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Abstract: A single-component molecular crystal [Pd(dddt)2] has been shown to exhibit almost
temperature-independent resistivity under high pressure, leading theoretical studies to propose it
as a three-dimensional (3D) Dirac electron system. To obtain more experimental information about
the high-pressure electronic states, detailed resistivity measurements were performed, which show
temperature-independent behavior at 13 GPa and then an upturn in the low temperature region at
higher pressures. High-pressure single-crystal structure analysis was also performed for the first
time, revealing the presence of pressure-induced structural disorder, which is possibly related to the
changes in resistivity in the higher-pressure region. Calculations based on the disordered structure
reveal that the Dirac cone state and semiconducting state coexist, indicating that the electronic
state at high pressure is not a simple Dirac electron system as previously believed. Finally, the first
measurements of magnetoresistance on [Pd(dddt)2] under high pressure are reported, revealing
unusual behavior that seems to originate from the Dirac electron state.

Keywords: single-component molecular conductor; pressure effect; Dirac electron system; resistivity;
magnetoresistance; synchrotron X-ray diffraction; band calculation

1. Introduction

Most single-component molecular crystals are semiconductors or insulators because
of large HOMO-LUMO energy band gaps (HOMO = Highest Occupied Molecular Or-
bital, LUMO = Lowest Unoccupied Molecular Orbital). Compared to other simple organic
molecular crystals, metal–dithiolene complexes have small HOMO-LUMO gaps (~0.5 eV)
and are, therefore, considered to be important candidates in the search for conducting
single-component molecular systems. Through the last two decades of research, it has
been revealed that chemical modifications, such as increasing π-conjugation and ligand
planarity, can reduce the HOMO-LUMO band gap. This method, however, reduces the
solubility of source materials and makes crystal growth very difficult. So far, only three
single-component molecular metals, [M(tmdt)2] (M = Ni, Au; tmdt = trimethylenetetrathia-
fulvalenedithiolate) [1,2] and [Au(Me-thiazdt)2] (Me-thiazdt = N-methyl-1,3-thiazoline-2-
thione-4,5-dithiolate) [3], and one single-component Dirac electron candidate [Pt(dmdt)2]
(dmdt = dimethyltetrathiafulvalenedithiolate) [4], have been reported under ambient con-
ditions. On the other hand, molecular crystals have soft lattices and so the bandwidths of
HOMO and LUMO bands may be easily enlarged by the application of external pressure.
Therefore, the application of pressure has been found to be an efficient way to discover
new single-component molecular metals and superconductors. Indeed, three pressure-
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induced single-component molecular metals, [Ni(ptdt)2] (ptdt = propylenedithiotetrathia-
fulvalenedithiolate) [5], [Cu(dmdt)2] [6] and [Ni(dmit)2] (dmit = 1,3-dithiole-2-thione-4,5-
dithiolate) [7], have been found at pressures of 19.4 GPa, 4.7 GPa, and 15.9 GPa, respectively.
Furthermore, we also discovered the first pressure-induced single-component molecular
superconductor, [Ni(hfdt)2] (hfdt = bis(trifluoromethyl)tetrathiafulvalenedithiolate), at
8 GPa (Tc = 5.5 K) [8]. Lorcy and coworkers reported that single-component molecular crys-
tals [Au(Et-thiazdt)2] (Et-thiazdt = N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate) [9] and
[Au(Et-thiazds)2] [10] exhibit metallic conduction at the even lower pressures of 1.3 GPa
and 0.6 GPa, respectively.

Because of the multi-orbital character of single-component molecular conductors, it
is also expected that under certain conditions, more exotic electronic states may occur.
For example, the HOMO and LUMO bands may be induced to touch at a single point to
form a Dirac electron system. Indeed, we have found that a single-component molecular
crystal, [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate), forms a Dirac electron
system under high pressure. First-principles density functional theory (DFT) calculations
indicated that Dirac cones emerge from the crossing between the HOMO and LUMO
bands, which originate from crystallographically independent layers within the crystal [11].
In that work, the HOMO-LUMO energy gap was observed to be 0.65 eV at ambient
pressure, and the room temperature resistivity was higher than the measurable range
of the equipment. Pressure-dependent resistivity measurements revealed that the room
temperature resistivity (ρrt) and activation energy (Ea) decrease sharply with increasing
pressure above 4.2 GPa and increase slowly with increasing pressure above 12.6 GPa [12];
electrical properties in the lower pressure region are still unknown.

[Pd(dddt)2] belongs to the monoclinic crystal system with space group P21/n (no. 14) [11].
The unit cell parameters at ambient pressure are as follows: a = 17.8698(82)) Å, b = 4.7281(19) Å,
c = 18.4657(85) Å, β = 111.6313(63)◦, V = 1450.3(1) Å3, Z = 4. Figure 1 shows the molecular
structure and crystal structure of [Pd(dddt)2]. [Pd(dddt)2] molecules are uniformly stacked
along the b axis, where Pd atoms are located at inversion centers. The Pd···Pd distance is
4.728 Å, which is identical to the magnitude of the b axis. The structure may further be
thought of as crystallographically independent layers stacked in the a–c direction: Layer 1
contains molecules in which the Pd atoms are located on the 2b Wyckoff sites at (0, 0, 1/2)
and (1/2, 1/2, 0), while Layer 2 contains molecules in which the Pd atoms are located on
the 2a Wyckoff sites at (0, 0, 0) and (1/2, 1/2, 1/2). It is this layered structure that gives rise
to the Dirac electron state at high pressure.

In other materials, the Dirac electron system shows interesting quantum magnetotrans-
port phenomena, such as quantum Hall effects (QHEs) reported in graphene [13] and topo-
logical insulators [14], and linear relationships of magnetoresistance (MR = [ρ(B) − ρ(0)]/ρ(0))
with magnetic field in iron pnictide, Ba(FeAs)2, single crystals, when the magnetic field is
perpendicular to the current direction at low temperature [15]. Magnetoresistance (MR)
measurements in a bulk two-dimensional Dirac electron system, α-(BEDT-TTF)2I3, showed
an unusual negative interlayer MR in the low magnetic field region [16]. In the case of
[Pd(dddt)2], no MR measurements have been reported to date. Theoretical calculations
have shown that it is a nodal line semimetal, in which the Dirac points form a loop in
three-dimensional reciprocal space [17,18], which may give rise to further interesting
MR behavior.

To better understand the high-pressure behavior of [Pd(dddt)2], we report a series
of new measurements and calculations that verify previous theoretical calculations and
provide insight into the Dirac electron state. In particular, we report more detailed high-
pressure resistivity measurements, the first experimental structure determinations per-
formed at high pressure using single-crystal synchrotron X-ray diffraction, tight binding
calculations performed using these data, and the first high-pressure MR measurements
performed on single crystals of [Pd(dddt)2]. We find that the new experimental crystal
structures verify previous theoretical reports of the Dirac electron state and suggest that
changes in resistivity may be affected by structural disorder. Tight binding calculations
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indicate that the Dirac electron state coexists with semiconducting behavior, also owing
to the disorder. The new MR measurements are also indicative of exotic quantum trans-
port behavior: negative MR is observed at low temperatures and the curvature of the
field-dependent MR is heavily dependent on crystal orientation.
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Figure 1. Molecular structure and crystal structure of [Pd(dddt)2] at 5.9 GPa with symbols of
intermolecular couplings. Palladium, sulfur and carbon atoms are shown in pink, yellow and grey,
respectively. Hydrogen atoms are omitted for clarity.

2. Materials and Methods
2.1. High-Pressure Electrical Resistivity

Four-probe high-pressure resistivity measurements were performed by using the same
procedure as previously performed for [Ni(ptdt)2] [5]. A culet size of 0.56 mm DAC and
Inconel 625 was used as the metal gasket. Four contacts were made from 5 µm gold wires
and gold paint, and Daphne Oil 7373 was used as the pressure medium. The sample
was encapsulated with a mixture of Araldite AR-S30 (Huntsman) and alumina powder
(see Figure 2a). A small Ruby chip was attached to the center of the protective layer and
pressure was determined by measuring the shift of Ruby fluorescence R1 lines at room
temperature. Samples 5 and 6 were measured using the cryocooler helium compressor
system (Sumitomo Heavy Industries, Ltd.) for cooling the DAC with a cooling rate of
1.5 K/min. Samples 7 and 8 were measured using a Quantum Design physical property
measurement system (PPMS) with a cooling rate of 0.5 K/min.
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Figure 2. (a) Optical microscope image of the [Pd(dddt)2] sample at 21.6 GPa assembled in a Diamond
Anvil Cell (DAC). (b) The pressure dependence of room temperature resistivity (samples 1~4 = data
from previous work [11]). (c) Temperature-dependent resistivity ρ under various pressures from
1.3 GPa to 13 GPa.

2.2. High-Pressure Single Crystal Structure Determination

The high-pressure single-crystal structure measurements were performed at beamline
I19-2, Diamond Light Source synchrotron, UK using 0.4859 Å radiation. A single crystal
of [Pd(dddt)2] was coated in a thin layer of Araldite and placed in a DAC with culet
size 0.6 mm and tungsten gasket and 4:1 methanol:ethanol was used as the pressure
medium. The pressure was determined by the shift of Ruby fluorescence R1 lines at room
temperature, before and after each measurement. Data were processed via in-house semi-
automated routines using aimless [19], ccp4 [20], dials [21], pointless [22], and xia2 [23],
and solved and refined using SHELX [24] within Olex2 [25].

The ambient pressure structure refinement was performed using riding H atoms.
Owing to low completeness of the high-pressure datasets, only Pd atoms were refined
with anisotropic ADPs, which were restrained using the ISOR command in the 5.9 GPa
and 10.6 GPa structures. Structural disorder on the S/CH2 moiety was modeled in two
parts with refined occupancies, using two S positions. The C atom was modeled on the
same position in both cases with sets of riding H atoms allowed to vary according to the
respective S atom position. The S–C distance was restrained to 1.76(2) Å using the DFIX
command, and the S atoms were constrained to have the same isotropic ADPs. In addition,
terminal CH2–CH2 distances were restrained to 1.54(2) Å.
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2.3. Tight-Binding Calculation

Calculations of molecular orbitals and intermolecular overlap integrals (S) between
frontier molecular orbitals were carried out by the extended Hückel method. Reported sets
of semi-empirical parameters for Slater-type atomic orbitals and valence shell ionization
potentials for H [26], C [26], S [27], and Pd [28] were used for the calculations. Intermolecu-
lar transfer integrals, t (eV), were estimated using the equation t = − 10S. Since the unit
cell contains four [Pd(dddt)2] molecules (molecules 1, 2, 3, 4: Figure 1), four HOMOs
(H1, H2, H3, H4) and four LUMOs (L1, L2, L3, L4) are considered in the calculation. For
later discussions on the electrical structure, we define a new cell as a = – (ao + co), b = –bo,
c = co, where ao, bo, and co are the original lattice vectors [11]. In the new unit cell, the
a-axis is parallel to Layers 1 and 2. The band energies E (k) are obtained as eigenvalues
of an 8 × 8 Hermite matrix H (k), where a wavevector k = kxa* + kyb* + kzc* = (kx, ky, kz),
and ka = 2πkx, kb = 2πky, and kc = 2πkz. Matrix elements hmn described in Appendix A
correspond to the HOMO–HOMO couplings (m, n = 1–4), the LUMO–LUMO couplings
(m, n = 5–8), and the HOMO–LUMO couplings (m = 1–4, n = 5–8 and m = 5–8, n = 1–4).
Intermolecular transfer integrals between frontier molecular orbitals in hmn are shown in
Tables 1–5. The intralayer transfer integrals are given by b1 and p (1,2) for Layer 1, and b2
and q(1,2) for Layer 2. The interlayer transfer integrals are represented by a (1,2) and c (1,2).
These transfer integrals are indexed by H (between HOMOs), L (between LUMOs), and
HL (between HOMO and LUMO). In the case of the disordered structure, we examined
two extreme crystal structures in which one of the possible conformations for molecule 2(4)
is fully occupied (Structures A and B).

Table 1. HOMO–HOMO (H–H), LUMO–LUMO (L–L), and HOMO–LUMO (H–L) transfer integrals
(meV) at 5.9 GPa.

H–H L–L H–L

b1 209.3 −1.9 −51.2
Layer 1p1 (p) 28.1 −12.4 19.9

p2 — — 17.1
b2 49.9 −80.4 −67.2

Layer 2q1 (q) 10.8 8.1 9.3
q2 — — 9.2
a1 −28.2 14.6 −20.1

Interlayera2 2.2 1.3 −1.7
c1 15.4 12.7 14.1
c2 −3.9 15.8 −11.8

Table 2. HOMO–HOMO (H–H), LUMO–LUMO (L–L), and HOMO–LUMO (H–L) transfer integrals
(meV) at 7.8 GPa (Structure A).

H–H L–L H–L

b1 190.2 53.2 −34.3
Layer 1p1 (p) 28.1 −17.0 23.1

p2 — — 20.5
b2 −0.9 −121.5 −71.9

Layer 2q1 (q) 7.3 7.2 8.5
q2 — — 6.1
a1 −37.7 19.0 −26.6

Interlayera2 3.3 2.7 −3.1
c1 9.1 6.0 7.3
c2 1.2 9.4 −5.6
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Table 3. HOMO–HOMO (H–H), LUMO–LUMO (L–L), and HOMO–LUMO (H–L) transfer integrals
(meV) at 7.8 GPa (Structure B).

H–H L–L H–L

b1 190.2 53.2 −34.3
Layer 1p1 (p) 28.1 −17.0 23.1

p2 — — 20.5
b2 107.2 −5.4 −46.2

Layer 2q1 (q) 11.2 11.0 12.1
q2 — — 10.2
a1 −32.9 16.2 −22.9

Interlayera2 2.0 1.9 −2.0
c1 −7.7 −15.2 −12.6
c2 −9.3 12.4 −11.3

Table 4. HOMO–HOMO (H–H), LUMO–LUMO (L–L), and HOMO–LUMO (H–L) transfer integrals
(meV) at 10.6 GPa (Structure A).

H–H L–L H–L

b1 203.4 6.1 −67.5
Layer 1p1 (p) 24.7 −13.4 18.6

p2 — — 17.7
b2 −0.3 −135.0 −81.6

Layer 2q1 (q) 7.8 7.2 9.3
q2 — — 5.9
a1 −36.3 21.4 −28.4

Interlayera2 4.9 4.1 −4.6
c1 7.6 4.8 6.0
c2 −5.0 17.9 −12.5

Table 5. HOMO–HOMO (H–H), LUMO–LUMO (L–L), and HOMO–LUMO (H–L) transfer integrals
(meV) at 10.6 GPa (Structure B).

H–H L–L H–L

b1 203.4 6.1 −67.5
Layer 1p1 (p) 24.7 −13.4 18.6

p2 — — 17.7
b2 143.9 32.7 −49.8

Layer 2q1 (q) 13.9 12.9 14.8
q2 — — 12.2
a1 −31.6 21.1 −26.4

Interlayera2 2.0 2.4 −2.4
c1 −6.4 −15.3 −11.7
c2 −9.6 9.3 −9.3

2.4. Magnetoresistance Measurements

Magnetoresistance measurements were performed with a Quantum Design physical
property measurement system (PPMS) in a magnetic field range of −8 to 8 T in the range
of 2–100 K. As shown in Figure 3a,b, the orientation of the four-probe attachment on
samples was such that the magnetic field was either perpendicular or parallel to the current
direction. As for samples 7 and 8, magnetoresistance was measured after the measurement
of the temperature dependence of resistivity down to 2 K.
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Figure 3. (a) Pressure dependence of cell parameters a, b, c, β and V. (b) Crystallographically
independent [Pd(dddt)2] molecules at different pressure in Layer 1 and Layer 2. (c) Crystal structure
of [Pd(dddt)2] at 7.8 GPa. Palladium, sulfur, carbon and hydrogen atoms are shown in pink, yellow,
grey and cyan, respectively.

3. Results
3.1. High-Pressure Electrical Properties

A series of new high-pressure electrical resistivity measurements was performed using
a diamond anvil cell (DAC) (Figure 2a), in which the pressure was carefully controlled
for closer inspection of the material’s behavior. The resistivity was measurable from 1.3
GPa, at which pressure the room temperature conductivity (σrt) was 2 × 10−5 S cm−1

(Figure 2b). The temperature dependence of the resistivity was measured from 2 GPa, at
which pressure the activation energy (Ea) was 0.29 eV. The room temperature resistivity
(ρrt) and Ea were found to initially decrease with increasing pressure then, at 13 GPa, a
weak metal-like behavior was observed from room temperature to 230 K (see Figure 2c). At
pressures higher than 13 GPa, ρrt and Ea were found to increase with increasing pressure,
as observed previously [12]. Measurements performed on multiple samples (Figure 2b) and
at multiple pressures (Figure 2c) show that the temperature dependence of the resistivity
under various pressures is reproducible and consistent with previous results [11].

3.2. High-Pressure Single-Crystal Structure

To provide experimental structural information to explain the physical properties,
high-pressure single-crystal X-ray diffraction measurements were performed. The single
crystal of [Pd(dddt)2] used was from the same batch of crystals that had been synthesized
for high-pressure electrical property measurements. Unlike previously reported high-
pressure single-crystal structure measurements of the isostructural system [Ni(dddt)2] [29],
crystals of [Pd(dddt)2] suffered from twinning even at pressures below 1 GPa. To avoid
twinning of [Pd(dddt)2] crystals, the crystal was encapsulated with layer of Araldite epoxy
resin, made thin to reduce background scattering. The improved hydrostatic conditioning
effect of a mixture of alumina and araldite layers was demonstrated by previous DAC
high-pressure resistivity measurements [5].

High-pressure diffraction data collection was performed at increasing pressures of
0.1 MPa (ambient pressure), 1.0 GPa, 4.0 GPa, 5.9 GPa, 7.8 GPa, 8.4 GPa, 10.6 GPa and
12.4 GPa (see Supplementary Materials). The monoclinic system and P21/n space group
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of the ambient pressure structure were maintained at all measured pressures. Figure 3a
shows the pressure dependence of unit cell parameters. The unit cell lengths and volume
were found to gradually decrease with increasing pressure: at 10.6 GPa, the a, b and c axes
reduce to 0.9, 0.87 and 0.94 times their ambient pressure values, respectively. On the other
hand, the β angle decreases from 111.631◦ at 0 GPa to 110.04◦ at 4 GPa, then increases again
to 112.8◦ at 10.6 GPa. At this pressure, the change in unit cell volume is reduced to 73.6%
of its ambient pressure value, reflecting the soft nature of the organic crystal. Interestingly,
at 4.0 GPa, coupling between the mechanical responses of the different axes results in
decreases in b and c, alongside an increase in a. Unlike in well-understood winerack,
honeycomb, helical or polyhedral framework structures [30], there is not an obvious
structural motif that is responsible for this complex behavior in [Pd(dddt)2]. However,
it is not unusual for certain axes to expand upon compression (so-called negative linear
compressibility) so long as the fundamental thermodynamic requirement for volume to
decrease as pressure increases is obeyed, which is true in this case.

Crystal structures could be solved and refined at ambient pressure (0.1 MPa), 5.9 GPa,
7.8 GPa and 10.6 GPa. Unfortunately, degradation of crystal quality prevented structure
refinement at 1.0 GPa, 4.0 GPa, 8.4 GPa and 12.4 GPa. At ambient pressure, there was no
evidence of structural disorder. At 5.9 GPa, the crystal structure was also refined without
disorder [31]. It should be mentioned that the data quality was not good enough to com-
pletely eliminate the existence of a disordered state. The crystal structure could be solved
even with disorder, with similar refinement statistics to the ordered structure; however,
when using anisotropic atomic displacement parameters (ADPs) for sulfur atoms, the
disorder appears to be absent. We believe that better single-crystal structure measurements
will be needed in the future to determine the structure with greater precision.

In all successful structure determinations at high pressure above 5.9 GPa, evidence
was found in the residual electron density for disorder at one of the thin S atoms in
molecule 2(4) within Layer 2 (Figure 1 or Figure 3b). Modeling this as 2-fold disorder
resulted in a decrease in the residual factor R1 of approximately 1% for each dataset. In
addition, the atomic displacement parameter for the neighboring CH2 unit was larger
than average, indicating it may also be affected by the positional disorder. The cause of
the disorder is likely to be increasing steric congestion at high pressure, which forces the
molecules to adopt one of two conformations, giving rise to two distinct CH-S hydrogen
bonds (Figure A1).

While the b-axis (i.e., the intermolecular Pd–Pd distance) decreases monotonously
with increasing pressure, as shown in Figure 3a, changes in intramolecular distances are
less smooth and vary depending on the molecule. At ambient pressure, all Pd–S distances
are almost identical (2.26 Å). At 5.9 GPa the values decrease to within the range 2.21–2.24 Å,
before diverging further at 7.8 GPa (2.21–2.26 Å) and 10.6 GPa (2.18–2.29 Å). In the latter
case, Pd–S distances in Layer 2 are approximately 0.08 Å shorter that those found in Layer 1.
This typifies the difference between the molecules that underlies their different contribu-
tions to the electronic structure at high pressure. C–C distances within the conjugated
part of each molecule increase with increasing pressure, further suggesting subtle changes
in electronic structure. At ambient pressure, they are 1.37 Å and 1.40 Å, increasing to
1.38/1.41 Å, 1.45/1.44 Å and 1.45/1.50 Å at 5.9 GPa, 7.8 GPa and 10.6 GPa, respectively.

The application of high pressure causes increasing distortion of the [Pd(dddt)2]
molecules. Bond angles, such as S–Pd–S angles, vary between the molecules in ques-
tion; however, owing to low precision in atomic positions, there is insufficient evidence to
indicate whether or not the application of high pressure causes any significant changes.
On the other hand, with the exception of half of the CH2 groups, the molecules are flat
at ambient pressure but buckle significantly under pressure, owing to increasing steric
congestion. This effect can be most clearly seen in the terminal CH2-CH2 groups, which
bend out of the plane at 7.8 GPa (Figure 3b,c) and 10.6 GPa.

Structural disorder in Layer 2 (molecule 2(4)) also has a significant effect on the
distance between adjacent molecules along the stacking direction. The structure, denoted
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as Structure A, in which all sulfur atoms, including the disordered atom (S8A), are almost
coplanar, is descended from the low-pressure molecular structure. On the other hand, in
the alternative structure, denoted as Structure B, the disordered sulfur atom (S8B) in the
outer heteroring deviates significantly from the molecular plane (Figure 4). The occupancy
of S8A and S8B (i.e., the probability of Structure A and Structure B existing in any part of
the crystal) are 0.55 and 0.45 at 7.8 GPa, and 0.64 and 0.36 at 10.6 GPa, respectively. As
shown in Table 6, this protruding sulfur atom provides a very short intermolecular S···S
distance (d1) between molecules 2(4) in the stacking direction.
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Figure 4. Two extreme crystal structures in which one of the possible conformations for molecule 2(4)
is fully occupied (Structures A and B).

Table 6. Intermolecular S···S distances (Å) between Molecules 2(4) in Layer 2 along the stacking direction.

Ambient Pressure 5.9 GPa
7.8 GPa 10.6 GPa

Structure A Structure B Structure A Structure B

d1 3.953 3.612 3.780 3.199 3.707 3.028
d2 3.922 3.596 3.484 3.484 3.517 3.517
d3 3.850 3.547 3.453 3.453 3.352 3.352

3.3. Band Structure

To understand the high-pressure electronic states, the experimentally determined
crystal structures were examined using a tight-binding band model based on the extended
Hückel molecular orbital method [32]. Focusing on the 5.9 GPa structure, we reported
details of the theoretical model and mechanism of the Dirac cone formation separately [31].
The measured cell volume at 5.9 GPa (1152.8 Å3) is close to that obtained by the DFT
calculation for the theoretically optimized 8 GPa structure (1147.5 Å) in the previous
work [11]. The calculated transfer integrals for the 5.9 GPa structure (Table 1) provide
considerable difference from the previous tight-binding model [31]. An important point
is the existence of the direct interlayer HOMO–LUMO couplings between molecule 1(3)
and molecule 2(4) (h16, h18, h36, h38 and their complex conjugate elements) that were
neglected in the previous model. The present model, however, reproduces the essential
features of the DFT band calculations well. Figure 5 shows the electronic band structure
at 5.9 GPa connecting TRIMs (time reversal invariant momenta) where the Dirac cone
emerges on the Y–G line. In single-component molecular conductors, the Dirac cone can be
formed at a point where the HOMO and LUMO bands cross without the HOMO–LUMO
couplings [33]. As for the present system, the Dirac cone originates from the HOMO
band in Layer 1 and the LUMO band in Layer 2 (Figure 6). The HOMO band is convex
upward and the LUMO is convex downward, which leads to the HOMO-LUMO band
crossing. This is because the major transfer integrals, b1H in Layer 1 and b2L in Layer 2,
have opposite signs. The interlayer HOMO-LUMO couplings remove the degeneracy
at the intersection of the HOMO and LUMO bands and open an energy gap. In this
system, however, there is a surface on which the HOMO-LUMO interaction is zero and gap
formation cannot occur. When this nodal surface of the HOMO-LUMO couplings meets a
crossing plane of the HOMO and LUMO bands, the Dirac cones emerge in the k-space. The
present model, revealed by the new X-ray diffraction data, includes both direct and indirect
interlayer HOMO-LUMO couplings, and both of them play an important role in the Dirac
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cone formation [31]. The indirect HOMO–LUMO couplings are obtained by a second-
order perturbation using the intralayer HOMO–LUMO and interlayer LUMO–LUMO or
HOMO–HOMO couplings [11].
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A unique feature of this Dirac electron system is that the Dirac point describes a
closed line (loop) within the first Brillouin zone (Figure 7). The Dirac point in the single-
component molecular Dirac electron system is located near the Fermi level, because charge
carriers are generated by electron transfer from the fully occupied HOMO band to the
completely empty LUMO band. The energy at the Dirac point ED shows slight variations
from the Fermi energy EF on the loop, which gives hole and electron pockets (Figure 8).
This means that the system is a nodal line semimetal. The deviation δE = ED − EF is very
small (|δE| < 0.4 meV) at 5.9 GPa.

In discussing the electronic structure at higher pressures (7.8 GPa and 10.6 GPa)
with the disordered crystal structure, we start with Structure A, because Structure A
relates more closely with the low-pressure structures including the 5.9 GPa structure.
Indeed, the electronic band structures of Structure A at 7.8 and 10.6 GPa indicate that the
system remains a nodal line semimetal (Figures 6, 7, 9 and 10). One effect of the higher
pressure is enlargement of the nodal loop. This can be explained by an enhancement
of the LUMO–LUMO coupling b2L (Tables 2 and 4), which gives wider LUMO bands
and expanded contact of the HOMO and LUMO bands. Another effect of the increased
pressure is an enhancement of the deviation from the Fermi level, which lies within the
range −6.7 meV < δE < 8.7 meV at 7.8 GPa and −3.6 meV < δE < 5.2 meV at 10.6 GPa. This
results in enlarged hole and electron pockets (Figure 8). In addition, it should be noted that
an inversion of the hole and electron pockets occurs at 7.8 and 10.6 GPa (Figure 7).



Crystals 2021, 11, 534 11 of 19Crystals 2021, 11, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Nodal loops in [Pd(dddt)2] at 5.9 GPa, 7.8 GPa and 10.6 GPa. Points with hole-like char-
acteristics are indicated in red and points with electron-like characteristics in blue. 

In discussing the electronic structure at higher pressures (7.8 GPa and 10.6 GPa) with 
the disordered crystal structure, we start with Structure A, because Structure A relates 
more closely with the low-pressure structures including the 5.9 GPa structure. Indeed, the 
electronic band structures of Structure A at 7.8 and 10.6 GPa indicate that the system re-
mains a nodal line semimetal (Figures 6, 7, 9 and 10). One effect of the higher pressure is 
enlargement of the nodal loop. This can be explained by an enhancement of the LUMO–
LUMO coupling b2L (Tables 2 and 4), which gives wider LUMO bands and expanded con-
tact of the HOMO and LUMO bands. Another effect of the increased pressure is an en-
hancement of the deviation from the Fermi level, which lies within the range −6.7 meV < 
δE < 8.7 meV at 7.8 GPa and −3.6 meV < δE < 5.2 meV at 10.6 GPa. This results in enlarged 
hole and electron pockets (Figure 8). In addition, it should be noted that an inversion of 
the hole and electron pockets occurs at 7.8 and 10.6 GPa (Figure 7). 

 
Figure 8. Fermi surfaces in [Pd(dddt)2] at 5.9 GPa, 7.8 GPa and 10.6 GPa. 

  

Figure 7. Nodal loops in [Pd(dddt)2] at 5.9 GPa, 7.8 GPa and 10.6 GPa. Points with hole-like
characteristics are indicated in red and points with electron-like characteristics in blue.

Crystals 2021, 11, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Nodal loops in [Pd(dddt)2] at 5.9 GPa, 7.8 GPa and 10.6 GPa. Points with hole-like char-
acteristics are indicated in red and points with electron-like characteristics in blue. 

In discussing the electronic structure at higher pressures (7.8 GPa and 10.6 GPa) with 
the disordered crystal structure, we start with Structure A, because Structure A relates 
more closely with the low-pressure structures including the 5.9 GPa structure. Indeed, the 
electronic band structures of Structure A at 7.8 and 10.6 GPa indicate that the system re-
mains a nodal line semimetal (Figures 6, 7, 9 and 10). One effect of the higher pressure is 
enlargement of the nodal loop. This can be explained by an enhancement of the LUMO–
LUMO coupling b2L (Tables 2 and 4), which gives wider LUMO bands and expanded con-
tact of the HOMO and LUMO bands. Another effect of the increased pressure is an en-
hancement of the deviation from the Fermi level, which lies within the range −6.7 meV < 
δE < 8.7 meV at 7.8 GPa and −3.6 meV < δE < 5.2 meV at 10.6 GPa. This results in enlarged 
hole and electron pockets (Figure 8). In addition, it should be noted that an inversion of 
the hole and electron pockets occurs at 7.8 and 10.6 GPa (Figure 7). 

 
Figure 8. Fermi surfaces in [Pd(dddt)2] at 5.9 GPa, 7.8 GPa and 10.6 GPa. 

  

Figure 8. Fermi surfaces in [Pd(dddt)2] at 5.9 GPa, 7.8 GPa and 10.6 GPa.
Crystals 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 

Structure A Structure B 

 

Figure 9. Electronic band structure of [Pd(dddt)2] at 7.8 GPa connecting TRIMs. 

 

Structure A Structure B 

 

Figure 10. Electronic band structure of [Pd(dddt)2] at 10.6 GPa connecting TRIMs. 

Structure B is only found at higher pressures. Tables 3 and 5 indicate that the very 
short intermolecular S···S distance (d1) between molecules 2(4) in the stacking direction 
significantly affects intermolecular couplings b2 between frontier molecular orbitals (b2H, 
b2L, b2HL). In particular, the change of b2L reduces the bandwidth of the LUMO bands and 
varies the curvature of the LUMO bands, which provides a semiconducting band struc-
ture with no Dirac cone (Figures 9 and 10). The drastic difference in the electronic state of 
structures A and B suggests that the system is not a simple Dirac electron system when 
disorder is present. 

3.4. Magnetoresistance 
Temperature-dependent anisotropic MR measurements under various pressures 

were performed on [Pd(dddt)2] crystals by measuring the electrical response in orienta-
tions parallel to and perpendicular to the crystallographic b-axis. Figure 11a schematically 
shows the crystal shape, axes, and orientation of the four-probe attachment on the sam-
ples, as determined by single-crystal X-ray diffraction face-indexing. The first measure-
ment, in which the magnetic field was perpendicular to the direction of electrical current, 

Figure 9. Electronic band structure of [Pd(dddt)2] at 7.8 GPa connecting TRIMs.



Crystals 2021, 11, 534 12 of 19

Crystals 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 

Structure A Structure B 

 

Figure 9. Electronic band structure of [Pd(dddt)2] at 7.8 GPa connecting TRIMs. 

 

Structure A Structure B 

 

Figure 10. Electronic band structure of [Pd(dddt)2] at 10.6 GPa connecting TRIMs. 

Structure B is only found at higher pressures. Tables 3 and 5 indicate that the very 
short intermolecular S···S distance (d1) between molecules 2(4) in the stacking direction 
significantly affects intermolecular couplings b2 between frontier molecular orbitals (b2H, 
b2L, b2HL). In particular, the change of b2L reduces the bandwidth of the LUMO bands and 
varies the curvature of the LUMO bands, which provides a semiconducting band struc-
ture with no Dirac cone (Figures 9 and 10). The drastic difference in the electronic state of 
structures A and B suggests that the system is not a simple Dirac electron system when 
disorder is present. 

3.4. Magnetoresistance 
Temperature-dependent anisotropic MR measurements under various pressures 

were performed on [Pd(dddt)2] crystals by measuring the electrical response in orienta-
tions parallel to and perpendicular to the crystallographic b-axis. Figure 11a schematically 
shows the crystal shape, axes, and orientation of the four-probe attachment on the sam-
ples, as determined by single-crystal X-ray diffraction face-indexing. The first measure-
ment, in which the magnetic field was perpendicular to the direction of electrical current, 

Figure 10. Electronic band structure of [Pd(dddt)2] at 10.6 GPa connecting TRIMs.

Structure B is only found at higher pressures. Tables 3 and 5 indicate that the very
short intermolecular S···S distance (d1) between molecules 2(4) in the stacking direction
significantly affects intermolecular couplings b2 between frontier molecular orbitals (b2H,
b2L, b2HL). In particular, the change of b2L reduces the bandwidth of the LUMO bands
and varies the curvature of the LUMO bands, which provides a semiconducting band
structure with no Dirac cone (Figures 9 and 10). The drastic difference in the electronic
state of structures A and B suggests that the system is not a simple Dirac electron system
when disorder is present.

3.4. Magnetoresistance

Temperature-dependent anisotropic MR measurements under various pressures were
performed on [Pd(dddt)2] crystals by measuring the electrical response in orientations
parallel to and perpendicular to the crystallographic b-axis. Figure 11a schematically shows
the crystal shape, axes, and orientation of the four-probe attachment on the samples, as
determined by single-crystal X-ray diffraction face-indexing. The first measurement, in
which the magnetic field was perpendicular to the direction of electrical current, was
performed at 11.8 GPa (Sample 8). At this pressure, the resistivity is almost temperature
independent (Figure 2) and the system may be expected to be closest to the Dirac electron
state. However, only a small signature of conventional semiconductor MR (i.e., a parabolic
response) was observed below 10K (see Figure A2).

When the pressure was reduced to 10.5 GPa, a small negative MR is observed in the
low magnetic field region (B < 1 T) at all measured temperatures, and linear MR appears
in the low temperature and the high magnetic field region (Figures 11b and A3). The
minimum value of the negative MR at 2 K was −0.86% and the maximum value was
9.14%. At higher temperatures, MR was reduced to less than 1%; however, negative MR
at fields below 1 T and a linear relationship between the MR and magnetic field at higher
fields was still observed up to 70 K. Interestingly, when the magnetic field and current
directions were perpendicular, the MR effect increased at lower pressures. The second
crystal (Sample 7) was mounted in the same orientation as shown in Figure 11a, i.e., with
the magnetic field perpendicular to the direction of electrical current. Figure 11c shows
temperature dependence of MR at 9.6 GPa. A relatively large MR was observed at 2 K: the
maximum MR was 42.29% and the minimum negative MR was −2.41%.

The most interesting MR was observed when the magnetic field and current directions
were parallel. Figure 11d shows a schematic of the crystal shape, axes and the orientation
of the four-probe attachment on Sample 9, for which the temperature dependence of
resistivity is shown in Figure A4. The σrt and Ea were 94 S cm−1and 38 meV at 8.7 GPa, and
219 S cm−1 and 19 meV at 9.3 GPa, respectively. At 9.3 GPa, a relatively large negative MR
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was observed below 1 T over a wide temperature range from 2 K to 50 K and, in the B >1 T
region, the MR showed a linear relationship with magnetic field (see Figures 11e and A5).
At 2 K, the MR showed a maximum value of 6.56% and the negative MR decreased with
increasing temperature up to 10 K, reaching −4.2%. At higher temperatures, both positive
and negative MR decreased with increasing temperature, with no MR observed at 100 K.
At 8.7 GPa, the linear relationship above 1 T and negative MR below 1 T was similar to that
obtained at 9.3 GPa (Figure 11f). The maximum MR was 7.07% and minimum negative
MR was −3.53%. Interestingly, at these two pressures, the MR at different temperatures
was almost identical between 2 K and 20 K. At high temperatures, MR decreased and the
negative to positive transition field remained constant.
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Figure 11. (a) Schematic of the crystal shape, axes and orientation of the four-probe attachment
on Samples 7 and 8, in which the magnetic field (B) is perpendicular to the current direction. (b)
Temperature (T) dependence of magnetoresistance (MR) as a function of B at 10.5 GPa (Sample 8). (c)
Temperature dependence of MR as a function of B at 9.6 GPa (Sample 7). (d) Schematic of the crystal
shape, axes and the orientation of the four-probe attachment on Sample 9, in which the magnetic
field is parallel to the current direction. (e) MR as a function of B and T at 9.3 GPa (Sample 9). (f) MR
as a function of B and T at 8.7 GPa (Sample 9).

4. Discussion

For isostructural single-component molecular conductors, the contribution of the cen-
tral transition metal d-orbitals to the LUMO is often assumed to be similar. However, our
experimental results show that the central metal substitution in [M(dddt)2] (M = Ni, Pd),
directly effects the high-pressure properties and structure. In contrast to the high-pressure
structure of the Ni analogue [29], the Pd-Pd distance in [Pd(dddt)2] decreases smoothly
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from 4.7281 Å at 1 bar to 4.117 Å at 10.6 GPa. Unlike [Ni(dddt)2], which does not exhibit a
structural transition up to 11.2 GPa [29], [Pd(dddt)2] undergoes an order–disorder transi-
tion, which may be the cause of the increase in resistivity and coexistence of the Dirac cone
state with semiconductivity in the higher-pressure region.

The tight-binding band structure calculations using the experimentally determined
crystal structures show that the Dirac fermion state appears at least from 5.9 GPa. At
7.8 GPa and 10.6 GPa, the structural disorder causes coexistence of the Dirac cone state and
a semiconducting state. This semiconductor gap state steadily appears in the resistivity
data, manifesting as increasing resistivity.

The MR measurements show a linear relationship over wide temperature and pressure
ranges. If the MR linear relationship is correlated with the Dirac electron, our results
indicate that Dirac cones emerged in the pressure range from 8.7 GPa to 10.5 GPa at least.
This result is consistent with the theoretical calculations for resistivity under pressure that
indicates a nodal line semimetal state from 7.7 GPa to 8 GPa [34]. In this calculation, a
weak metal-like behavior was also observed near the room temperature, which is in good
agreement with the measured resistivity at 13 GPa. Previous studies have suggested that the
temperature-independent resistivity at 12.6 GPa may be associated with the Dirac electron
state [11]. However, in the case of Sample 7 under the same sample mounting conditions
as the previous measurement, no linear MR results were observed above 12.5 GPa. It is
possible that the sample mounting direction was not good for MR measurements or the
disordered structure may not show linear MR. To fully understand the Dirac electronic state
of this material, it is necessary to measure the Hall effect by applying electric current and
magnetic field in different crystal directions. The topological property of wave function
given by the Berry phase [35] is important for understanding Dirac nodal lines; it is
predicted that the Hall effect may be observed when the Berry phase component is oriented
parallel to the magnetic field [34]. To clarify these issues, additional MR measurements and
Hall effect measurements are ongoing.

Regarding the negative MR below 1 T, such behavior has been previously observed
in weakly localized semiconductor CrVTiAl thin films [36] or multilayer graphene [37].
Interestingly, in the absence of the Dirac cone, the negative MR quickly disappeared above
10 K [36]. In the multilayer graphene measurement, the magnetic field was parallel to the
current direction [37]. MR measurements of few-layer graphene with the magnetic field
perpendicular to current direction showed that increasing the number of layers enhances
the weak localization effect [38]. In both of those experiments the negative MR appears in
magnetic fields below 1 T and persists up to 50 K. By comparing these results with ours,
we suggest that the negative MR observed in [Pd(dddt)2] can be understood through the
localization of the Dirac electron system.

Finally, we note that the critical pressure for observation of the Dirac electron state
appears to be different depending on hydrostatic conditions in different pressure cells,
pressure media and in silico pressurization methods. Our resistivity measurements show
the smallest band gap at 13 GPa, while first principles DFT calculations showed that the
Dirac cones appear at 8 GPa. However, the result of tight-binding calculations using the
structure data from high-pressure crystal structure measurements indicates that Dirac
cones appear at 5.9 GPa [31]. Several factors make the different methods challenging to
compare directly. On one hand, solidification of pressure transmitting media, which occurs
at different pressures depending on composition, can induce uniaxial effects in resistivity
measurements. To mitigate this risk, the samples involved in both the structural and the
electrical measurements were covered with a protective layer to improve the hydrostatic
condition. On the other hand, the generalized gradient approximation (GGA) used in first
principles calculations cannot describe long-range attractive van der Waals interactions
(dispersion forces), which affects the estimation of lattice parameters in the lower pressure
region. In addition, GGA calculations tend to underestimate electronic band gaps, which
induces a difference between the calculated and experimental pressures [39].



Crystals 2021, 11, 534 15 of 19

5. Conclusions

By carefully controlling pressure and re-measuring the electrical properties under
high pressure, we obtained a clearer understanding of the electrical behavior of [Pd(dddt)2]
at low pressure and reproduced the temperature-independent resistivity and increase in re-
sistivity under high pressure. Furthermore, we successfully found a high-pressure-induced
order–disorder transition in [Pd(dddt)2] using synchrotron X-ray diffraction measurements.
The unit cell lengths decrease as the pressure is increased, and crystal maintains monoclinic
symmetry with the space group P21/n at all pressures up to 12.4 GPa. To understand the
high-pressure electronic state, tight-binding band structure calculations were performed
using the experimentally obtained structures at 7.8 GPa and 10.6 GPa. Because of disorder
at these two pressures, we examined two extreme crystal structures in which a single
conformation of the disordered molecule 2(4) is fully occupied (Structures A and B). In
Structure A, Dirac cones emerge in k-space; however, in Structure B, the system exhibits
a semiconducting band structure. Therefore, it is suggested that the transition from the
Dirac electron system to the semiconductor at high pressure is triggered by the structure
transition. In addition, we have observed a linear relationship in the variable-pressure
variable-temperature MR data as a function of the magnetic field and negative MR owing
to the weak localization of the Dirac fermion system.
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A1. Matrix elements of H(k)
h11 = b1H[eikb + e−ikb]
h12 = a1H[eik(a+c) + eikb] + a2H[1 + eik(a+b+c)]
h13 = pH[1 + eikb + eika + eik(a+b)]
h14 = c1H[1 + e−ikc] + c2H[eikb + eik(−b−c)]
h15 = b1HL[e−ikb − eikb]
h16 = a1HL[eikb − eik(a+c)] + a2HL[1 − eik(a+b+c)]
h17 = p1HL + p2HLeikb − p1HLeik(a+b) − p2HLeika

h18 = c1HL[1 − e−ikc] + c2HL[eikb − eik(−b−c)]
h22 = b2H[eikb + e−ikb]
h23 = c1H[1 + e−ikc] + c2H[e−ikb + eik(b−c)]
h24 = qH[eik(−a−c) + eik(−b−c) + eik(−a−b−c) + e−ikc]
h25 = a1HL[eik(−a−c) − e−ikb] + a2HL[1 − eik(−a−b−c)]
h26 = b2HL[e−ikb − eikb]
h27 = c1HL[e−ikc − 1] + c2HL[e−ikb − eik(b−c)]
h28 = q1HLeik(−a−b−c) + q2HLeik(−a−c) − q1HLe−ikc − q2HLeik(−b−c)

h33 = b1H[eikb + e−ikb]
h34 = a1H[1 + eik(−a−b−c)] + a2H[eik(−a−c) + e−ikb]
h35 = −p2HL − p1HLe−ikb + p2HLeik(−a−b) + p1HLe−ika

h36 = c1HL[1 − eikc] + c2HL[eikb − eik(−b+c)]
h37 = b1HL[−e−ikb + eikb]
h38 = a1HL[1 − eik(−a−b−c)] + a2HL[e−ikb − eik(−a−c)]
h44 = b2H[eikb + e−ikb]
h45 = c1HL[1 − eikc] + c2HL[eik(b+c) − e−ikb]
h46 = q1HLeik(a+c) + q2HLeik(a+b+c) − q1HLeik(b+c) − q2HLeikc

h47 = a1HL[1 − eik(a+b+c)] + a2HL[ek(a+c) − eikb]
h48 = b2HL[e−ikb − eikb]
h55 = ∆E + b1L[eikb + e−ikb]
h56 = a1L[eik(a+c) + eikb] + a2L[1 + eik(a+b+c)]
h57 = pL[1 + eikb + eika + eik(a+b)]
h58 = c1L[1 + e−ikc] + c2L[eikb + eik(−b−c)]
h66 = ∆E + b2L[eikb + e−ikb]
h67 = −c1L[1 + e−ikc] − c2L[e−ikb + eik(b−c)]
h68 = qL[eik(−a−c) + eik(−b−c) + eik(−a−b−c) + e−ikc]
h77 = ∆E + b1L[eikb + e−ikb]
h78 = −a1L[1 + eik(−a−b−c)] − a2L[eik(−a−c) + e−ikb]
h88 = ∆E + b2L[eikb + e−ikb]
The energy difference between HOMO and LUMO ∆E is set to 0.696 eV to reproduce

the energy band obtained by the DFT calculation.
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Figure A5. Enlarged view of Figure 11e in the low magnetic field region of MR as a function of
magnetic field and temperature at 9.3 GPa.
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