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Abstract: Two Co(II)-based metal–organic frameworks (MOFs) with open channels, [(CH3)2NH2]2

[Co5L(H2O)8]·4H2O (1) and [Co6L(DMF)2(H2O)8]·2H2O (2), were synthesized using resorcin[4]arene
ligand (H12L). Compounds 1 and 2 exhibit different 3D microporous framework structures: 1 pos-
sesses two kinds of open channels parallel to the a-axis (ca. 5.0 × 5.0 Å) and the b-axis (ca. 4.0 × 6.0 Å),
and 2 is an open framework with a window size of 5.6 × 5.6 Å. The activated crystal 1 involves
many Lewis acid sites; thus, 1 shows prominent activity and recyclability for the reaction of carbon
dioxide coupled with epoxides. Most strikingly, catalyst 1 can be reused for five successive cycles
and provides outstanding catalytic activity.

Keywords: MOFs; resorcin[4]arene; Lewis acid; carbon dioxide; epoxides

1. Introduction

Carbon dioxide (CO2) has caused various environmental and energy problems as a
major greenhouse gas, but it is an ideal renewable C1 source in nature [1–4]. Therefore,
considerable efforts have been devoted to capturing and converting CO2 into useful chemical
products [5–8], such as CO2 absorption [9,10], photocatalysis [11–13], electrocatalysis [14–16],
and organocatalysis [17–19]. Among these methods, CO2 coupling with epoxides is regarded
as the most effective means because of the 100% atomic availability and the wide use of
cyclic carbonates [20–23]. Homogeneous and heterogeneous catalysts have been used to
catalyze this reaction, including transition-metal complexes, zeolites, organocatalysts, and so
on [24–26]. Although homogeneous catalysts exhibit efficient catalytic activity for the reaction,
the inherent limitations of catalyst separation have prevented their wide application [27].
To overcome these drawbacks, heterogeneous catalysts have been considered [28–32]. The
cycloaddition reaction between CO2 and epoxides is a Lewis acid catalysis process; therefore,
a catalyst with more active Lewis acid sites provides acceptable conversion of epoxides to
cyclic carbonates.

Metal–organic frameworks (MOFs), as a kind of functional material, have attracted
tremendous interest due to their large surface area, tunable pore structure, and rich active
Lewis acid sites [33–35]. MOFs have a high adsorption capacity for CO2, which can increase
the concentration of CO2 around the catalytic active sites. Additionally, framework pores
can provide confined space for CO2 reaction [36,37]. Organic linkers play a crucial part
in the synthesis of MOFs with a variety of pore size and chemical environments [38–40].
For this application, resorcin[4]arene is especially attractive because of its multiple co-
ordinate sites and tunable structure. Many elegant structures have been obtained using
functionalized resorcin[4]arene ligands [41–48].

Herein, we selected a functionalized-resorcin[4]arene (H12L) as a ligand, with twelve car-
boxylate groups in one ligand, so it has multiple possible coordination modes with metal ions.
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In this domain, two Co(II)-based microporous structures, [(CH3)2NH2]2[Co5L(H2O)8]·4H2O (1)
and [Co6L(DMF)2(H2O)8]·2H2O (2), were synthesized using Co(BF4)2·6H2O and CoCl2·6H2O
with the H12L ligand (Scheme 1). Remarkably, 1 shows outstanding catalytic capability for the
conversion of CO2 as a heterogeneous catalyst.
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Scheme 1. Synthetic strategy for compounds 1 and 2.

2. Experimental
2.1. Materials and Methods

All the raw materials were obtained commercially. The method through which the
H12L ligand was synthesized is consistent with the literature [49]. The PXRD patterns of
1 and 2 were collected using Cu Kα radiation (λ = 0.154 nm) on a Rigaku Dmax 2000 X-ray
diffractometer. 1H NMR spectra were captured on a Bruker 600 MHz spectrometer in
CDCl3 or DMSO-d6. TGA data were obtained using a TGA5500 analyzer (5 ◦C min−1,
25–600 ◦C, N2 flow). The C, H, and N elemental analyses were performed using a Vario
MACRO cube analyzer. IR spectra were collected on a Thermo Scientific Nicolet 10. The
CO2 gas sorption was performed on V-Sorb 2800S.

2.2. Synthesis of [(CH3)2NH2]2[Co5L(H2O)8]·4H2O (1)

H12L (0.023 g, 0.015 mmol), Co(BF4)2·6H2O (0.028 g, 0.08 mmol), 4 mL of H2O, and
4 mL of dimethylformamide (DMF) were mixed in a 15 mL Teflon reactor. The mixture was
heated at 100 ◦C for 72 hours. The pink samples 1 were harvested by filtration (32% yield).
Anal. calcd for C80H92N2O48Co5 (Mr = 2144.20): C, 44.77; H, 4.32; N, 1.31. Found: C, 44.68;
H, 4.14; N, 1.29. IR data (KBr, cm−1): 3405 (s), 1606 (s), 1508 (s), 1423 (s), 1322 (m), 1286 (s),
1231 (m), 1184 (m), 1104 (m), 1064 (m), 929 (w), 858 (w), 827(w), 705 (w).

2.3. Synthesis of [Co6L(DMF)2(H2O)8]·2H2O (2)

H12L (0.015 g, 0.006 mmol) and CoCl2·6H2O (0.028 g, 0.12 mmol) were dispersed in
DMF/H2O (8 mL, v/v = 6:2), and then placed in a 15 mL Teflon reactor. The mixture was
heated at 110 ◦C for 72 hours. The pink samples 2 were obtained in a 9% yield. Anal. calcd
for C82H86N2O48Co6 (Mr = 2221.10): C, 44.34; H, 3.90; N, 1.26. Found: C, 43.99; H, 3.86; N,
1.22. IR data (KBr, cm−1): 3415 (s), 1610 (s), 1502 (s), 1421 (s), 1334 (m), 1286 (s), 1162 (m),
1108 (m), 1064 (m), 1064 (m), 930 (w), 858 (w), 825(w), 708 (w).
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2.4. Coupling of CO2 with Epoxides

To obtain the activated sample, catalyst 1 was immersed in acetone for 12 hours and
then dried at 60 ◦C for 10 hours under vacuum. The reactions were executed in a 15 mL
flask, the reaction system was refreshed with CO2 three times, and then the CO2 pressure
was maintained at 1 atm. Epoxide (5 mmol), catalyst 1 (30 mg, 0.0014 mmol), and n-Bu4NBr
(0.16 g, 0.50 mmol) were mixed in the flask, and then stirred at 80 ◦C for 8 hours. The
conversion of the reactions were calculated by 1H NMR.

2.5. X-ray Crystallography

Diffraction data for compounds 1 and 2 were recorded at room temperature using an
Oxford Diffraction Gemini R CCD diffractometer with Mo Kα radiation (λ = 0.71073 Å).
The structures of 1 and 2 were solved by direct methods (SHELXS-2014) and refined on
F2 by full-matrix least-squares using the SHELXS-2014 [50–52]. The solvent molecules
were highly disordered, so the produced diffused electron densities were removed using
the SQUEEZE program in PLATON [53]. Based on the TGA, electron diffraction density,
and elemental analysis results, the solvent molecules were directly merged into the final
molecular formula. The reflection peaks of hydrogen atoms on the solvent molecules were
too weak to assign, so they were directly enclosed in the final molecular formula. Non-H
atoms were refined anisotropically. Crystallographic data for 1 (CCDC 2078907) and 2
(CCDC 2078908) are summarized in Table 1, Tables S1 and S2.

Table 1. X-ray crystal data and structure refinements parameters of 1 and 2.

Parameters 1 2

Formula C80 H92 O48 N2 Co5 C82 H86 O48 N2 Co6
Mr 2144.20 2221.10

Cryst syst Triclinic Triclinic
Space group P-1 P-1

a (Å) 10.5320(6) 11.2564(6)
b (Å) 13.2619(7) 15.9785(9)
c (Å) 18.1118(10) 16.5583(10)
α (◦) 70.883(5) 62.347(6)
β (◦) 74.056(5) 73.527(5)
γ (◦) 85.860(4) 70.219(5)

V (Å3) 2297.9(2) 2453.6(3)
Z 1 1

Dcalc (g cm−3) 1.550 1.503
F(000) 1105 1138
Rint 0.0498 0.0446

GOF on F2 1.211 1.175
R1

a [I > 2σ(I)] 0.0847 0.0663
wR2

b (all data) 0.1883 0.1559
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σw(Fo

2)2]}1/2.

3. Results and Discussion
3.1. Structure of [(CH3)2NH2]2[Co5L(H2O)8]·4H2O (1)

Compound 1 crystallizes in the triclinic system with space group P-1. Because of the
disordered solvents, the SQUEEZE program in PLATON was used during the refinement.
There are twelve water molecules and two [(CH3)2NH2]+ cations, produced by the de-
composition and protonation of DMF, in the structure [54,55], which was calculated by
elemental analysis, TGA, and electron diffraction density. The asymmetric structure of 1 is
composed of two and a half CoII cations (Co1, Co2, and Co3), half a L12− ligand, and four
coordinated water molecules (Figure 1a). All the CoII cations adopt a six-coordinate mode
but different coordination environments. Co1 is coordinated with four water molecules
and two O atoms from two L12− ligands; the occupancy of Co1 is 0.5. Co2 is linked with
six O atoms from four L12− ligands. Co3 is surrounded by two water molecules and
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four O atoms from three L12− ligands. As shown in Figure 1b, each L12− ligand bridges
sixteen CoII cations. In this manner, 1 shows a three-dimensional structure. As displayed
in Figure 1c,d, there are two types of open channels in the framework with the window
sizes of 5.0 × 5.0 Å (Figure 1c) and 4.0 × 6.0 Å (Figure 1d). The solvent-accessible volume
is approximately 23.3% (2297.9 Å3), which was estimated by PLATON.
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3.2. Structure of [Co6L(DMF)2(H2O)8]·2H2O (2)

The crystal 2 belongs to the triclinic system with space group P-1. The SQUEEZE func-
tion was used to remove the disordered solvents. The asymmetric structure of 2 comprises
three CoII cations (Co1, Co2, and Co3), half a L12− ligand, and four coordinated water
molecules (Figure 2a). Compared with Co2 and Co3, Co1 shows different coordination
spheres: Co1 is coordinated with one coordinated water molecule and five O atoms from
five L12− ligands; Co2 and Co3 both adopt a six-coordinate mode with one coordinated
water molecule, one DMF molecule, and four O atoms from three L12− ligands. The Co–O
bond lengths vary from 1.993(4) to 2.209(5) Å and the O–Co–O bond angles vary from
58.27(19)◦ to 180.00(12)◦. As illustrated in Figure 2b, every L12− ligand coordinates with
twenty-two CoII cations; as such, neighboring L12− ligands are linked by the CoII cations
into an open framework. The window size is 5.6 × 5.6 Å along the a axis (Figure 2c,d). The
solvent-accessible volume of compound 2 is ca. 20.0% based on the PLATON calculation.
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3.3. Characterization of the Crystal Structure of 1 and 2

The TGA of compounds 1 and 2 was conducted under a N2 atmosphere. As displayed
in Figure 3a, the TGA of compound 1 indicated that the weight loss before 240 ◦C is due
to the DMF molecules and water molecules, and the framework begins to collapse after
240 ◦C. The TGA of compound 2 shows that the weight loss before 300 ◦C belongs to the
DMF molecules and water molecules, then the weight loss from 300 ◦C is attributable to
the framework decomposition. The PXRD pattern of 1 is consistent with the simulated
one, which indicates that 1 is stable in air. Some characteristic peaks disappeared in the
PXRD pattern of 2, which may have occurred due to an optimum growth orientation being
chosen. The CO2 adsorption was performed at 273 K (Figure S4), and the CO2 uptake
capacity was found to be ca. 0.48 mmol/g.
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3.4. Coupling of CO2 with Epoxides

Given the high-density Lewis acid sites and high yield of compound 1, the heteroge-
neous catalytic performance of 1 was investigated for the coupling reaction of CO2 with
epoxides. As shown in Scheme 2 and Table 2, gylcidylphenylether was selected as a typical
substrate to obtain the optimum reaction conditions. Firstly, the reaction between the
gylcidylphenylether and CO2 was performed in the presence of activated catalyst 1 (10 mg)
and n-Bu4NBr (0.16 g) at 80 ◦C for 1 hour; the conversion was only 24% (entry 1, Figure
S1a). Thus, the catalyst amount was increased from 10 to 20 and 30 mg, and the corre-
sponding conversions were increased from 24% to 26% and 32%, respectively (entries 2
and 3, Figure S1b,c). The conversion was only 23% when the n-Bu4NBr was absent, which
indicted that n-Bu4NBr is an important co-catalyst (entry 4, Figure S1d). When the reactions
were performed at 25 and 50 ◦C, the conversions were 0% and 12%, respectively (entries
5 and 6, Figure S1e,f). To improve the conversion, the reaction time was extended to 2, 4, 6,
and 8 hours; the corresponding conversions were 51%, 80%, 83%, and 98%, respectively
(entries 7–10, Figure S1g–j). These experimental results showed that the optimum reaction
conditions are 30 mg catalyst 1, 0.16 g n-Bu4NBr, and 1 atm CO2 reaction at 80 ◦C for 8 h.
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Scheme 2. Coupling of CO2 with gylcidylphenylether.

Table 2. Coupling of CO2 with gylcidylphenylether under different conditions a.

Entry 1 (mg) Temperature (◦C) Time (h) Conversion (%) b

1 10 80 1 24
2 20 80 1 26
3 30 80 1 48
4 0 80 1 23
5 30 25 1 0
6 30 50 1 12
7 30 80 2 51
8 30 80 4 80
9 30 80 6 83
10 30 80 8 98

a Reaction conditions: gylcidylphenylether (5.00 mmol, 0.75 g), n-Bu4NBr (0.50 mmol 0.16 g), and CO2 (1 atm).
b Isolated conversions were calculated by 1H NMR.

Different epoxides were selected as the substrates to further examine the applica-
bility of catalyst 1. The conversions of epichlorohydrin 2-ethyloxirane, 2-butyloxirane,
2-(butoxymethyl)oxirane, 1,2-epoxyethylbenzene and benzylglycidylether were 99%, 99%,
99%, 95%, 75%, and 93%, respectively (entries 1–6 in Table 3, Figure S2a–f). The reaction
rate did not decrease when the length of the alkyl chain increased; these experimental
results showed that the substrates do not enter the channel but react on the surface of the
catalyst (entries 2–4 in Table 3, Figure S2b–d). Compared with other substrates, the reaction
of 1,2-epoxyethylbenzene is relatively slow, which may due to the steric-hinderance effect
(entries 5 in Table 3, Figure S2e). These results confirmed that the epoxides with variable
alkyl chains or aromatic rings are all suitable substrates for the reaction.
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mmol based on CoII cations), n-Bu4NBr (0.16 g, 0.50 mmol), 8 h, and 80 °C. b Isolated conversions 
were calculated by 1H NMR. 

To further explore the recyclability and stability of 1, recycling experiments were per-
formed using gylcidylphenylether as the substrate. After the reaction, 1 was recovered 
from the mixture by centrifugation and filtration and then washed with dichloromethane 
three times. The catalyst 1 recovered from the reaction was reused for five consecutive 
cycles with conversions of more than 90% (Figures 4 and S3a–c). This result proved that 1 
is a heterogeneous and recyclable catalyst. The PXRD pattern of activated 1 is not con-
sistent with the simulated one, which may due to the single-crystal to single-crystal tran-
sition [56]. However, the PXRD pattern of activated 1 after five recycles is consistent with 
the activated sample, which indicated that 1 is stable during the reaction process (Figure 
S5). 
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is a heterogeneous and recyclable catalyst. The PXRD pattern of activated 1 is not con-
sistent with the simulated one, which may due to the single-crystal to single-crystal tran-
sition [56]. However, the PXRD pattern of activated 1 after five recycles is consistent with 
the activated sample, which indicated that 1 is stable during the reaction process (Figure 
S5). 
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from the mixture by centrifugation and filtration and then washed with dichloromethane 
three times. The catalyst 1 recovered from the reaction was reused for five consecutive 
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is a heterogeneous and recyclable catalyst. The PXRD pattern of activated 1 is not con-
sistent with the simulated one, which may due to the single-crystal to single-crystal tran-
sition [56]. However, the PXRD pattern of activated 1 after five recycles is consistent with 
the activated sample, which indicated that 1 is stable during the reaction process (Figure 
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on CoII cations), n-Bu4NBr (0.16 g, 0.50 mmol), 8 h, and 80 ◦C. b Isolated conversions were calculated by 1H NMR.

To further explore the recyclability and stability of 1, recycling experiments were
performed using gylcidylphenylether as the substrate. After the reaction, 1 was recovered
from the mixture by centrifugation and filtration and then washed with dichloromethane
three times. The catalyst 1 recovered from the reaction was reused for five consecutive
cycles with conversions of more than 90% (Figure 4 and Figure S3a–c). This result proved
that 1 is a heterogeneous and recyclable catalyst. The PXRD pattern of activated 1 is not
consistent with the simulated one, which may due to the single-crystal to single-crystal
transition [56]. However, the PXRD pattern of activated 1 after five recycles is consistent
with the activated sample, which indicated that 1 is stable during the reaction process
(Figure S5).
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by single-crystal X-ray diffraction analysis, PXRD, IR, TGA, and elemental analysis. The
activated catalyst 1 possesses a large number of unsaturated coordination CoII cations;
thus, compound 1 is a promising heterogeneous catalyst for the CO2 conversion reaction.
Most strikingly, 1 can be easily recovered and reused for five consecutive circles with high
catalytic activity.
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