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Abstract: A three-dimensional (3D) polycatenation supramolecular network with chemical formulas,
[Zn(bpp)(BDC)]·1.5H2O (1), (bpp = 1,3-bis(4-pyridyl)propane, BDC2− = dianion of terephthalic acid),
was synthesized and structurally determined. In compound 1, the coordination geometry of Zn(II) ion
is distorted tetrahedral, where its 2D undulated layered framework is constructed via the bridges of
Zn(II) ions with bpp and BDC2− ligands. Adjacent 2D layers are arranged in a combined parallel and
interpenetrated manner to complete its 3D polycatenation supramolecular architecture. Compound
1 shows a one-step dehydration process with the weight losses of 6.1%, approximately equal to
the weight percentage of losing 1.5 guest water molecules. The cyclic thermogravimetric analysis
reveals that compound 1 shows reversible, sponge-like water de-/adsorption behavior during de-
/rehydration processes. Compound 1 also exhibits significant water vapor hysteresis isotherm.

Keywords: supramolecular compound; metal–organic framework; H bonding interaction; π-π
stacking interaction

1. Introduction

Crystal engineering of three-dimensional (3D) supramolecular frameworks assembled
by coordination polymers (CPs) [1] or metal–organic frameworks (MOFs) with various
types of structural topologies [1,2] have been widely studied not only for the structural
diversity of their supramolecular chemistry but also for their potential applications [3–12].
In the field of supramolecular chemistry, entangled composites in 3D supramolecular
networks constitute an important topic via the assembly of various CPs, as found in inter-
penetration, polycatenane, interdigitation, polythread, and other species [13–18]. CPs with
different orientations entangled together within the crystals were found in the formation of
fascinating 3D supramolecular networks with interpenetrated or catenated manners [19–25].
The 1,3-bis(4-pyridyl)propane (bpp), a flexible bi-pyridyl-type ligand [26], can act as bridg-
ing ligand with different structural configurations via the rotation of [−CH2−CH2−CH2−]
aliphatic chain between two pyridyl rings as TT, TG, GG, GG’ conformation (T = Trans and
G = Gauche, shown in Chart 1) to obtain various conformers in polymeric frameworks [27].
Many 1D, 2D, and 3D networks containing transition metal ions and bpp ligands have been
reported [26–34]. Terephthalate (BDC2−; dianion of terephthalic acid), a rigid dicarboxylate
ligand, has been widely used as a bridging ligand with different coordination modes to
construct many 2D or 3D MOFs [33–35]. In previous studies, a 3D-entangled or interpen-
etrating supramolecular networks, by using Zn(II) ion as node and a flexible bpp ligand
and a terephthalate ligand as connectors, have been synthesized under hydrothermal
conditions [33,34]. The structural characteristics of their 2D or 3D MOFs, built up via the
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connectivity of Zn(II) ions with bpp and terephthalate ligands adopting bis-monodentate
or bis-bidentate coordination modes (shown in Chart 2), have been studied. However, the
relevant water vapor adsorption behavior is interesting and worthy of more study. With
our effort on the study of reversible H2O de-/adsorption behavior during de-/rehydration
processes, we report here on the exploration of a 3D polycatenation supramolecular archi-
tecture, [Zn(bpp)(BDC)]·1.5H2O (1), which was synthesized by the conventional solution
method instead of the hydrothermal method in a previous report [33]. The thermal stability,
reversible de-/adsorption of the guest water molecules, and water vapor ad-/desorption
isotherms are the focus of this study and investigated by cyclic thermogravimetric analysis
(TGA), as well as in situ temperature-resolved X-ray powder diffraction.

Chart 1. Possible structural configurations of bpp ligand.

Chart 2. Coordination modes of (a) bis-monodentate and (b) bis-bidentate of BDC2− ligand.

2. Results and Discussion
2.1. Synthesis and Structural Characterization of (1)

Different to the hydrothermal synthetic method reported in a previous study [33],
compound 1 was synthesized by the conventional solution method with the mixing of Zn(II)
salts, bpp, and disodium terephthalate (Na2BDC) in the H2O/EtOH solution to obtain
colorless, needle-like crystals. The most relevant features of the IR spectrum are those
corresponding to the bridging bpp and BDC2− ligands. Absorption bands in the range of
1700−1400 cm−1 can be attributed to the R−CO2

− moiety of the BDC2− ligand and the
bpp ligand, with the similar vibrational spectral regions for the two ligands. The IR spectra
exhibit a very strong band centered at 1568 cm−1 that can be attributed to vibrational
mode representing the mixing stretching motions of C−C and C−N bonds, which is in
consistent with the characteristics of the bpp ligand. The broad bands shown in the ranges
of 3400−3500 cm−1 indicate the ν(O−H) stretching vibration from H2O molecules. The
reaction yield is obviously increased from 25% synthesized by hydrothermal method [33]
to 64% in the present study.

The crystal structure of compound 1, is redetermined and shows the same crystal
system and very close cell parameters as those reported previously [33], with a 3D polycate-
nation supramolecular architecture being constructed by 2D undulated layered MOFs. The
asymmetric unit of compound 1 is composed of a four-coordinated Zn(II) center, one bpp
ligand, two halves of two crystallographically independent BDC2− ligands, and one-and-a-
half guest water molecules. Each Zn(II) ion is coordinated to two oxygen donors from two
BDC2− ligands (Zn−O = 1.957(3) and 2.001(3) Å) and two nitrogen donors from two bpp
ligands in TG configuration (Zn−N = 2.046(3) and 2.061(3) Å) in a distorted tetrahedral ge-
ometry (Figure 1a). The bond lengths and angles around the Zn(II) ion are listed in Table 1.
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In compound 1, both the BDC2− and TG bpp act as bridging ligands with bis-monodentate
coordination mode to form a 2D undulated layered MOF (shown in Figure 1b), which can
be viewed as a four-connected net with (44.62) point symmetry, by using TOPOS [36,37].
The Zn···Zn separations are 10.906 and 10.964 Å for two crystallographically independent
BDC2− bridges and 11.955 Å for the bpp bridge, respectively. Interestingly, as show in
Figure 1c, the 3D supramolecular network of compound 1 is constructed by the mutually
catenated between 2D undulated layered MOFs. Firstly, adjacent layers are arranged
orderly in a parallel manner (green-colored ones in Figure 1d and orange-pink-colored
ones in Figure 1e, viewing along the (1,1,0) and (1,−1,0) directions, respectively) and
then mutually interlocked with each other to complete its 3D supramolecular architecture
(Figure 1c). Intralayers π−π interactions of benzene−pyridyl of BDC2−−bpp ligands and
pyridyl−pyridyl rings of bpp ligands, which have the ring centroid distances of 4.263
and 3.473 Å, respectively, provide extra stabilization energy on the construction of its 3D
network. Relevant interplanar parameters are listed in Table 2. It is also worth noting that
the guest water molecules (O(5) and distorted O(6)) intercalated in the vacant spaces are
further stabilized by O–H· · · O hydrogen bonds between the guest H2O molecules and
BDC2− ligands. Related structural parameters for O–H···O hydrogen bonds in 1 are listed
in Table 3.

Table 1. Bond lengths (Å) and angles (◦) around Zn(II) ion 1.

Zn(1)−O(3) 1.975(3) Zn(1)−O(1) 2.001(3)
Zn(1)−N(2)i 2.046(3) Zn(1)−N(1) 2.061(3)

O(3)−Zn(1)−O(1) 137.02(1) O(3)−Zn(1)−N(2)i 97.62(1)
O(1)−Zn(1)−N(2)i 110.21(1) O(3)−Zn(1)−N(1) 106.75(1)
O(1)−Zn(1)−N(1) 97.41(1) N(2)i−Zn(1)−N(1) 104.53(1)

1 Symmetry code: i = x−1/2, y−1/2, z.

Table 2. Structural parameters of π−π stacking interaction.

R(i) a → R(j) a Slip Angle (i,j)/◦ Interplanar (i,j)
Distance/Å

Horizontal Shift between the
(i,j) Ring Centroids/Å

Distance between the
(i,j) Ring Centroids/Å

R(1)→R(2) 26.9 3.801 1.930 4.263
R(3)→R(4) 30.2 3.002 1.746 3.473
a R(1) = C(1)i–C(2)i–C(3)i–C(1)ii–C(2)ii–C(3)ii; R(2) = N(1)–C(9)–C(10)–C(11)–C(12)–C(13); R(3) = N(2)–C(17)–C(18)–C(19)–C(20)–C(21);
R(4) = N(2)iii–C(17)iii–C(18)iii–C(19)iii–C(20)iii–C(21)iii. Symmetry codes: i = x, −y−1, z−1/2; ii = −x + 1/2, −y + 1/2, −z; iii = −x + 1,
−y, −z.
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Figure 1. (a) Distorted tetrahedral geometry of Zn(II) ion in compound 1 with atom labeling scheme (30 % thermal ellipsoids);
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(d) along the (1,1,0) direction and (e) along the (1,−1,0) direction.

Table 3. Structural parameters of O−H···O hydrogen bonds in compound 1.

D−H···A D−H (Å) H···A (Å) D···A (Å) ∠ D−H···A (◦)

O(5)−H(5A)···O(4) 0.87 2.02 2.862(2) 162
O(5)−H(5B)···O(1)i 0.84 2.15 2.974(2) 171
O(6)−H(6A)···O(2)ii 0.77 2.13 2.864(2) 161

1 Symmetry codes: i = x, −y−1, z; ii = −x, −y, −z.

2.2. Thermal Stability of (1)

Thermal stability and thermal-induced structural variation of compound 1 were
performed by thermogravimetric analyses (TGA) and in situ temperature-dependent
powder XRD measurement, respectively, as shown in Figure 2a,b. The thermogravimetric
profile reveals that, during the heating processes in the range of 32.8 to 100.7 ◦C (shown in
Figure 2a), the first weight loss of 6.1% occurred, corresponding to the losses of 1.5 water
molecules (calc. 5.9%). The dehydrated species are stable up to 160.1 ◦C without any weight
loss, and then decomposition takes place. The final residue produced at 530 ◦C is suggested
to be ZnO. The structural variations of compound 1 during the thermal dehydration
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procedures are further investigated by PRXD(Powder X-ray diffraction) measurements
using a high-resolution synchrotron radiation light source to support the results obtained
from thermogravimetric analysis. The thermo-stability, as well as phase transitions, of
compound 1 were investigated by in situ powder diffraction, as shown in Figure 2b.
The powder crystalline structure at 30 ◦C (red one in Figure 2b) is matching well to
its simulation one obtained from single crystal structure (black one in Figure 2b). As
temperature increased to 100–150 ◦C, the desorption process occurred. The crystalline
property was retained for a new dehydrated structure. The PXRD measurements are in
accordance with the result of thermogravimetric analysis, with compound 1 being thermal
stable up to about 200 ◦C. To verify the de-/absorption property of one-and-a-half guest
water molecules in compound 1, we have studied the de- and rehydration processes by
thermogravimetric measurements under water vapor. It is worth noting that the guest
H2O molecules can be nearly readsorbed by exposing the samples to water vapor at room
temperature. Such heating and cooling procedures were repeated five times to verify the
reversibility of de-/adsorption behavior for 1.5 H2O molecules (Figure 2c).

2.3. Water Sorption Studies of (1)

The cyclic thermogravimetric analyses reveal that compound 1 displays a reversible
water de-/adsorption behavior of approximately 1.5 water molecules. Encouraged by
the result of cyclic TGA, the gas and water vapor uptake capacities of the dehydrated
species were further determined. The crystalline samples 1 were evacuated at 150 ◦C
for 24 h to obtain the activated powder species. The N2 gas isotherm at 78 K revealed a
typical Type-II adsorption profile (Figure 3a) with very low N2 gas uptake, suggesting
only surface adsorption. To explore the water adsorption ability of dehydrated powder
species 1, water vapor sorption isotherms were measured at 298 K. For water vapor
adsorption of dehydrated species 1, the isotherm (Figure 3b) showed a steady increase of
adsorbed water vapor at 0 < relative P/P0 < 0.89, with maximum value of 14.65 cm3 g−1

at relative P/P0 equal to 0.92, nearly equal to 0.60 water molecule being readsorbed. It
is noteworthy that, although the capacity of water sorption was not high, the desorption
curve did not follow the adsorption curve but exhibited a significant hysteresis loop with
the value of 14.88 cm3 g−1, approximately equal to 0.6 H2O molecules at lower relative
P/P0 (0.09) value.

Figure 2. Cont.
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Figure 2. (a) Thermogravimetric analysis of compound 1. (b) Simulation PXRD pattern obtained from single-crystal
data and in situ PXRD patterns of compound 1 at selected temperatures. (c) Cyclic thermogravimetric measurements
accompanied with the de-/rehydration processes repeated for five times.

Figure 3. (a) N2 ad-/desorption isotherms of dehydrated species 1 at 77 K; (b) H2O ad-/desorption isotherms of dehydrated
species 1 at 298 K.

3. Experimental Section
3.1. Materials and Physical Techniques

All chemicals were of reagent grade and used as commercially obtained without fur-
ther purification. E.A. (C, H and N) were performed using a Perkin-Elmer 2400(PerkinElmer,
Inc. 940 Winter Street Waltham, MA 02451 USA) elemental analyzer, PerkinElmer, Inc.
940 Winter Street Waltham, MA 02451 USA. IR spectra were recorded on a Nicolet FTIR,
MAGNA-IR 500 (Thermo Fisher Scientific; Waltham, MA, USA) spectrometer. Thermogravi-
metric analysis (TGA) was performed on a Perkin-Elmer 7 Series/UNIX TGA7(PerkinElmer,
Inc. 940 Winter Street Waltham, MA 02451 USA analyzer). The adsorption isotherms of N2
gas (77 K) and H2O vapor (298 K) were measured in the gaseous state by using BELSORP-
max volumetric adsorption equipment (Microtrac MRB, Nordrhein-Westfalen, Germany).
The adsorbate was placed into the sample cell, and then the change of pressure was
monitored, and the degree of adsorption was determined by the decrease of pressure at
equilibrium state. All operations were computer-controlled automatically.
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3.2. Synthesis of [Zn(bpp)(bdc)]·1.5(H2O) (1)

A water/ethanol (1:1) solution (3 mL) of disodium terephthalate (Na2BDC) (0.0042 g,
0.02 mmole) was added to a water/ethanol (1:1) solution (6 mL) of ZnF2 (0.002 g, 0.02 mmole)
and 1,3-bis(4-pyridyl)propane (bpp) (0.0079 g, 0.04 mmole) at room temperature (RT). After
standing for a few days, colorless, needle-like crystals of compound 1 were obtained with
yield of 0.0582 g (64.0%). Anal. Calc. for C21H21N2O5.50Zn1 (1): C 55.46, N 6.16, H 4.65;
Found: C 54.98, N 5.93, H 4.55. IR (KBr pellet): ν = 3545 (m), 3468 (m), 1620 (s), 1568 (vs),
1503 (m), 1433 (s), 1403 (s), 1227 (w), 1071 (w), 1031 (m), 823 (m), 746 (m) cm−1.

3.3. Crystallographic Data Collection and Refinements

Single-crystal structural data for compound 1 were collected on a Siemens SMART
CCD (Siemens, Germany) diffractometer equipped with graphite monochromated Mo
radiation (λ = 0.71073 Å) at 150 K. Cell parameters were determined using SMART [38]
software and refined with SAINT [39] software. Data reduction was performed with the
SAINT [39] software and corrected for Lorentz and polarization effects. Empirical absorp-
tion corrections were applied with the program SADABS [40]. The structure was solved
by direct phase determination, and all nonhydrogen atoms’ positions were generated
by subsequent difference Fourier map synthesis. All hydrogen atoms were positioned
geometrically, except the hydrogen atoms of the water molecules, which were located
in the difference Fourier map with the corresponding positions. All calculations were
performed by using the SHELXTL-PC V 5.03 software package [41]. Crystallographic
data and other pertinent information for compound 1 are summarized in Table 4. The
CCDC-2054817 for compound 1 contains the supplementary crystallographic (Supple-
mentary Materials) data for this paper. These data can be obtained free of charge at
www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 29 March 2021).

Table 4. Crystal data and other pertinent information of compound 1.

Empirical Formula C21H21N2O5.50Zn Formula Mass (g·mol−1) 454.77

crystal system Monoclinic space group C2/c
a/Å 20.9706(8) α (◦) 90
b/Å 11.4874(5) β (◦) 119.0891(11)
c/Å 19.5792(11) γ (◦) 90

V/Å3 4121.7(3) Z 8
Dcalcd (g cm−3) 1.466 θ range (deg) 2.381−27.499

µ/mm–1 1.229 Temperature (K) 150(2)

no. of total data
collected 13471 no. of unique data 4732

R1, wR2
1 (I > 2σ(I)) 0.0502, 0.1196 R1, wR2

1 (all data) 0.0711, 0.1246
GOF 2 1.149 no. of refine params 302

1 R1 = ∑||Fo − Fc||/∑|Fo|; wR2(F2) = [∑w|Fo
2 − Fc

2|2/∑w(Fo
4)]1/2; 2 GOF = {∑[w|Fo

2 − Fc
2|2]/(n− p)}1/2.

3.4. In Situ X-ray Powder Diffraction

The powder X-ray diffraction measurements were performed at the 09 A beamline of
Taiwan Photon Source (TPS) in National Synchrotron Radiation Research Center (NSRRC).
TPS ring was operated at 3 GeV with a typical current 400 mA with top-up injection
mode. The 15 keV X-ray source was delivered from an in-vacuum undulator (IU22), and
the diffraction patterns were recorded by a position-sensitive detector, MYTHEN 24 K
(Dectris, Switzerland). Due to the small gaps between detector modules, two necessary
datasets were collected 2◦ apart and were well calibrated through a NIST standard reference
material, LaB6(660c). The final data were merged and gridded to give an equal step dataset.
The powder sample was sealed in a borosilicate glass capillary (0.3 mm). In situ high
temperature experiment was taken by a hot air gas blower with a uniform ramp rate
0.2 degrees/s. The simulated powder diffraction pattern was calculated using the Mercury
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program from the Cambridge Crystallographic Data Centre (CCDC), https://www.ccdc.
cam.ac.uk/Community/csd-community/freemercury/ (accessed on 29 March 2021). The
simulation setting for X-ray energy and peak shape were 15 keV and 0.03 degree, respec-
tively. The simulated range was from 2 to 50 degree with a constant 0.005-degree interval.

4. Conclusions

In the present work, we successfully described the synthesis, structural character-
ization, thermal stability and water de-/adsorption behavior of a 3D polycartenation
supramolecular network, [Zn(bpp)(BDC)]·1.5H2O (1), which was assembled by a 2D undu-
lated layered MOF via combined parallel and mutually interlocked manners. Interlayers
π−π stacking interactions between the bpp and BDC2− ligands and hydrogen bonding in-
teractions between the guest H2O molecules and BDC2− ligands provided extra energy on
the stabilization of the 3D supramolecular architecture. Notably, compound 1 underwent a
reversible water de-/adsorption behavior between the dehydrated and rehydrated species
during thermal de-/rehydration processes and exhibited significant water hysteresis loop
in water vapor ad-/desorption isotherms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11040371/s1, Table S1: Crystal data and structure refinement, Table S2: Atomic coordinates
(×104) and equivalent isotropic displacement parameters, Table S3: Bond lengths [Å] and angles [◦],
Table S4: Anisotropic displacement parameters (Å2 × 103), Table S5: Hydrogen coordinates (×104)
and isotropic displacement parameters (Å2 × 103).
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