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Abstract: The precipitation and distribution behaviors of in situ-formed titanium boride whiskers
(TiB) in TiBw-reinforced Ti-6%Al-4%V (Ti64) composites fabricated from an elemental mixture of
Ti64 alloy powder and TiB2 particles by selective laser melting were investigated. The primary
precipitation of TiB whiskers strongly depends on B content. For a B content of less than 2 mass%,
when the liquid→ β-phase transformation occurred and B atoms were discharged, the B-enriched
area formed around the β-phase resulted in the generation of TiB whiskers and their agglomeration
at the prior β-grain boundaries. When the B content was over 2 mass%, TiB whiskers directly
precipitated from the liquid phase and moved to the molten pool boundary via Marangoni convection.
As a result, the TiB whiskers were located along the boundary. Furthermore, B-enrichment caused a
decrease in the liquidus temperature and thus obstructed β-grain coarsening, and as a result, fine
equiaxed α’-grains formed during the phase transformation.

Keywords: TiB whiskers; Ti64 composites; selective laser melting

1. Introduction

The selection of reinforcements for metal matrix composites is crucial to significantly
improve the chemical and mechanical properties of monolithic metal materials. Titanium
boride whisker (TiBw) reinforcements are often employed for titanium because of their
high strength and modulus, similar density and coefficient of thermal expansion, and
strong interfacial bonding with the Ti matrix [1–4]. In particular, thermally stable TiBw can
easily form via an in situ reaction between Ti powder and boride or TiB2 particles [5,6].
The in situ formation mechanism of TiBw was clarified in a previous study [7], and others
have shown that strong orientation of the whiskers enhances the mechanical strength of Ti
composites [8–10].

Recently, selective laser melting (SLM), an additive manufacturing technology, has
been employed to fabricate Ti alloys and composites because the rapid solidification and
cooling afford Ti grain refinement, supersaturated solutions of the alloying elements, and
fine precipitates [11–13]. TiBw-reinforced Ti-6%Al-4%V (Ti64) alloy composites fabricated
by SLM show a large improvement in matrix microhardness due to grain refinement and
hard TiBw dispersoids, resulting in a decrease in both the wear loss and friction coefficient
as determined by tribological evaluation. In addition, a unique Ti composite powder coated
with TiB2 particles has been used to fabricate SLM Ti-TiBw composites with network-
structured whiskers formed in situ at primary powder boundaries, resulting in an extreme
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improvement in tensile strength [14]. Furthermore, a previous study discussed the effect of
heat treatment on the formation of equiaxed α-Ti grains in TiBw-reinforced Ti composites
fabricated by SLM [15]. The in situ-formed TiBw reinforcements not only strengthened the
material but also acted as additional nucleation sites for α-Ti, thus promoting the formation
of equiaxed microstructures.

The microstructural analyses in these previous studies indicated morphological
changes occurring in TiBw (aspect ratio), but there have been no reports on the TiBw
precipitation or distribution mechanisms during the liquid→ β and β→ α phase trans-
formations. The objective of this study was to clarify the distribution mechanism of TiB
whiskers formed in situ in SLM Ti64 composites fabricated from an elemental mixture of
Ti64 alloy powder and TiB2 particles. Of particular interest was the effect of the boron
(B) content, which strongly influences the TiBw precipitation behavior during the phase
transformations, on the morphologies of the prior β-phases and acicular α′-grains.

2. Materials and Methods
2.1. Elemental Mixture of Ti64 Alloy Powder and TiB2 Particles

Gas-atomized Ti64 pre-alloy powder (Osaka Titanium Technologies, Osaka, Japan)
with a spherical shape and TiB2 particles (KOJUNDO Chemical Laboratory) was employed
as the starting raw material, as shown in Figure 1. The mean particle sizes were 23.6 and
3.2 µm, respectively. The maximum and minimum sizes of Ti64 and TiB2 were 31.5 µm
and 6.6 µm, and 4.4 µm and 0.85 µm. Table 1 shows the chemical composition of the Ti64
alloy powder compared to ASTM B348 Grade 5 specifications. All elements satisfied the
standard ASTM Grade 5 requirements. Ti64 and x mass% TiB2 pre-mixed powders (x = 0,
0.25, 0.5, 1, 5, and 10) were prepared by a table ball-milling process with a rotating speed
of 90 rpm and a milling time of 12 h. The weight ratio of 10 mm zirconia (ZrO2) media
balls to the pre-mixed powder was 0.2 (powder: media ball = 5:1). Figure 1c shows that the
fine TiB2 particles were mechanically embedded and uniformly dispersed in the Ti64 alloy
powder surface with a spherical shape after 12 h of milling the pre-mixed Ti64-10%TiB2
powder. This indicated that both the raw Ti64 alloy powder and the elemental-mixture
powder had good flowability.
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Table 1. Chemical composition of Ti-6Al-4V alloy powder used as a raw material in this study
compared to ASTM B348 Grade 5 standard values.

Elements (mass%)

Fe Al H N C O V

Ti-6Al-4V Powder 0.20 6.21 <0.01 0.01 <0.01 0.15 4.33

ASTM B348 Grade 5 <0.4 5.50~6.75 <0.015 <0.05 <0.08 <0.25 3.5~4.5

2.2. SLM Process Conditions

An ytterbium (Yb) fiber laser-installed SLM system (TruPrint1000) with a maximum
power of 200 W was used to fabricate cuboid Ti64 composites (10 mm × 40 mm × 8 mm).
The layer thickness (t), laser spot diameter, and hatch distance (h) were 20, 30, and 110 µm,
respectively. The scanning strategy was a chessboard pattern with a size of 4 mm × 4 mm,
which was rotated by 90◦ layer to layer. The optimized energy density (E) calculated by
the below equation is important for preparing samples with a high relative density and no
pores or defects [16].

E = P/vht (P: laser powder [W], v: scanning speed [mm/s]) (1)

The preliminary experimental results for parameter optimization using the Ti64 pre-
alloy powder are summarized in Table 2, where the laser power and scanning speed were
changed. Surface morphology observations and measurements of the relative density and
oxygen (O) and nitrogen (N) contents of the SLM samples were carried out. A lower energy
density can lead to unmelted powder and pores in the bulk sample. On the other hand, a
higher energy density can result in spattering and accelerate the reaction of the Ti powder
with O2 and N2 in the chamber during SLM. An increase in the O or N content decreases
the ductility of Ti materials owing to their solid solution in the α-Ti phase. Therefore, the
optimum energy density in this study was determined to be 136 J/mm3 as this enables the
highest density (99.3%) and lowest contents of O and N elements in the samples.

Table 2. Selective laser melting (SLM) parameters for fabricating the Ti64 alloys and summary of
the measured relative density, oxygen content, and nitrogen content of the SLM Ti64 alloys.

Energy Density, E
(J/mm3) 45.4 90.9 136 227 455 497 519 568 606 727 663 795

Laser power, P (W) 160 160 160 160 160 175 160 175 160 160 175 175
Scan speed, v (mm/s) 1600 800 535 320 160 160 140 140 120 100 120 100

Hatch distance, h (mm) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Layer thickness, t (mm) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Relative density (%) 98.5 99.2 99.3 99.0 99.1 99.1 99.1 99.3 98.9 98.2 98.8 98.3
Oxygen content* (mass%) 0.21 0.21 0.21 0.22 0.25 0.25 0.27 0.26 0.28 0.31 0.31 0.40
Nitrogen content* (mass%) 0.02 0.02 0.02 0.03 0.04 0.06 0.06 0.05 0.06 0.06 0.08 0.10

* Raw Ti64 alloy powder—oxygen content: 0.16%, nitrogen content: 0.01%.

2.3. Microstructural Analysis

The microstructures of the SLM Ti64-TiBw composites were observed using an optical
microscope and a field-emission scanning electron microscope (SEM, JSM-7100F, JEOL).
The orientation and texture were investigated using electron backscatter diffraction (EBSD)
with a high-speed and high-sensitivity CCD camera (DigiView IV Detector, EDSA-TSL).
The crystalline structure and Ti grain size were analyzed from the EBSD patterns using
the TSL OIM collection and analysis software. Each specimen for EBSD analysis was
electrochemically polished with a polishing solution consisting of 95 vol% acetic acid
(CH3COOH) and 5 vol% perchloric acid (60% HClO4). Electrolytic polishing was performed
using a magnetic stirrer for 90–180 s at room temperature. After polishing, the samples
were rinsed immediately with ethanol. X-ray diffraction analysis (Shimadzu XRD-6100
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diffractometer) was used to identify the phases using Cu Kα radiation at 40 kV and
30 mA (scan speed of 2◦/min and scan step size of 0.02◦ in the 2θ range of 30◦–80◦). In
discussion of TiB formation mechanism during cooling in SLM process, the calculated
partial pseudo-binary phase diagram of (Ti-6%Al-4%V)-x%B (x = 0–5 mass%), which was
prepared by Pandat CALPHAD software, was employed.

2.4. Laser Irradiation Experiments

A single laser irradiation procedure was applied to green compacts of the pre-mixed
Ti64 powder with TiB2 particles (1%, 5%, and 10%) to clarify the microstructural formation
in the molten pool. The pre-mixed powder was heated at 673 K for 300 s in an argon gas
atmosphere and immediately consolidated in an SKD61 die, which was also heated at
673 K. A compaction pressure of 600 MPa was applied to fabricate a green compact
with a high relative density of more than 99%. The in situ formation and distribution of
TiB whiskers were investigated by microstructural observation of the molten pool after
laser irradiation.

3. Results and Discussion
3.1. Microstructural Analysis of SLM Ti64 Composites with Different TiBw Contents

As mentioned above, previous studies have demonstrated that TiBw forms in Ti64
alloy composites fabricated by SLM from an elemental mixture of Ti64 alloy powder
and TiB2 particles. XRD analysis was applied to analyze the raw materials, elemental
mixtures, and materials fabricated by SLM. Figure 2a shows that no TiB2 diffraction peak
was present in the XRD profiles of the SLM Ti64-1%, 5%, or 10%TiB2 composites, whereas
the pre-mixed Ti64-1%TiB2 powder showed a TiB2 diffraction peak at 2θ = 44.44◦. The XRD
narrow-scanned profile of the SLM Ti64-1%TiB2 composite in Figure 2b also shows a TiB
diffraction peak at 2θ = 42.26◦ but no TiB2 peak. It was concluded that the additional TiB2
raw particles completely reacted with the Ti64 powder, resulting in the in situ formation of
TiB compounds during the SLM process.
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Figure 2. (a) XRD profiles of the Ti64 alloy powder, TiB2 particles, pre-mixed Ti64-10%TiB2 powder, SLM Ti64 alloy, SLM
Ti64-1%TiB2 alloy, SLM Ti64-5%TiB2 alloy, and SLM Ti64-10%TiB2 alloy. (b) Narrow-scanned XRD profile of the SLM
Ti64-1%TiB2 composite.
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According to the calculated partial pseudo-binary phase diagram of (Ti-6Al-4V)-xB
(x = 0–5 mass%) shown in Figure 3, the TiBw precipitation behavior depends on the boron
content as follows:

B < 2 mass% (Group I) 1©Liquid (L) phase→ 2©L+β→ 3©L+β+TiB→ 4©β+TiB
B > 2 mass% (Group II) 1©L phase→ 2©L+TiB→ 3©L+β+TiB→ 4©β+TiB
Therefore, this study aimed to clarify the TiBw precipitation and distribution behaviors

of SLM Ti64 alloy composites with different TiB2 contents.
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SEM-EDS analysis was applied to determine the microstructural differences in the
SLM Ti64 composites with 1% TiB2 (0.31 mass% B), 5% TiB2 (1.53 mass% B), and 10% TiB2
(3.06 mass% B). As shown in the compositional images (COMPO) in Figure 4, there was
clear contact between the molten pool boundaries in all samples. The Ti64-1% and 5%TiB2
samples had U-shaped contacts, and their shades were not clear. With 10% TiB2 particles, a
V-shaped contact with a maximum depth of approximately 100 µm was formed, and its
shade became much clearer. EDS analysis of the Ti64-10%TiB2 sample (Figure 4c) showed
needle-like compounds near the molten pool boundaries with a length of 1 µm and higher
B contents (20.6–33.3 at.%) than the matrix.

A detailed investigation by SEM-EDS of the TiBw distributions in the Ti64 composites
with 1% and 5% TiB2 after chemical etching was carried out. First, according to the SEM
images of the monolithic Ti64 alloy and 1%TiB2-added Ti64 composite in Figure 5, both
samples clearly contained acicular martensite (α′) phases tilted 45◦ with respect to the
z-direction (building direction). The length of the Ti64-1%TiB2 composite was less than
50 µm: less than the length of the monolithic sample (> 100 µm). In addition, the image in
Figure 5(b-1) clearly shows in situ-formed TiB whiskers with a length of approximately
1 µm and width of 200 nm, which uniformly existed along the building direction inside the
prior β-grains. EDS analysis showed that these whiskers contained 2.8–10.8 at.% B element.
At the same time, agglomeration of acicular TiBw with 2.8–18.6 at.% B content was also
observed on the prior β-grain boundaries, as shown in Figure 5(b-2). The Ti64-5%TiB2
sample (Figure 5c) showed much smaller equiaxed grains with a diameter of approximately
1 µm and very small TiBw with B contents of 7.0–11.7 at.% agglomerated at the prior β-
grain boundaries. As shown in Figure 6, SEM-EDS analyses of the chemically etched
Ti64-10%TiB2 sample under a higher magnification clearly revealed in situ-formed TiBw
with lengths of 3–10 µm and B contents of 38.3–42.8 at.% distributed along the molten pool
boundaries with a V-shaped contact, as shown in Figure 4c.
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To investigate the changes in the α′-grain morphologies and textures, EBSD analysis
was employed. Figure 7 shows the image quality (IQ), inverse pole figure (IPF), and
pole figure maps of the SLM Ti64-0%, 0.25%, 0.5%, 1%, 5%, and 10%TiB2 composites.
In both the 0% TiB2- and 0.25% TiB2-added samples, the prior β-grains with a strong
columnar texture consisting of acicular α′ grains existed along the building direction and
showed a higher maximum intensity (Imax) of 10.4–12.2 than those of the other samples
(Imax = 2.3–4.2). This means that a high B content causes randomized α′-grain textures.
The prior β-grains of the SLM Ti64-0.5%TiB2 composite (Figure 7c) formed parallel to the
building direction and mainly consisted of acicular α′-grains, but some equiaxed grains
were also observed. When the pre-mixed Ti64-1–10%TiB2 powders were employed, only
equiaxed α′-grains with weak crystal orientations formed in the prior β-grains of the SLM
samples, as shown in Figure 7(d–f). The Ti64-10%TiB2 composite (Figure 7f) also contained
acicular whiskers along the molten pool boundary, as shown in Figure 6.
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SEM-EBSD under a higher magnification was carried out to quantitatively evaluate the
size factors (length, width, and aspect ratio) of the acicular α′-grains when a small amount
of TiB2 particles (0, 0.25, 0.5, and 1 mass%) was added. Table 3 summarizes the measured
factors (30 measurements for each sample), and Figure 8 shows the dependence of each size
factor on the B content of the SLM Ti64-TiB2 composites. All factors gradually decreased
with increasing B content; in particular, the 1.43 µm length of the 1%TiB2-added sample
was significantly smaller than that of the monolithic Ti64 alloy, 4.58 µm. In other words, a
notable decrease in the aspect ratio of the acicular α′-grains occurred with increasing TiB2
content. It is concluded that acicular α′-grain growth was effectively obstructed by the B
element, causing refinement of the prior equiaxed β-phases by the distributed TiBw. In
addition, the primary α′-grains precipitated from the β-phases are effective in obstructing
the coarsening behavior of secondary α′-grains.

Table 3. Changes in the length, width, and aspect ratio of acicular α′-grains in SLM Ti64 alloy composites with different
TiB2 contents.

TiB2 Content
(mass%)

B Content
(mass%)

Length/µm Width/µm
Aspect Ratio

Mean Max. Min. SD* Mean Max. Min. SD*

0 0 4.58 38.15 0.56 4.14 0.73 4.22 0.16 0.47 4.74
0.25 0.07 4.30 35.87 0.46 4.01 0.61 3.80 0.13 0.42 4.39
0.5 0.15 1.67 18.17 0.46 1.53 0.47 2.14 0.12 0.24 4.24
1.0 0.31 1.43 7.36 0.44 0.82 0.36 1.44 0.14 0.24 3.17

* Standard deviation.
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3.2. TiBw Distribution in Molten Pool Induced by Laser Irradiation

The above microstructural investigation indicated that the in situ-formed TiBw dis-
tribution strongly depends on the B content of the SLM Ti64 alloys. However, it is well
known that the microstructural formation of SLM metal materials is highly complicated
because, in general, repeated laser irradiation is applied to the material during building,
and thus the microstructure depends on the thermal history [17]. Importantly, the shape
and morphology of the molten pool are also affected by repeated laser irradiation during
the SLM process [18]. Accordingly, it is difficult to clarify the TiBw formation and dis-
tribution behaviors in SLM Ti64-TiB2 composites. Therefore, microstructural analysis of
molten pools of Ti64-TiB2 green compacts was carried out after a single laser irradiation
in this study. The green compacts were fabricated by hot compaction using pre-mixed
Ti64 alloy powders with 1%, 5%, and 10% TiB2 particles. The microstructural observations
of the cross-section of each sample are shown in Figure 9. All samples showed a similar
keyhole induced by the single laser irradiation, where the depth, width, and height of the
molten pools were 665–708, 350–440, and 26–43 µm, respectively. These values indicate that
there were no significant differences in the molten pool profiles for different contents of
TiB2 particles.
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SEM analysis was performed to observe the microstructures at the center of the key-
holes in the molten pools formed in the green compacts by a single laser irradiation. As
shown in Figure 10, the Ti64-1%TiB2 and Ti64-5%TiB2 composites had similar microstruc-
tures, as shown in Figure 5b,c, respectively. In particular, the 5%TiB2-added sample
contained equiaxed grains and small TiBw agglomerated at the prior β-grain boundaries.
These results confirmed the reproducibility of the microstructural formation behavior,
including in situ TiBw formation during the SLM process. In addition, repeated laser
irradiation in SLM has no significant effect on the formation of equiaxed grains. On the
other hand, the green compact of Ti64-10%TiB2 (Figure 10c) contained a distribution of
remarkably large in situ-formed TiB whiskers (50–100 µm in length) compared with the
SLM composites shown in Figure 6. This is due to the difference in solidification and
cooling rates of the molten pool induced by repeated laser irradiation of the powders (SLM
process) versus laser irradiation of the green compact. Furthermore, these TiB whiskers
randomly grew inside the molten pool and never agglomerated at the boundaries. This
is quite different from the microstructure of the SLM Ti64-10%TiB2 composite with many
in situ-formed TiBw at the molten pool boundaries, as shown in Figures 4c and 6. This is
because Marangoni convection [19,20] in the molten pool caused by repeated laser irradia-
tion enhances the movement of the whiskers to the molten pool boundaries between the
liquid and solid phases.
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3.3. TiBw Distribution Mechanism of SLM Ti64-TiB2 Composites

According to the results of the above investigation, it is clear that the microstruc-
ture of SLM Ti64-TiB2 composites, particularly the TiBw distribution, strongly depends
on the B content because the TiB precipitation behavior is different between Groups I
and II, as shown in the Ti64-B phase diagram (Figure 3). Figure 11 schematically illus-
trates the microstructural formation mechanism of SLM Ti64-TiB2 composites during the
liquid→ β-phase transformation. In the monolithic Ti64 alloy with no TiB2 particles, the
β-phase generally grows epitaxially in the building direction starting from the solid–liquid
interface. This was observed by SEM, which showed β-phase growth from the molten pool
boundary to the center of the pool. In Group I with B < 2 mass% (1% and 5% TiB2 particle
addition), as shown in Figure 11b, as the epitaxial growth of the β-phase starts from the
interface during the liquid→ β phase transformation, B atoms are discharged from the
β-phase because of the low solubility (0.02 mass%) of B in the β-Ti phase. The resulting
B-enriched region around the β-phase decreases the liquidus temperature, which results in
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coarsening and obstruction of β-phase growth. The effect of B enrichment was especially
strong in the 5% TiB2-added sample, resulting in the formation and refinement of equiaxed
prior β-grains, as shown in Figure 5(c-1). Upon reaching the solidus temperature, TiB
precipitation occurs in the B-enriched region, causing the agglomeration of TiBw at the
prior β-grain boundaries, as observed in the SEM analysis. Some TiB whiskers were present
along the building direction inside the prior β-grains, as shown in Figure 5(b-1), because
the whiskers grow in the direction of the larger thermal gradient during cooling [3,21].
Furthermore, the uniform distribution of in situ-formed TiBw obstructs the growth and
coarsening behavior of the acicular α′-phase even with only a small amount of added TiB2
particles (0.25–0.5 mass%). As a result, the length and aspect ratio of the acicular α′-phase
gradually decreased, as shown in Figure 8, and orientation randomization occurred, with a
lower maximum intensity (Imax, Figure 7) at higher B contents in the SLM Ti64 composites.
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In Group II (B > 2 mass%, Ti64-10%TiB2 composite), as shown in Figure 11c, the
primary TiB whiskers precipitate inside the molten pool during cooling after laser irradia-
tion. Marangoni convection caused by the large temperature difference in the liquid-phase
molten pool enhances the movement of TiBw to the molten pool boundary. As a result, the
whiskers agglomerated at the boundaries, as shown in Figures 4c and 6. Regarding the mi-
crostructural formation behavior of the matrix, β-grain precipitation starts from those TiBw
acting as nucleation sites during solidification, and their grains grow toward the center of
the molten pool in the higher-temperature region according to the temperature gradient.

4. Conclusions

It was clarified that the distribution behavior of TiB whiskers formed in situ from
TiB2 particles in SLM Ti64 composites strongly depends on their primary precipitation
from the liquid phase controlled by the B content. For B contents of less than 2 mass%
(Group I, 1% and 5% TiB2), when the liquid→ β phase transformation occurred, B atoms
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were discharged and a B-enriched region formed around the β-phase. As a result, TiB
whiskers were generated based on this B-enriched area and agglomerated at the prior
β-grain boundaries. The in situ-formed TiBw in the prior β-grains then dissolved during
cooling, resulting in a solid solution of B elements in the β-phase. Finally, acicular TiB
whiskers precipitated in the prior β-grains during cooling. On the other hand, when the B
content was over 2 mass% (Group II, 10% TiB2), TiB whiskers precipitated from the liquid
phase and moved to the molten pool boundary by Marangoni convection, and thus the
whiskers were present along the boundaries. Furthermore, the B-enriched region around
β-grains decreased the liquidus temperature, which both obstructed β-grain coarsening
and caused α’-grain refinement during the phase transformation.
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