the quantum efficiency
according to Kawamura [41] yielded a value of solely about 1%. Such a low quantum yield
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can be explained by the presence of crystal water since the high phonon frequency of the
O–H vibration of water quenches efficiently the Eu3+ luminescence [69].
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Figure 14. Temperature-dependent emission spectra of NaY[SO4]2 ∙ H2O:Eu3+ (top) and 
NaY[SO4]2:Eu3+ (bottom) between 100 and 500 K upon 395 nm excitation. 
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Figure 14. Temperature-dependent emission spectra of NaY[SO4]2 · H2O:Eu3+ (top) and
NaY[SO4]2:Eu3+ (bottom) between 100 and 500 K upon 395 nm excitation.

As already observed for the excitation spectra, the temperature-dependent emission
spectra of NaY[SO4]2 · H2O:Eu3+ showed a distinct change once the temperature exceeded
400 K, resulting in the increase of intensity and the width of the 5D0 → F1, 5D0 → 7F2,
and 5D0 → 7F4 transitions, as well as the appearance of the 5D0 → 7F0 transition, which
was absent at room temperature. This change again points to a phase transition, i.e.,
the transformation of NaY[SO4]2 · H2O:Eu3+ to NaY[SO4]2:Eu3+, which goes along with
an increase of the crystal-field strength causing a larger energetic spread of the Stark
components of the above mentioned 5D0 → 7FJ, transitions. This finding was in good
agreement with the decline of the coordination number from 9 to 8 and a shorter average
Y–O distance. However, even though the emission spectra of the anhydrous sample
obtained after the phase transition resembled that of the as-prepared anhydrous sample,
the emission spectra were not completely the same. We assumed that after the phase
transition a higher defect density remained, which resulted in line-broadening and a lower
signal-to-noise ratio since, without further high-temperature treatment, defects caused by
the water removal cannot be healed. In contrast, the as-prepared samples of anhydrous
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NaY[SO4]2:Eu3+ showed a much higher quantum yield. This value was determined to
be almost around 20%, which also explained the much better signal-to-noise ratio of the
respective emission spectra as a function of temperature (Figure 14, bottom).

The CIE1931 color coordinates of NaY[SO4]2:Eu3+ are at x = 0.65 and y = 0.35, while
the temperature impact is rather low, branding the substance as a stable color-consistent
material for application in displays or fluorescent light sources [1]. However, the magnifi-
cation of the color space in Figure 15 demonstrates that the color point shifts slightly to
the orange range, which can be caused by the reduction of the asymmetry ratio 5D0 → 7F2
/5D0 → 7F1 [63] or by the reduction of the covalency related to the 5D0 → 7F4/5D0 → 7FJ
ratio [3]. However, both effects are in line with a thermal expansion of the crystals and the
Eu3+ site causes a decrease of the covalent interaction between Eu3+ and oxygen and an
increase of the local symmetry.
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Figure 15. Temperature-dependent CIE1931 color points of the anhydrous NaY[SO4]2:Eu3+ between 100 and 500 K upon
395 nm excitation (left) and zoom for the magnification of the red area of the color triangle (right).

Noteworthy were the intensities of the temperature-dependent emission spectra of
NaY[SO4]2 · H2O:Eu3+ as depicted in Figure 16. While the intensity decreased between
100 and 300 K due to typical thermal quenching, it increased again between 300 and 500 K.
This effect was caused by the phase transition towards the formation of the more efficiently
luminescent NaY[SO4]2:Eu3+ upon increasing the temperature.
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Figure 16. Temperature-dependent emission integrals of NaY[SO4]2 ∙ H2O:Eu3+ (left) and NaY[SO4]2:Eu3+ 
(right) between 100 and 500 K upon 395 nm excitation. 
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show a typical decrease of the intensity or quantum yield of Eu3+ phosphors with increasing
temperature [63].
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Finally, we investigated the time-dependent luminescence (Figure 17) of the 5D0 →
7F2 transition of Eu3+ at 617 nm upon 395 nm excitation of NaY[SO4]2 · H2O:Eu3+ and
NaY[SO4]2:Eu3+. As discussed before, NaY[SO4]2 · H2O:Eu3+ shows a peculiar behavior
due to the phase transition between 400 and 500 K, which means that the decay time
increases from 550 µs at 100 K to about 930 µs at 500 K. At the same time, the decay curves
become bi-exponential, which points to the formation of a novel phase with a prolonged
decay time and enhanced internal quantum efficiency. The decay curves of NaY[SO4]2:Eu3+

between 100 and 500 K were almost perfectly mono-exponential over three orders of
magnitude, while the derived decay times remained rather constant, as proven by the
just slight decline from 2.35 ms to 2.20 ms. This finding meant that the internal quantum
yield stayed quite stable, and thus, thermal quenching of the Eu3+ photoluminescence is a
minor issue.
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3.4. IR and Raman Studies of NaY[SO4]2 · H2O and NaY[SO4]2

The Raman and IR spectra of NaY[SO4]2 · H2O and NaY[SO4]2 are shown together
with those of Y2[SO4]3 · 8 H2O and Na2[SO4] in Figure 18 and the values are given in
Table 6 compared to the literature data for Y2[SO4]3 [69] and Na2[SO4] (thenardite) [70].
The vibration at about 2300 cm–1 represents CO2 in the laboratory environment. While the
ideal [SO4]2– anion with Td symmetry should only have four visible vibration bands (νas
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and δas: IR and Raman active, νs and δs: only Raman active), in the measured solid-state
samples there were more bands measured. This was because of the no longer ideal [SO4]2–

units and their considerable symmetry reduction.
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4. Conclusions

Phase-pure white powder and even colorless single crystals of sodium yttrium oxosul-
fate monohydrate NaY[SO4]2 · H2O could be synthesized hydrothermally from a mixture
of Na2[SO4] and Y2[SO4]3 · 8 H2O in demineralized water. The anhydrate NaY[SO4]2
was obtained by thermal decomposition at temperatures above 180 ◦C and is stable up to
800 ◦C. While the trigonal crystal structure of NaY[SO4]2 · H2O was solved from single-
crystal X-ray diffraction data in space group P3221, the monoclinic crystal structure of
NaY[SO4]2 was refined with Rietveld methods from powder X-ray diffraction data in space
group P21/m. The Na+ cations are coordinated by eight oxygen atoms from six tetrahedral
[SO4]2− anions in both compounds and the coordination numbers of the Y3+ cations in
the hydrate amount to nine (eight oxygen atoms from six [SO4]2− units plus one from a
water molecule) and eight again in the anhydrate (eight oxygen atoms from six [SO4]2—

anions). Both compounds suit as red-emitting luminescent materials, if doped with 0.5 %
Eu3+, as shown by luminescence spectroscopy, but the anhydrate NaY[SO4]2:Eu3+ exhibits
an almost twenty times higher quantum efficiency than the monohydrate NaY[SO4]2 ·
H2O:Eu3+ owing to the water of hydration, which works as a vibrational quencher. The
almost perfect monoexponential decay curves of the anhydrate NaY[SO4]2:Eu3+ and thus
the lack of afterglow also prove the presence of a material with high quality, i.e., a low
defect density.

Supplementary Materials: The Supplementary Material contains PXRD data from a sample after
thermal treatment from 1000 ◦C (Figure S1 and S2) and 1400 ◦C (Figure S3) after the thermogravimetry
experiment. They are available online at https://www.mdpi.com/article/10.3390/cryst11060575/s1.
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