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Abstract: In this study, we report on the deposition of a highly crystalline AlN interfacial layer on GaN
at 330 ◦C via plasma-enhanced atomic layer deposition (PEALD). Trimethylaluminum (TMA) and
NH3 plasma were used as the Al and N precursors, respectively. The crystallinity and mass density
of AlN were examined using X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements,
respectively, and the chemical bonding states and atomic concentrations of the AlN were determined
by X-ray photoelectron spectroscopy (XPS). The AlN/n-GaN interface characteristics were analyzed
using TOF-SIMS and STEM, and the electrical characteristics of the AlN were evaluated using metal-
insulator-semiconductor (MIS) capacitors. The PEALD process exhibited high linearity between the
AlN thickness and the number of cycles without any incubation period, as well as a low carbon
impurity of less than 1% and high crystal quality even at a low deposition temperature of 330 ◦C.
Moreover, the GaN surface oxidation was successfully suppressed by the AlN interfacial layer.
Furthermore, enhanced electrical characteristics were achieved by the MIS capacitor with AlN
compared to those achieved without AlN.

Keywords: GaN; AlN; AlHfON; ALD; interfacial layer; MIS capacitor

1. Introduction

GaN-based metal-insulator-semiconductor field-effect transistors (MIS-FETs) require
a high positive gate voltage for power switching applications. However, this can cause
electrons in the two-dimensional electron gas (2DEG) channel to enter the high-density
trap states at the dielectrics/(Al)GaN interface, thereby resulting in threshold voltage
instability in these devices [1–3]. Therefore, several gate dielectrics, such as SiO2 [4,5],
HfSiO [6,7], SiON [8,9], ZrO2 [10,11], Al2O3 [12,13], AlON [14,15], and HfO2 [16,17], have
been proposed for use as the gate dielectrics of MIS-FETs to improve the dielectric/(Al)GaN
interface characteristics. However, some studies have indicated that trap states can be
attributed to the poor-quality native oxide (GaOx) between the dielectric/III–V interface
formed during the gate oxide deposition process [18,19]. Gate oxides deposited via thermal
atomic layer deposition (ALD) using water as an oxidizing agent have been shown to
reduce the interfacial oxide between the dielectric/GaN because of their weaker oxidability
compared to O3 [20]. Our group also reported on the atomic layer deposition (ALD) of
HfO2 using isopropyl alcohol (IPA) as an oxidant during the process, thereby efficiently
reducing surface oxidation compared to O3 [21]. Surface oxidation can also be reduced
using nitride-based dielectrics such as Si3N4 and AlN. Given that oxidants that suppress
surface oxidation are not used in these processes, surface traps and current collapses are
reduced, resulting in reliable device performance [22,23]. In particular, AlN has a smaller
lattice mismatch between (Al)GaN and AlN [24] compared to that between (Al)GaN and
SiNx, and AlN serves as a good candidate for interfacial layers in GaN-based MIS devices.
However, only a few studies have investigated AlN interfacial layers.
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In this study, we developed and optimized AlN as an interfacial layer that sup-
presses the formation of poor-quality oxides. AlN was deposited via plasma-enhanced
atomic layer deposition (PEALD) as this approach facilitates better thickness unifor-
mity, film quality, thickness control, and lower impurity concentration than other deposi-
tion techniques [25–27]. The material characteristics of AlN were evaluated using X-ray
diffraction (XRD), X-ray reflectivity (XRR), scanning transmission electron microscopy
(STEM), secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy
(XPS). The leakage current density (J)–effective electric field (Eeff) and the capacitance
(C)–voltage (V) characteristics of AlN/AlON/AlHfON on GaN were compared with those
of AlON/AlHfON on n-GaN.

2. Experiments

ALD AlN deposition was performed in a PEALD system (CN1, Hwaseong-si, Korea)
with two chambers: a load-lock and a transfer chamber. This system has showerhead injec-
tors and can accommodate 6-inch wafers. The showerhead was capacitively coupled with
an RF of 27.12 MHz and the chuck was grounded. The distance between the showerhead
and the chuck was 35 mm. A schematic of the PEALD system is shown in Figure 1.
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Figure 1. Schematic of plasma-enhanced atomic layer deposition (PEALD) system used for the
experiments.

PEALD AlN deposition was performed on n-type Si (111) using trimethylaluminum
(TMA) and NH3 gas as the Al and N precursors, respectively. The temperatures of the gas
lines and TMA precursor were 90 ◦C and 5 ◦C, respectively, and the deposition temperature
of AlN was 330 ◦C. The temperatures of the upper lid and chamber wall were maintained
at 150 ◦C to reduce impurities such as carbon and oxygen in the dielectric layer. Purging
was performed using N2 gas after the TMA precursor injection and NH3 plasma step,
followed by the NH3 gas stabilization step. The NH3 plasma and purge step pressures
were 120 and 500 mTorr, respectively.

MIS capacitors using n-GaN wafers were fabricated to investigate the electrical prop-
erties of AlN on n-GaN. The epitaxial layers consisted of a 300 nm n-GaN layer with a Si
doping concentration of 2.5 × 1017 cm−3, 700 nm n-type GaN layer, 700 nm n-GaN layer
with a 2–3 × 1018 cm−3 Si doping concentration, and 3900 nm GaN buffer layer grown on
an Si substrate. The effect of NH3 plasma power on the electrical characteristics of AlN
was determined by fabricating MIS capacitors with different plasma powers of 30, 50, and
100 W. Ex situ and in situ treatments were conducted before the AlN deposition. The ex
situ treatment included SPM and diluted HF (10:1) to remove organic contaminants and
native oxides on the GaN surface. The in situ treatment included TMA pulsing (10 times
with a duration of 0.2 s) and NH3 thermal treatment for 5 min; these two treatments were
conducted to remove oxides and for surface nitridation, respectively. After AlN deposition,
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postdeposition annealing (PDA) was conducted at 500 ◦C for 10 min in an ambient N2
atmosphere. Following ohmic patterning and ohmic recess, ohmic contacts were formed
with Ti/Al (40/200 nm) metallization. The ohmic contact formation was annealed at 500 ◦C
under an ambient N2 atmosphere for 1 min. Finally, an Ni/Au (40/130 nm) metal electrode
was deposited via e-gun evaporation. The circular metal electrodes had diameters of either
100 µm or 50 µm and were separated by a gap of 15 µm from a concentric contact, as shown
in Figure 2.
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Figure 2. Cross-sectional schematic of the fabricated metal-insulator-semiconductor (MIS) capacitors.

XRD and XRR measurements were performed using a SmartLab diffractometer
(Rigaku, Tokyo, Japan) to determine the crystallinity and mass density of the AlN film,
respectively. The cross-sections at the AlN/GaN interface were examined using a STEM
(JEM-2100F, JEOL). The chemical bonding states and components of AlN were determined
via XPS (SIGMA PROBE, ThermoFisher Scientific, Waltham, MA, USA). Time-of-flight
(TOF)-SIMS (TOF-SIMS.5, ION-TOF, Münster, Germany) analysis was also performed on
the AlN film to investigate the presence of GaOx at the AlN/GaN interface.

The J–Eeff and C–V characteristics of AlN/AlON/AlHfON on GaN MIS capacitors
were also investigated. An AlON/AlHfON layer was deposited onto the AlN layer to
reduce the leakage current and increase the dielectric constant. AlON/AlHfON on GaN
MIS capacitors were also fabricated as reference devices. The effective electric field was
defined as (applied voltage–flat band voltage)/capacitance-equivalent thickness (CET).
PEALD AlON, and AlHfON films were deposited using trimethylaluminum (TMA),
tetrakis(dimethylamido)hafnium (TDMAHf), N2 plasma, and ozone as the Al, Hf, N,
and O precursors, respectively. The substrate temperature and N2 plasma power were
330 ◦C and 30 W, respectively. The AlHfON film was deposited using the nanolaminate
technique with alternating stacks of AlON and HfO2 films with an equal cycle ratio of 1:1.

3. Results

Figure 3 shows the growth rate per cycle (GPC) as a function of the process step
time. The deposition temperature was 330 ◦C, and the NH3 plasma power was 100 W. The
GPC was saturated at a TMA feeding time of 0.1 s and NH3 plasma time of 10 s, and the
saturated value was 1.1 Å/cycle. The purge times after the TMA precursor injection and
NH3 plasma step were chosen as 7 and 10 s, respectively.
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Figure 3. (a–d) Growth rate per cycle (GPC) values for AlN deposited using the PEALD system as a function of the
trimethylaluminum (TMA) feeding time, N2 purge time after TMA feeding, NH3 plasma time, and N2 purge time after
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Figure 4 shows the linear dependence of the AlN film thickness, measured using
ellipsometry, on the number of ALD cycles. The thickness increased linearly as the number
of cycles increased without any incubation period. An interface layer was not observed
between the Si and AlN, which can be attributed to the suppression of surface oxidation by
AlN.
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Figure 5 shows the double sweep C–V characteristics of AlN on n-GaN capacitors with
various NH3 plasma powers when the bias was swept from −5 V to 2 V and back to −5 V.
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The C–V measurements were performed at 1 MHz. The C–V hysteresis characteristics
of the MIS capacitors were almost identical regardless of the change in the NH3 plasma
power, and exhibited minor hysteresis. The dielectric constants of the AlN films prepared
using 30, 50, and 100 W NH3 plasma were 8.2, 7.8, and 8.1, respectively.
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The J–E characteristics of AlN on the n-GaN capacitor with an NH3 plasma power of
30 W indicated a higher breakdown field and lower leakage current at a low electrical field
compared to the other capacitors with plasma powers over 30 W, as shown in Figure 6. The
low plasma power at the NH3 plasma step was considered to reduce the plasma-induced
damage on the n-GaN surface, resulting in better J–V characteristics of the AlN on the
n-GaN capacitor [28]. In conclusion, a TMA feeding time of 0.1 s, purge time of 7 s after the
TMA precursor injection step, NH3 gas stabilization time of 3 s, NH3 plasma time of 10 s at
30 W, purge time of 10 s after the NH3 plasma step, and deposition temperature of 330 ◦C
were chosen as the optimized deposition conditions for the fabrication of AlN on n-GaN.

To investigate the film quality, various characterization methods were conducted using
films deposited under optimum conditions. Figure 7a shows the θ–2θ XRD patterns of a
100 nm-thick AlN layer deposited on n-GaN. Two diffraction peaks at 2θ values of ~33◦, and
~36◦ were observed, which corresponded to the (100) and (002) planes, respectively [29,30].
The peak at ~31◦ is an artifact related to the high power of 9 kW. As shown in Figure 7b,
the crystal quality was characterized using the rocking curve of AlN (002). The measured
full width at half-maximum (FWHM) was 1050 arcsec, and the density of the ALD AlN
which was evaluated by fitting the XRR data was 3.27 g/cm3, which is higher than the
values reported in earlier studies [31,32]. These results indicate that highly crystalline AlN
can be achieved at a low growth temperature of 330 ◦C.
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Figure 8 shows the STEM cross-sectional image of ~10 nm AlN on n-GaN. Crystalline
AlN was observed in the image, and a sharp interface between the n-GaN and ALD AlN
was confirmed, indicating the successful suppression of the surface oxidation of GaN by
the introduction of an AlN layer.

Figure 9 shows the XPS spectra of Al2p, N1s, C1s, and O1s of ~22 nm AlN on n-GaN.
The deconvoluted Al2p spectra show two peaks at binding energies of 73.6 eV and 74.2 eV,
which are associated with Al–N and Al–O bonds, respectively [33]. Binding energies of
396.5 eV and 398.4 eV were observed in the deconvoluted N1s spectra and are associated
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with N–Al and N–O–Al bonds, respectively [33]. The atomic concentrations of Al, N, C,
and O in AlN were 47.4%, 44.2%, 0.9%, and 7.5%, respectively.
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As previously discussed, the AlN layer showed low C–V hysteresis, confirming that
it efficiently suppressed charge injection into the dielectrics. A low breakdown field of
~5 MV/cm and a high leakage current for an applied electric field of 2 MV/cm were also
observed in the AlN MIS capacitors. An AlON/AlHfON layer was employed on the AlN
layer to increase the breakdown field and reduce the leakage current of AlN. TOF-SIMS
analysis of AlON/AlHfON and AlN/AlON/AlHfON on the n-GaN layer was conducted
to obtain further information about the interface between AlN and n-GaN, and the results
are shown in Figure 10. The oxygen intensity at the AlON/n-GaN interface was higher
than that at the AlN/n-GaN interface, whereas the gallium intensity slope observed at the
AlN/n-GaN interface was steeper than that observed at the AlON/n-GaN interface. These
observations imply that using ALD AlN as an interfacial layer has an advantage compared
to the use of AlON with O3 oxidant at the III–V interface because ALD AlN suppresses
surface oxidation.
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To evaluate the immunity against electron injection into the dielectrics, repeated C–V
measurements were performed by sweeping the applied voltage from the accumulation
to the depletion region [14]. The maximum accumulation voltage was increased in steps
of 1 V by 5 V, and the depletion voltage was set to −10 V. The C–V characteristics of the
MIS capacitors swept from the accumulation to depletion region, and the VFB shift of
MIS capacitors as a function of the accumulation voltage are shown in Figure 11a–c. The
MIS capacitor with AlN as an interfacial layer exhibited a smaller VFB shift compared to
the MIS capacitor without the AlN interfacial layer. A VFB drift of 242 mV was observed
for the MIS capacitor with AlN after sweeping from 5 V to −10 V, whereas a VFB drift
of 365 mV was confirmed for the MIS capacitor without AlN. This difference indicates
that there are fewer interface states between AlN and GaN than between AlON and GaN
owing to the suppression of the formation of interfacial oxides. Figure 11d shows the
J–Eeff characteristics of the fabricated MIS capacitors. Despite the high leakage current
characteristics of AlN, the MIS capacitor with AlN as an interfacial layer exhibited leakage
current characteristics similar to those of MIS capacitors without AlN.
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shift as a function of the effective electric field in the fabricated GaN MIS capacitors; and (d) J–Eeff characteristics of the
fabricated MIS capacitors (NH3 plasma power: 30 W).

4. Conclusions

An AlN interfacial layer using TMA and NH3 plasma in a PEALD system was devel-
oped to improve the dielectric/GaN interface characteristics. The optimized AlN process
conditions were as follows: TMA feeding for 0.1 s, N2 purge for 7 s after TMA feeding, NH3
gas stabilization for 3 s, NH3 plasma for 10 s at 30 W, N2 purge for 10 s after NH3 plasma,
and a deposition temperature of 330 ◦C. The PEALD process ensured a high linearity
between the AlN thickness and the number of cycles. Two different diffraction peaks at
2θ values of ~33◦ and ~36◦ corresponding to (100) and (002) planes, respectively, were
observed in the XRD measurements, and the density of the ALD AlN was 3.27 g/cm3

from the XRR measurement. The AlN interfacial layer successfully suppressed the GaN
surface oxidation and improved the VFB drift characteristics of the MIS capacitor, showing
excellent leakage current characteristics. Thus, it is suggested that the low-temperature
PEALD AlN is a promising interfacial layer with a high crystal quality for GaN.
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