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Abstract: In 2015, the author developed a new origami technique, called PJS technique (where PJS
stands for “pleat and join strips”), by which we can construct polycubes, that are polyhedrons
composed of elementary cubes, called units, connected face to face. Each strip, pleated in squares,
has to cover four faces of a tower of stacked units, called a segment, having as length the number of
units that form the tower. Each unit is composed by weaving together three paper strips in the three
spatial directions and the length of each strip depends on the length of the segment in each respective
direction. The PJS technique allowed the author to build, at the end of 2016, the first specimen of
a level-4 origami Menger sponge and three yeas later, the first level-3 complement model. In this
paper, we give a formula to compute the number of segments that make up a level-n Menger sponge
complement in all directions and consequently, the number of modules needed for each length to
build this polycube with the PJS technique.
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1. Introduction

There are many techniques to construct geometric objects in origami that have a very
strong symmetry. As examples, we mention tesselations [1–5], polyhedra [6], and fractals [7,8].
Roughly, these can be divided into two groups: those that are made from a single piece of
paper that is folded many times, and those that consist of many pieces of paper (called mod-
ules) that are folded and connected. The origami of the second type are called modular [9,10].
This paper is devoted to a recent modular origami technique for constructing polycubes,
and in particular, modular fractal models.

Polycubes are polyhedrons that are formed by joining one or more equal cubes,
called units, face to face, as in Figure 1. Menger sponges of various levels and their comple-
ments are examples of polycubes.

Figure 1. A polycube.

There are several origami techniques for constructing polycubes. In particular, we men-
tion the technique of Jeannine Mosey [11], based on the folding of business cards, by which
the first specimen of a level-3 Menger sponge has been constructed. With this tech-
nique, as it involves connecting single cubes, it has not been possible to construct Menger
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sponges of levels higher than three, because the resulting cubes would collapse under their
own weight.

In order to overcome such problems of instability, in 2015, the author developed a
technique, called the PJS technique (for “pleat and join strips”) published in [12], through
which every unit cube is created by intertwining three paper strips in the three spatial
directions. Thanks to this technique, on November 2016, the first specimen of a level-4
Menger sponge in the origami was completed (Figure 2).

Figure 2. Level-4 origami Menger sponge.

In [12], it is shown how to decompose, with respect to a given spatial direction,
the polycube in towers of unit cubes that are called segments. This division lies at the
basis of the PJS technique because the lengths of the strips that are to be used vary and
depend on the lengths of these segments. The Section 2 is dedicated to the PJS technique.
In particular, in Section 2.1 we will describe the decomposition of polycubes into segments
in a more graphical and less technical way as compared to [12] and in Section 2.2, we will
recall how the PJS technique works, by constructing, unit by unit, the polycube in Figure 1.

The PJS technique is based on strips pleated in squares, called modules, in which the
various lengths depend on the lengths of the various segments in which the structure is
decomposed. It follows that it is necessary to count the number of segments for every
length in the three spatial directions.

Thanks to their symmetry, the structure of the Menger sponges of various levels,
and of their complements, can be analyzed by focusing on one of the spatial directions,
yielding conclusions that are valid in general. The main result of the paper [12] shows how
to count the number of modules that are necessary to realize a level-n Menger sponge with
the PJS technique. This result will be recalled in Section 3.

Section 4 contains the main result of the present paper, that is, a general formula
to compute the number of modules, for each length, that is necessary to construct the
complement of a level-n Menger sponge using the PJS technique.

2. The PJS Technique

With the PJS technique, it is possible to realize polycubes. Every unit cube is created
by intertwining three paper strips as illustrated in Figure 3.

Figure 3. Assembly.

Every strip, pleated in squares, has to contribute to the creation of a given segment in
a given direction.
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2.1. Segments of a Polycube

The paper [12] gives a technical and precise description of how a polycube can be
divided into segments, with respect to the three spatial directions, so as to make it possible
to determine the lengths of the modules and the number of modules of each length
necessary to construct the polycube with the PJS technique. In this paper, we would like to
provide a less technical but more graphical description of the technique.

Let us observe our polycube from a specific direction and slice the structure virtually
along the contact lines between the unit cubes along the chosen direction. As an example,
we considered the polycube in Figure 1. Slicing it along each of the three spatial directions,
by which, imagining it inside a cartesian space Oxyz (as shown in Figure 4), we obtained
the following three configurations (as shown in Figure 5).

Figure 4. Cartesian space.

(a) x direction (b) y direction (c) z direction

Figure 5. All segments in the three spatial directions. (a) x direction; (b) y direction; (c) z direction.

For each direction, we constructed a table where in the first column, we indicated the
length of the segment (that is, the number of unit cubes of which it is made) and in the
second column, we displayed the number of segments having this length. For example,
if we focus on segments consisting of three unit cubes, we observe that in the y direction,
we have 2 of them and in the other two directions, there is only 1 of them. Analyzing all
segments, we arrive at the Table 1.

Table 1. Number of segments in the three spatial directions.

x Direction y Direction z Direction

Length Number Length Number Length Number

1 8 1 3 1 4
2 / 2 1 2 2
3 1 3 2 3 1
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2.2. The Technique

In the PJS technique, every strip, pleated in squares, has to contribute to the creation
of a given segment in a given direction. If a segment in a direction has a length k, then we
need a strip pleated in 2k + 4 squares, called modules. Of the 2k + 4 squares, 2k + 2 are
needed to surround four faces of the segment, starting with either the infimum or the
supremum of the segment. The (2k + 3)-rd square is superimposed on the first one at
the base unit. The (2k + 4)-th square forms the wing which will be inserted in the pocket
created by one of the strips that contribute to the creation of the base unit in one of the
other directions.

Considering the subdivision into segments shown in Figure 5, in order to construct
the polycube in Figure 1, we need the modules that are shown in Figure 6. They match the
entries in Table 1.

(a) x direction (b) y direction (c) z direction

Figure 6. All modules in the three spatial directions.

In particular, to cover the segments of length 3, we need modules of 10 squares, and for
the segments of length 2, the modules have 8 squares and for the segments of length 1,
we need modules of 6 squares.

In Figure 7, we show the sequence of steps by which we form the 11 cubes of which
the polycube in our example is composed.

Figure 7. The construction of the polycube in Figure 1.
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For a more technical and complete description of the PJS technique, we refer to
the paper [12].

3. Origami Menger Sponge Levels

We recall here the construction of the Menger sponge. A Menger sponge of the first
level is obtained by dividing a cube into 27 smaller cubes after which the cube in the middle
and those at the center of each face are removed (20 cubes remain). To obtain the second
level we repeat the process with each new cube. Again, for the third level, we repeat it for
all 202 cubes of the second level, etc. Repeating this process infinitely eventually gives the
Menger sponge fractal. By Sn, we denote the level-n Menger sponge. See Figure 8 for the
first three levels.

(a) S1 (b) S2 (c) S3

Figure 8. First three levels of the Menger sponge fractal.

Thus, by construction, Sn consists of 20 copies of Sn−1, which are arranged as the
20 cubes that make up a Menger sponge of the first level. As shown in Section 4 of [12] all
segments of a Sn−1 that enter into contact with segments of a consecutive Sn−1 have length
a power of 3. In particular, all segments of length 3k, with k = 0, . . . , n − 2, that enter into
contact with a segment of the same length in a consecutive Sn−1 form a segment consisting
of 2 · 3k unit cubes in Sn. Furthermore, those of length 3n−1 will be joined to two other
segments to form a segment of length 3n that traverses three copies of a Sn−1. It follows
that the segments that are present in an Sn consist of 3k unit cubes for k = 0, . . . , n, or of
2 · 3k unit cubes with k = 0, . . . , n − 2.

The number of segments of each length are summarized in the next theorem that is
proved in [12].

Theorem 1. The level-n Menger sponge is formed, in every direction, of:

• 4n segments of length 3n;
• 2

3 · (5k−1 − 2k−1) · 4n segments of length 2 · 3n−k for every k = 2, . . . , n;
• 2

3 · (5k−1 + 2k) · 4n segments of length 3n−k for every k = 1, . . . , n.

Example 1. The number of segments of a level-4 Menger sponge, in each direction, along with
their lengths, is given in Table 2:

Table 2. The number of segments of a level-4 Menger sponge for each length, in each direction.

Lenght Number

81 256
27 512
18 512
9 1536
6 3584
3 5632
2 19,968
1 24,064
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4. Constructing Level-n Menger Sponge Complement

For each level-n Menger sponge Sn, we can consider its complement, that is the set of
integer cubes that do not belong to the structure of Sn. With Cn, we denote the polycube
that is the complement to Sn, as can be seen Figure 9 for the first three levels.

(a) C1 (b) C2 (c) C3

Figure 9. First three levels of the complement of the Menger sponge fractal.

Furthermore, by Qn, we denote the cube composed of 33n unit cubes, that is the cube
whose sides consist of 3n unit cubes.

By construction, Cn consists of 20 copies of Cn−1 that are arranged as the unit cubes of
an S1, along with 7 copies of Qn−1 that are arranged as the 7 unit cubes of C1.

As an example, in Figure 10, the 20 copies of C1 (Figure 10a) and the 7 copies of Q1
(Figura 10b) that appear in C2 are highlighted.

(a) The 20 copies of C1 in C2 (b) The 7 copies of Q1 in C2

Figure 10. C2 as a polycube composed of copies of C1 and of Q1.

In this section, we will give the number of segments of each length, and consequently,
the number of modules of each length, necessary to construct Cn with the PJS technique.

In order to find it, we can consider another decomposition of Cn, relative to every
direction, in the following pieces, which are polycubes in their own right. First, there
are four pieces that are towers of three connected Cn−1. We denote these by [CCC]n
(in Figure 11a are highlighted the four towers [CCC]2 in C2). Second, there are four towers
consisting of a Cn−1, a Qn−1 and again a Cn−1. We denote these by [CQC]n (in Figure 11b
are highlighted the four towers [CQC]2 in C2). Finally, in the center, there is a tower of
three Qn−1; we denote it by [QQQ]n (in Figure 11c is highlighted the tower [QQQ]2 in C2).
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(a) Towers [CCC]2 of C2 (b) Towers [CQC]2 of C2 (c) Tower [QQQ]2 of C2

Figure 11. C2 as a polycube composed by towers [CCC]2, [CQC]2 and [QQQ]2.

Contrary to what happens in Sn, where the length of the segments can also be equal
to 2 · 3k, the length of all segments of Cn is equal to a power of 3.

Lemma 1. Segments in Cn have a length 3k for k = 0, . . . , n.

Proof. Where a Cn−1 is in contact with another Cn−1 as in [CCC]n or with a Qn−1 as in
[CQC]n, the only segments that enter into contact have a length of 3n−1. The resulting
segment in Cn have a length of 3n. The segments of the Qn−1 in [CQC]n that are not
in contact with a Cn−1 form the only segments of length 3n−1 of Cn. Since all segments
of length less than 3n−1 in such a Cn−1 do not enter into contact with other segments
(from other Cn−1 or Qn−1), with a straightforward inductive argument, it can be shown
that all other segments, that all come from a Cn−1, have length 3k for k = 0, . . . , n − 2.

By Mn,k we denote the number of segments of length 3k in Cn.

Proposition 1. In Cn, the number of segments of length 3n is (for each direction):

Mn,n = 9n − 8n

Proof. We use induction on n. For n = 1, the statement is obvious, because in C1, there is
only one segment of length 3 in each direction.

Supposing that the proposition holds for n − 1, we proved it for n.
As shown in the proof of Lemma 1, a part of the segments of length 3n comes from

the [CCC]n−1 and the [CQC]n−1. The number of those segments is equal to the number
of segments of length 3n−1 in a Cn−1, that is, M(n − 1, n − 1). The remaining segments of
length 3n come from the [QQQ]n and hence there are (3n−1)2 of those. Using the induction
hypothesis, it now follows that in total we have:

Mn = 8Mn−1,n−1 + 9n−1 = 8(9n−1 − 8n−1) + 9n−1 = 9n − 8n.

Proposition 2. In Cn, the number of segments of length 3k, for k = 0, . . . , n− 1 is (for each direction):

Mn,k = 4 · 8k · 20n−k−1

Proof. As shown in the proof of Lemma 1, the segments of length 3n−1, in each direction,
come from the pieces Qn−1 contained in the towers that are denoted [CQC]n. The number
of these segments is equal to the number of segments in Qn−1 that do not enter in contact
with a segment from a Cn−1 in the same tower. In other words, for each [CQC]n, there are
(3n−1)2 − Mn−1,n−1 segments of length 3n−1, that is:

Mn,n−1 = 4
(

9n−1 − Mn−1,n−1

)
= 4

(
9n−1 − 9n−1 + 8n−1

)
= 4 · 8n−1.
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Instead, the segments of length 3k for k = 0, . . . , n − 2 come from the 20 copies of
Cn−1 that are present in Cn. Since all segments of length less than 3n−1 in such a Cn−1 do
not enter into contact with other segments, for each direction and every k = 0, . . . , n − 2,
we have:

Mn,k = 20 · Mn−1,k = 20 · 4 · 8k · 20n−k−2 = 4 · 8k · 20n−k−1.

These results immediately prove the following theorem.

Theorem 2. The level-n Menger sponge complement is formed in every direction of 9n − 8n

segments of length 3n, and of 4 · 8k · 20n−k−1 segments of length 3k for every k = 0, . . . , n − 1.

Example 2. The number of segments of a level-3 Menger sponge complement, in each direction,
along with their lengths is given by the table (Table 3).

Table 3. The number of segments of a level-3 Menger sponge complement for each length, in each di-
rection.

Lenght Number

27 217
9 256
3 640
1 1600

5. Concluding Remarks

• With the PJS technique, the author constructed Menger sponges until the fourth
level and complements of Menger sponges until level-3. A recent project led to the
construction of the entire family of Menger sponges and their complements until
level-3, using strips of Cordenon’s Stardream paper just 4 mm wide and of three
different colors (Figure 12).

Figure 12. Menger sponges and complements until third level.

The height of the sponge of level-3, and of its complement, is just 12.5 cm. Note that
working with smaller strips considerably increases the difficulty of assembling the cube.

• To realize the origami level-4 Menger sponge, the author used strips of paper 12 mm
wide. At the time of writing, the construction of the complement was not planned.
In any case, it would be preferable to make it using strips that are noticeably smaller
in width. This would make the work more complicated but it would also make it
easier to transport it and find a good place for it. For the fourth level sponge, about
21 km of paper strips were used; in fact, the edges are just over 1 m long and weigh
about 25 kg. A model of this size is certainly fascinating to see, but it is also fascinating
that it is decidedly impractical to expose and until now the sponge has not found a
permanent home.
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• The construction of a level above the fourth of a Menger sponge is very difficult
because it would require a huge amount of paper and work. In fact, the PJS technique
is not suitable for collaborative projects.

• Using the PJS technique, the author also created puzzles and dynamic origami models.
The latest application concerns the creation of pixel art portraits.

• It is likely that the PJS technique, that was developed to realize polycubes in origami,
can also be adapted for the construction of structures made by thin and malleable
materials other than paper.
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