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Abstract: We investigated THz emission from Ar-ion-implanted Cu(In,Ga)Se2 (CIGS) films. THz
radiation from the CIGS films increases as the density of implanted Ar ions increases. This is
because Ar ions contribute to an increase in the surface surge current density. The effect of Ar-ion
implantation on the carrier dynamics of CIGS films was also investigated using optical pump THz
probe spectroscopy. The fitted results imply that implanted Ar ions increase the charge transition of
intra-and carrier–carrier scattering lifetimes and decrease the bandgap transition lifetime.
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1. Introduction

Copper indium gallium diselenide (CIGS) thin films are considered good candidates
for semiconductor-based solar cells, because they are capable of large-area fabrication
and have a high energy conversion efficiency and flexibility. They are extensively used in
the space of solar cell applications in particular, owing to their flexibility and large-area
fabrication [1–4]. Recent research on CIGS reveals that their conversion efficiency exceeds
23% [5].

Ion implantation can change the properties of solid materials according to the energy
that accelerates one elemental ion without heat treatment or compounding [6]. Therefore,
ion implantation can be widely used to change the physical and chemical properties of
various solid structures. Ion implantation is an extremely useful tool, particularly for
controlling the electrical properties of semiconductor surfaces [7]. Thus, it can be utilized
as an alternative to adjust the electrical and optical properties of semiconducting thin
film materials such as CIGS. Gas ion implantation is good specifically for controlling the
properties because of the depth of gas ionization around a few µm [3,4].

Terahertz (THz) technologies are powerful tools for characterizing the electrody-
namics of the carriers and optical properties of semiconductors and nanomaterials non-
destructively [8,9]. In the case of THz emission spectroscopy, we can observe the current
characteristics and charge transfer of the surface and bulk [10,11]. THz time-domain spec-
troscopy can be used to measure the optical transmittance, complex optical and dielectric
constants, and ac conductivity of matters in the THz frequency region [8,9]. Optical pump
THz probe spectroscopy can detect carrier dynamics, spin motion, and charge transfer in the
semiconductor and dielectric matter according to the energy of the excitation beam [12–14].
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Recently, the carrier dynamics of CIGS thin films were actively investigated using optical
pump THz probe spectroscopy to interpret the behavior of several defects distributed
in CIGS thin films [14–16]. Thus, THz spectroscopy studies on the carrier dynamics of
ion-implanted CIGS films would be significant.

In this study, the electrical properties and carrier dynamics of Ar-ion-implanted CIGS
thin films were investigated using THz emission and optical pump THz probe spectroscopy.
Ar ion can affect the surface of CIGS rather than light ions, for example, H ion [17] because
Ar ion weighs more than H-ion.

Therefore, Ar-ion implantation can directly affect the surface damage of CIGS films.
Enhanced THz emission from Ar-ion-implanted CIGS films was observed. This is because
the implanted Ar ions increase the participation of surface carriers in the transient surface
current generating THz radiation. The carrier dynamics of the CIGS films were investigated
by optical pump THz probe spectroscopy. Ar-ion implantation increases the term associated
with fast decay but decreases the term associated with slow decay to affect the overall
current flow.

2. Materials and Methods

The CIGS thin film is directly deposited on a soda lime glass with a thickness of
approximately 2 µm using a 3-stage co-evaporation system [18]. The composition ratios of
Cu/III and Ga/III in the CIGS thin film were measured to be 1.02 and 0.33, respectively, by
energy dispersive spectrometry. In general, the bandgap of CIGS is dependent on the ratio
of In and Ga content from about 1 eV (CIS) to approximately 1.7 eV (CGS). In our sample,
the bandgap is below 1.3 eV before Ar-ion implantation at 14 K [17].

Ar-ion implantation into CIGs thin film was carried out at the Korea Multi-purpose
Accelerator Complex (KOMAC). The implantation densities of Ar ions were 1 × 1014/cm2

(sample 1) and 1 × 1016/cm2 (sample 2) with an energy of 200 keV. Two samples were
prepared to investigate the changes the electrical and optical properties of the surfaces of
the CIGS films according to the concentration. The implantation distribution of Ar ions
was calculated using stopping and range of ions in matter (SRIM), which is generally used
to calculate the interaction of ions with matter, based on the element ratio of the CIGS thin
film. The calculation results demonstrate that the Ar-ion implantation is predominantly
distributed in 1 µm of the 2 µm thick CIGS film (not shown here).

3. Results

Figure 1 presents the results of THz emission spectroscopy obtained from the CIGS
thin film as a function of the Ar-ion implantation density. To radiate the THz waves on the
CIGS thin films, a femtosecond laser with an 80 MHz repetition rate, 800 nm wavelength,
and 100fs pulse width was illuminated on the samples. The input power was 350 mW,
the incident angle was 45◦, and the diameter was 5 mm. The detector for THz waves is
used with a 5 µm dipole gap photoconductive antenna on a low-temperature grown GaAs
substrate with 10 mW fs laser power.

Figure 2a displays the THz radiation waveforms of the CIGS film samples in the
time domain. Sample 0 denotes a CIGS thin film without Ar-ion implantation. In the
time-domain waveforms, the down-peak amplitudes decrease as the Ar-ion implantation
density increases. The increment ratio of the down peak dramatically increases and the
upper peak slightly decreases as the Ar-ion implantation density increases. Figure 2b
depicts the frequency domain data acquired by fast Fourier transformation of the time-
domain data. All data have frequency components up to 2.5 THz. The spectral amplitudes
of the CIGS thin films increase as the Ar-ion implantation density increases.
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Figure 1. Schematic view of the THz time-domain spectroscopy system employed in the experiments.
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Figure 2. (a) Radiated THz waveforms of copper indium gallium diselenide (CIGS) thin films in time domain and (b)
frequency domain waveforms of time-domain waveforms of CIGS thin films through fast Fourier transformation.

THz transmission through samples were measured using THz time-domain spec-
troscopy. Figure 3a,b show the transmitted THz waveforms in time and spectral ampli-
tudes of the THz waves, respectively. The results confirmed that the considered Ar-ion
implantation density rarely changes the THz transmission.
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To investigate the electrical properties, we performed Hall measurements for the
samples. From the measurements, the carrier densities (mobilities) of samples 0, 1, and 2
are 1.57 (1.31), 3.45 (1.05), and 41.1 × 1017 cm−3 (0.057 cm2/V·s), respectively. The Ar-ion
implantation increases the carrier density but decreases the mobility because the implanted
ions cause the defect sites to prevent the flow of current and increase the change in current
in time. In general, THz radiation is dependent on the surge current of the surface of a
semiconductor. The related equation is as follows [19]:

ETHz(t) ∝
dJ
dt

∝ Eb
dn(t)

dt
(1)

ETHz is the THz radiation field, J is the surge current, Eb is the built-in surface field, and
n is the carrier density. The build-in surface field is formed by the energy band bending
at a surface. The implanted Ar ions increase the band bending and, thus, the build-in
field [17]. Since the surge current of the surface is proportional to the carrier density, the
Ar-ion implantation density-dependent THz emission from the samples reflects the Hall
measurement results.

In order to investigate the effect of Ar ion implantation on the carrier dynamics in the
CIGS films, we employed optical pump THz probe spectroscopy, which is widely used
to observe the dynamics of charge in the fs to ps time region. The optical pump THz
probe spectroscopy scheme is shown in Figure 4a,b and shows the decay of the upper peak
amplitudes of the transmitted THz wave of the samples over time. We used a regenerative
amplified fs laser system with a 1 kHz repetition rate of 800 nm. In order to generate
and detect THz pulses, we used ZnTe crystals [17]. The shapes of the decay of the Ar-ion
implanted samples are clearly different from that of sample 0. To analyze the difference,
we employed bi-exponential decay functions to fit the decay curves [17,20].

Figure 4. (a) Scheme of optical pump THz probe measurement and (b) the decay of amplitudes of transmitted THz wave
through samples measured by optical pump THz spectroscopy.(

A1 × exp
(

t − t0

−τ1

)
+ A2 × exp

(
t − t0

−τ2

)
+ y0

)
(2)

where y0 and t0 are the offsets of the y and t values of the decay curve, respectively, while the
absolute values of A1 and A2 are the amplitudes of the exponential terms having τ1 and τ2
decay time constants, respectively. The fitted results are summarized in Table 1. The τ1 and τ2
are considered to be determined by surface and bulk defect states, respectively, and depend
on the quality of the CIGS thin film with respect to various defect densities [14,16,21]. The
decay time constants of samples are similar to those of previous studies [22]. According to
the fitting results, τ1 and τ2 increase as the density of Ar-ion increases. It was explained
by the increase in the density of both surface and bulk defect states [14,16,21]. The τ1 is
determined by the trapping time of photo-carriers from the conduction band to shallow
defect states within several or tens of picoseconds. The τ2 denoted the averaged slow decay
time captured at various defect states in the CIGS thin film [14,16,21]. The results show that
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not only surface defects but also bulk defect states are formed by the Ar-ion implantation,
and the defect density depends on the concentration of the implanted Ar-ions.

Table 1. Fitted decay constants of samples.

Sample 0 Sample 1 Sample 2

τ1 9.90 38.43 59.44
τ2 1569.22 328.45 414.44

4. Conclusions

We investigated the effect of Ar-ion implantation on the THz emission of CIGS films.
THz emission from CIGS films increases as the density of implanted Ar ions increases
because Ar ions increase the build-in surface field and density of the surface surge current.
The effect of Ar-ion implantation on the carrier dynamics of CIGS films was also investi-
gated using optical pump THz probe spectroscopy. The fitted results demonstrate that the
surface and bulk defect states formed by the implanted Ar ions change the carrier lifetimes.
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