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Abstract: A combinatorial material adhesion study was used to optimize the composition of an
adhesion promoting layer for a nanocrystalline diamond (NCD) coating on silicon. Three different
adhesion promoting metals, namely W, Cr, and Ta, were selected to fabricate arrays of co-sputtered
binary alloy films, with patches of seven different, distinct alloy compositions for each combination,
and single element reference films on a single Si wafer (three wafers in total; W–Cr, Cr–Ta, Ta–W).
Scratch testing was used to determine the critical failure load and practical work of adhesion for
the NCD coatings as a function of adhesion layer chemistry. All tested samples eventually exhibit
delamination of the NCD coating, with buckles radiating perpendicularly away from the scratch
track. Application of any of the presented adhesion layers yields an increase of the critical failure
load for delamination as compared to NCD on Si. While the influence of adhesion layers on the
maximum buckle length is less pronounced, shorter buckles are obtained with pure W and Cr–Ta
alloy layers. As a general rule, the addition of an adhesion layer showed a 75% improvement in the
measured adhesion energies of the NCD films compared to the NCD coating without an adhesion
layer, with specific alloys and compositions showing up to 125% increase in calculated practical work
of adhesion.

Keywords: adhesion; scratch testing; combinatorial materials science; nanocrystalline diamond
coating; thin films

1. Introduction

The ability to design and realize materials with an optimum property profile is essen-
tial for the development of future technologies, promoting for instance the environment
sparing use of resources or sustainable and efficient generation and use of energy [1–3].
Ideally, material discovery and design efforts involve close coupling between materials
prediction, synthesis, and characterization [2]. Combinatorial thin film science is one
optimization method for material properties, whether they be mechanical, functional, or
interfacial, using significantly fewer resources than a traditional bulk analysis technique
and conducted in substantially less time [4–6]. The method combines high-throughput
synthesis and subsequent characterization of multinary material libraries on a single wafer,
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allowing for screening of unique properties or the optimization of specific properties for
a desired application. Regarding fabrication of such libraries, physical vapor deposition
(PVD) such as magnetron sputtering with different targets is a common technique, using
either co-deposition [5,7–11] or wedge-deposited multilayered thickness gradients of dif-
ferent elements combined with post-deposition annealing treatments for alloying [3,6,12].
Thereby, programmable shutter systems incorporated into the sputter chamber allow the
realization of wedge geometries [3,6,12], as well as 2D patterning of the alloys into discrete
arrays, facilitating the subsequent characterization and categorization of properties based
on their different chemical compositions.

This characterization of resulting material properties typically demands methods
with adequate lateral resolution. It includes correlation of the chemical composition to the
atomic structure and development of resulting structure-property relationships impacting
e.g., formability [13], toughness [11], oxidation resistance [3] or interfacial adhesion [6].
The latter property is a critical factor for any thin film application, regardless of the specific
coating application. From the variety of methods available to measure interfacial adhesion
(overview found in [14,15]) only a few fulfill the combinatorial requirements of high spatial
resolution, time efficiency and quantitative results. Recently, the potential of nanoinden-
tation induced blisters for combinatorial adhesion studies has been demonstrated by the
authors [6], with some compromises on quantification of the results.

Another adhesion method deemed suitable for this purpose is scratch testing [16–22].
It can be automated, relatively fast and small-scale. However, the analysis based on the
nature of the generated scratch trace is rarely straightforward. Depending on the coating-
substrate combination, different failure modes can occur, namely plastic deformation and
extrusion of the coating (soft coatings/hard substrates) or coating fracture, spallation, and
buckling (hard coatings/hard substrates) [17,19]. As a results, scratch testing is often used
as a semi-quantitative or comparative adhesion test, based on the critical coating failure
load, Lc. As long as the failure mode remains consistent across different samples and the
point of failure can be determined, it is also possible to quantify scratch test results and
determine the adhesion energy of the system. When quantifying the results, many intrinsic
and extrinsic factors affecting the failure mode need to be considered. Certain intrinsic
factors (e.g., loading rate, indenter tip radius, machine stiffness) can be kept constant
for one given set of measurements, allowing for valid comparisons to be made between
different systems. Similarly, the extrinsic factors relating to coating and substrate properties
are measurable and can be incorporated into existing adhesion models [21]. In certain cases,
quantitative analysis based on buckle geometry or spallation is also permitted [23,24].

In this work, we report the use of scratch testing to measure interfacial adhesion
of nanocrystalline diamond coatings (NCD) as a function of combinatorially designed,
adhesion promoting interlayers. NCD coatings can combine a very low surface roughness
with the outstanding properties of diamond such as high hardness, wear and corrosion
resistance, low self-friction coefficient, and biotolerance. This makes NCD coatings suitable
for many applications and attractive to numerous industries [25,26]. However, depending
on the type of substrate, they also exhibit a weak interface bonding strength, requiring the
application of adhesion promoting interlayers [27–29]. Therefore, a unique shutter system
allowing for precise control over coating design has been integrated into a conventional
physical vapor deposition (PVD) system to produce a matrix of single element and co-
sputtered binary metallic alloy compositions, based on established adhesion promoting
elements (Ta, W, Cr) [24,30–34] on single Si wafers. The combination of individual elements
offers the potential for further optimization of adhesive strength and an overall improved
property profile. Based on comparisons of the observed NCD scratch behavior as a function
of adhesion layer composition, recommendations and guidelines for interlayer design can
be derived in a time- and resource-efficient manner.
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2. Materials and Methods
2.1. Calculation of Practical Work of Adhesion from Critical Load

According to the Laugier model for scratch testing [21] the interfacial adhesion energy
or practical work of adhesion is a combination of the intrinsic stress in the film, σint(x) and
the applied stress, σappl(x), needed to delaminate the coating from the substrate. Thereby,
the variable x defines the position along the scratch trace on the thin film surface. The
applied stress due to a sliding spherical contact that causes delamination of the coating
during scratch testing can be described as [35]:

σappl(x) =
Lc

2πa2

{
(4 + νs)

3π f
8

− (1 − 2νs)

}
(1)

where Lc is the applied critical failure load, f is the coefficient of friction (COF) between the
coating and the indenter tip, νs is the Poisson ratio of the substrate, and a is the radius of
the contact circle. This contact circle radius, a, is calculated using Hertzian contact theory:

a3 =
3
4

LR
(

1 − νs
2

Es
+

1 − νi
2

Ei

)
(2)

where R is the radius of curvature of the indenter, L is the applied load, νs and νi are the
Poisson ratio of the substrate and indenter, respectively, and Es and Ei are the Young’s
modulus of the substrate and indenter, respectively. The elastic constants of the utilized
Berkovich diamond indenter tip are: Ei = 1140 GPa and vi = 0.07 [36]. Regarding the elastic
constants of the substrate, only contributions from the Si wafer were considered, with
Es = 160 GPa and νs = 0.22 [37] for all calculations. While for single NCD films on Si this
assumption is fully valid, the addition of an adhesion layer requires further considerations.
It has been observed that in the bilayer systems (NCD + adhesion layer) delamination
during scratch testing typically occurs at the NCD-adhesion layer interface. Therefore,
the adhesion layers can be ascribed to the substrate side in terms of adhesion mechanics.
However, due to their continuously varying elastic properties across the different bilayer
systems, an inherent feature of the combinatorial design strategy, the simplification of only
considering elastic properties of the Si substrate was introduced. Furthermore, based on
the limited thickness of the utilized adhesion layers (~50 nm) they are assumed to not
substantially affect the elastic properties of the Si substrate. The potential impact of this
simplification will be discussed in detail in the discussion section of the manuscript.

Based on the applied stress at the critical load (Equation (1)), the work of adhesion, W,
required to delaminate a coating (film thickness, h, Young’s modulus, Ec) from the substrate
can be approximated by:

W =

{
σapp(x)

}2

2Ec
h (3)

assuming that the internal stress in the coating, σint(x) is zero. This simplification of
the adhesion model is adopted as the actual internal stress state in the NCD coatings
is unknown. Assuming that this internal stress state is at least comparable between
the different material systems (similar microstructure, further detailed in the discussion
section), the induced error still allows for a relative comparison of adhesion energies. NCD
coating thickness values, h, as a function of the different adhesion layers are summarized
in the results section of the manuscript (Section 3.1). The modulus of the NCD coating was
measured as Ec = 210 GPa from nanoindentation experiments. Since selective post-mortem
cross-sectioning of the obtained buckles indicates delamination at the NCD-adhesion layer
interface, the different adhesion layers do not require consideration in terms of relevant
coating properties (h, Ec).

In summary, the adhesion values stated in this work, obtained from scratch testing
with the above described simplified adhesion model, should be treated as qualitative indi-
cators for better and worse interfacial adhesion, rather than absolute quantitative numbers.
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2.2. Experimental Details

A unique shutter control system allowing for precise control over coating design was
integrated into a Mantis Deposition Ltd. QPrep physical vapor deposition (PVD) system
with three magnetron sputtering targets for combinatorial synthesis of the adhesion layers.
A detailed description of the shutter system can be found in Ref. [6]. A combination of W,
Cr, and Ta was used to create (3 × 3) matrices of single element and binary alloy adhesion
layers with different compositions on single 2” passivated Si wafers, schematically shown
in Figure 1a. The movement of the shutter system required to form these specific matrix
structures is shown in the supplementary video file S1.
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Figure 1. Schematic representation of the combinatorial deposition strategy and resulting thin film architecture. (a) 3 × 3
matrix of single element (A,B) and co-sputtered binary alloy adhesion layers with different chemical compositions (AxB100–x)
on a single Si wafer, achieved with a unique shutter control system integrated into the PVD chamber. (b) Cross-section
of the final bilayer thin film architecture, after the entire Si wafer underwent deposition of the nanocrystalline diamond
top coating.

Each 1.5 cm square in the 3 × 3 matrix (Figure 1a) was deposited using magnetron
sputtering from elemental targets (W, Cr and Ta) at a base pressure of 3 × 10−5 Pa and
a process pressure of 5 × 10−1 Pa with 20 sccm Ar flow, to a thickness of approximately
50 nm. Binary adhesion layers were co-sputtered, whereby the power at each individual
elemental target was adjusted for each square to vary their chemical composition, following
pre-determined deposition recipes. For single element films only the respective target was
active during deposition. The composition and thickness of each adhesion layer square,
summarized in Table 1, were measured using X-ray fluorescence (XRF) on a Fischerscope
X-ray XDV with a W source and accelerating voltage of 30 kV.

After deposition of the adhesion layers, a nanocrystalline diamond top coating (NCD,
110–150 nm thickness) was deposited (schematic cross-section of final bilayer architecture,
Figure 1b). Therefore, each wafer containing the adhesion layers was first seeded at Neo-
Coat SA, using a proprietary process, by immersing the wafers in a liquid containing 10 nm
diamond nanoparticles in suspension [38]. Previous investigations of the seeding density
from this process on bare Si substrate showed an average cluster distance of 20 nm and
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surface coverage of approximately 66% [39]. Prior to NCD diamond deposition, all samples
were exposed to pure H2 plasma with increasing microwave power for approximately
1 h. The NCD diamond was deposited using a Matrix Elementary Plasma Source [40] in
a home-made Matrix Elementary Plasma Source (MEPS) system using four microwaves
antennas, Hi-Wave applicators from SAIREM [41], positioned in a square configuration
with an axis distance of 80 mm. The coating was deposited at a substrate temperature
of 350 ◦C. The microwave power to sustain the plasma was delivered by 4 solid-state
microwave generators (Sairem GMS 200), each coupled via a coaxial cable to a plasma
source. The microwave power during the deposition process was 800 W total, 200 W per
source. To obtain reproducible deposition conditions, the reflected power is reduced to
a level below 5 W, by automatically, individually frequency tuning each generator. The
process gas is a mixture of 6% CH4 in 94% H2, at a pressure of 50 Pa. Microstructure and
thicknesses of the resulting NCD coatings were investigated with cross-sectional SEM
(Hitachi S-4800) imaging and bright field scanning transmission electron microscopy (BF-
STEM, JEOL 2200FS). The thickness values of the NCD films ranged between 110 and
150 nm, as summarized in the results section of the manuscript (Section 3.1) 3 Quasi-static
nanoindentation was performed on a Hysitron UBI system equipped with a Berkovich
diamond indenter to determine the Young’s modulus and hardness of the NCD films based
on the Oliver-Pharr method [36]. The films were indented to a depth of 30 nm on areas
without an adhesion layer (i.e., grown on top of bare silicon between the squares).

Table 1. Composition and thickness of adhesion layers deposited using PVD magnetron co-sputtering, measured using
XRF (n/a = not applicable).

W–Ta

Composition (wt%) 100–0 92–8 84–16 70–30 52–48 36–64 22–78 9–91 0–100

Thickness (nm) n/a 36 36 39 40 42 42 48 67

W–Cr

Composition (wt%) 100–0 94–6 91–9 83–17 65–35 48–52 38–62 23–77 0–100

Thickness (nm) 38 46 42 46 55 60 75 71 67

Cr–Ta

Composition (wt%) 100–0 80–20 68–32 47–53 35–65 20–80 13–87 6–94 0–100

Thickness (nm) 64 n/a 66 69 58 45 46 45 36

Scratch testing was performed at room temperature on a NanoIndenter XP system
using a 2 µm radius conical diamond tip with a 120◦ opening angle. Three ramped load
scratch tests (0–100 mN) were applied at a loading rate of 10 µm/s for 500 µm, with the
peak load occurring after 432 µm. The scratch profiles were then imaged in a cold field
emission scanning electron microscope (SEM, Hitachi S-4800) to determine the critical load,
Lc, and maximum buckle length, Wb, for each adhesion layer compositions. Lc is defined as
the load at which delamination/buckles are first observed at the scratch trace, Wb is the
maximum distance those buckles propagate, perpendicular to the scratch trace. Typically,
buckle formation or delamination also correspond to an abrupt variation in lateral force
or friction coefficient during scratch testing. As the measurement of these two quantities
was not permitted with the utilized setup, Lc had to be determined through post mortem
visual SEM inspection of the scratch traces. Focused ion-beam (FIB, Tescan Lyra/XMU
dual-beam) cross-sections at the onset of buckle formation were cut from three different
compositions and imaged to determine the buckle geometries and delaminating interfaces.
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3. Results
3.1. NCD Microstructure

Cross-sectional SEM images taken on cleaved sections of the samples showed a slight
spatial or compositional dependence of NCD growth on the adhesion layer chemistry.
Figure 2 shows these cleaved sections, imaged at 70◦, for three different compositions of
the binary adhesion layer system W–Cr: pure W, W–Cr alloy with composition 48–52 wt%,
and pure Cr. The NCD coating thickness was measured to be 150 ± 16 nm, 120 ± 12 nm
and 117 ± 14 nm for pure W, W–Cr, alloy and pure Cr, respectively. For comparison, on
pure Ta (not pictured), the NCD coating thickness was measured as 120 ± 14 nm.
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This variation of the NCD coating thickness as a function of adhesion layer composi-
tion is summarized in Figure 3, for all three binary material systems under investigation.
The presented thickness values apply to the NCD layer only, and do not include the thick-
ness of the underlying adhesion layer. For comparison, the NCD thickness measured
on Si without adhesion layer (labelled “none”) is also included. For each binary alloy a
similar moderate trend of an approximately linear thickness increase is observed as the
concentration of element A (W or Cr depending on the alloy) increases. However, these
variations in NCD growth rate and resulting film thickness across the wafers are most likely
not directly related to the underlying adhesion layer chemistry. Instead, local variations
of deposition conditions inside the NCD deposition chamber are thought responsible for
causing the obtained variations in NCD thickness. Since the position of each adhesion layer
square on a Si wafer (Figure 1a) corresponds to a specific position inside the NCD chamber
during deposition as well as a specific change in adhesion layer composition and chemistry,
it is difficult to unambiguously determine the underlying reasons for the different NCD
growth rates. However, since the variation in NCD coating thickness is later accounted for
in the adhesion energy model it does not affect the comparative analysis.

Aside from the thickness varying slightly across the samples, the microstructure
of the NCD coating is consistent with clusters of smaller diamond grains, resembling
a cauliflower-like structure, through the entire thickness of the coating (Figure 2). Such
cauliflower-like morphology has been reported in literature for NCD coatings and
MCD/NCD dual layer composites (MC = microcrystalline) [42,43]. No major inconsisten-
cies of different grain or cluster sizes were observed across the different adhesion layer
compositions. A substantial amount of porosity is observed in between the diamond grain
clusters, and particularly at the bottom of the NCD films, close to the NCD- adhesion
layer interface, as can be seen in both cross-sectional SEM (Figure 2) and bright field STEM
images (Figure 4).
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The representative bright field STEM (BF-STEM) image in Figure 4 shows a cross-
section of an NCD coating on a pure W adhesion layer (Figure 4). It is clearly visible that
the originally open, porous structure of the NCD coating has been progressively filled up
with Pt-C during the TEM lift-out sample preparation process. The focused electron beam
deposited Pt-C layer, used to protect the coating surface during the lift-out preparation, is
clearly visible at the top of the TEM image with a distinctly dark, speckled contrast. The fact
that this Pt-C deposit is also observed in the interior of the NCD coating and particularly at
the interface to the adhesion layer (similar speckled contrast) indicates diffusion paths for
the organometallic Pt-C precursor. Furthermore, the BF-STEM image also shows clusters
of small crystalline diamond grains, approximately 10 nm in diameter. The flat surface of
the W layer confirms that a smooth and uniform deposition of the adhesion layers was
achieved with the integrated shutter system for composition control. The selected area
diffraction (SAD) pattern included in Figure 4 (top right corner) further demonstrates
the nanocrystalline nature of the diamond coating. The rings of diffracted spots seen in
the pattern correspond to the {111}, {200} and {220} reflections of diamond, the uniform
distribution of intensity within the rings indicates that the NCD has an equiaxed structure,
at least at this length-scale.

The substantial porosity of the NCD coating can negatively affect the elastic modulus,
which is an important parameter in the calculated work of adhesion using the present
model. Porosity appears to be a result of the chosen NCD growth process, and is indepen-
dent of the substrate or adhesion layer chemistry, based on cross-sectional SEM and TEM
analyses. Therefore, the average elastic modulus and hardness of the NCD films without
adhesion layers, measured with nanoindentation as 210 GPa and 11 GPa, respectively,
indicate a relative density of ρ* = 0.45 according to the relationship:

E∗

ED
∼=

(
ρ∗

ρD

)2
(4)

where E* and ρ* are the measured Young’s modulus and relative density of the porous
NCD coating, respectively (E* equal to Ec in Equation (3)) and ED = 1050 GPa [44] is the
Young’s modulus of diamond with a relative density of ρD = 1.

3.2. Scratch Testing: Critical Load and Buckle Length

The adhesion strength of the NCD coatings as a function of the different adhesion layer
composition was evaluated using the scratch test method. Thereby, the experimentally
determined critical failure load can be directly related to the adhesion energy of the system.
In the presented film systems, the coatings failed by scratch-induced delamination in the
form of buckles, radiating perpendicularly away from the scratch trench. Depending on
the composition of the adhesion layer, these buckles are first observed at different critical
failure loads, Lc, and propagate until reaching a maximum buckle length, Wb, referring
to the distance of the edge of the scratch track to the edge of the largest buckle. The two
quantities Lc and Wb were determined from SEM micrographs, as indicated in Figure 5a.
The representative SEM images in Figure 5a show the scratch tracks obtained for an NCD
film without adhesion layer and for NCD with two different adhesion layer compositions.
Within one thin film system, three consecutively performed scratch tests yield a very similar
response (same appearance of the scratch track). This indicates a good lateral homogeneity
of the films and interfaces, despite the absence of substrate rotation during deposition
which was prevented by the utilized shutter system, and a good reproducibility of the test
method. Individual scratch traces are placed far enough apart in order not to influence each
other (depending on Wb, min. 60 µm). Even at a quick glance, differences in the scratch
response between the three film systems shown in Figure 5a are noticeable.
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NCD coatings with and without adhesion layers exemplifying their different response to scratch testing. Adhesion layer
chemistry is stated at the top of the image. The scale bar included on the right side applies to all three SEM images. The
critical failure load, Lc, corresponding to the location of the first buckle, and the maximum buckle length Wb, referring to the
distance of the edge of the scratch track to the edge of the largest buckle, are indicated in red. (b) Critical failure load, Lc,
and (c) maximum buckle length, Wb, summarized for NCD films with three different binary adhesion layers, as well as
single NCD films on passivated Si without adhesion layer. The squares in (c) indicate the material systems selected for FIB
cross-sectioning of obtained buckles.

Figure 5b,c summarize the critical failure load, Lc, and the maximum buckle length,
Wb, as a function of all investigated adhesion layer compositions. Particularly noticeable in
Figure 5b is the increase of the critical failure load Lc in all of the samples with an adhesion
layer when compared to the NCD grown directly on passivated Si (grey lines labeled as
"None"). Among the three adhesion layers Cr–Ta exhibits the highest Lc values across the
entire composition range. Furthermore, Cr additions of more than 10 wt% seem to slightly
increase Lc as compared to pure Ta. For W–Cr and W–Ta very similar, generally lower Lc
values are obtained, which remain, considering error bar, more or less constant over the
whole compositional range, indicating no substantial benefit of alloying as compared to the
single element adhesion layers. Regarding the maximum buckle length (Figure 5c), general
trends as a function of adhesion layer composition are less straightforward. Consistent
with higher critical loads, shorter buckles are observed for the Cr–Ta alloys and also for
pure W adhesion layers (100 wt% Composition A, W–Cr and W–Ta).

Since adhesion energies are determined from the critical load at the first buckle
formation Lc, three characteristic buckles were FIB cross-sectioned to determine the fail-
ing/delaminating interfaces. The adhesion layer compositions for cross-sectioning were
chosen in order to represent three specific cases within the investigated spectrum of ad-
hesive properties: (i) a low critical load and the largest maximum buckle length (poorest
adhesion, 48 wt%W-52 wt%Cr), (ii) a low critical load but a shorter maximum buckle
length (potentially better adhesion, even though not reflected in the calculation of adhesion
enery, pure W) and (iii) the smallest maximum buckle length and largest critical load (best
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adhesion, 35 wt%Cr-65wt%Ta). These three compositions are also highlighted with squares
in Figure 5c. Importantly, the SEM cross-sections presented in Figure 6 show that in all
three cases delamination occurs at the interface between the NCD coating and the adhesion
layer. The sample with the poorest interfacial adhesion (W–Cr adhesion layer, Figure 6a)
shows flat buckle geometries with a large ratio of buckle height to length, which generally
indicates that interfacial cracking can propagate easily. For the two other adhesion layer
compositions (Figure 6b,c), the buckle geometries are quite similar with a smaller buckle
height to length ratio and fracture of the NCD coating at the edges of the buckles, both of
which indicate generally better adhesion as compared to the W–Cr sample.
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Figure 6. Cross-sectional FIB/SEM analysis of scratch profiles and induced buckling of NCD coatings
on Si with different adhesion layers. The failure mode with (a) W–Cr 48–52% at adhesion layer
(critical failure load Lc = 43 mN, maximum buckle length Wb ~ 17 µm), (b) pure W adhesion layer
(Lc = 41 mN, Wb ~ 9 µm) and (c) Cr–Ta 35–65% at adhesion layer (Lc = 59 mN, Wb ~ 7.5 µm) is shown
at two different magnifications each.
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4. Discussion

Scratch testing is best used as a qualitative measure of adhesion, mainly for determin-
ing a comparative improvement in adhesion for a set system. Traditionally this technique
is used as a pass/fail criteria for industrial coatings, based on specifying critical loads at
which cracking and spalling can occur. Actual adhesion values are rarely assigned to the
measurements due to the extremely complicated stress state applied during the scratch
process. Furthermore, the method is highly dependent on both substrate and coating prop-
erties. Some adhesion models exist for scratch testing of hard coatings on hard substrates,
but are related to and dependent on a specific failure mode of the coating. Since the NCD
coatings investigated in this work do not fail by spallation, any model requiring a measure-
ment of the spalled region cannot be used [23]. Even though buckling has been observed,
these specific types of parallel buckles are not suitable for existing adhesion models [24,45].
In contrast to spontaneous buckles growing away from the scratch trace, their formation
parallel to scratch trace is due to a combination of many different deformation mechanisms.

Therefore, a more simplistic model developed by Laugier [21] was used to quantify the
previously discussed scratch results based on the critical failure load. Since the NCD coating
microstructure and properties do not change by a large amount as the adhesion layer
composition changes, a comparison between the different cases is principally permitted.
However, as outlined in Section 2.1 of the manuscript, several further simplifications and
assumptions had to be made to the existing model to account for unknown parameters and
inevitably changing properties of the adhesion layers. The impact of these assumptions
will be discussed in detail in the following paragraphs. As a results, readers are encouraged
to interpret the stated adhesion energies as qualitative comparisons, rather than absolute
quantitative numbers. Figure 7 summarizes the work of adhesion values calculated using
the simplified Laugier model as a function of adhesion layer composition and compared
to the NCD coating deposited on the bare Si wafer (grey line, labeled ‘none’). Despite
numerous simplifications, the obtained adhesion energies appear to be a reasonable order
of magnitude [46].

Since scratch testing is highly dependent on the morphology of each surface, and
on the coefficient of friction (COF) value between the two bodies (thin film and indenter
tip) [18,22], it is important to use an appropriate value when attempting to quantify
the adhesion energy (Equation (1)). In the case of these NCD films, the cauliflower-like
microstructure leads to roughness values (Ra) of around 20 nm. A study conducted by
Hayward et al. [47] specifically measured the effect of CVD diamond coating roughness on
the COF values, with values ranging from 0.05 to 0.5 for coatings with roughness values
of 2 nm and 200 nm, respectively. Based on the reported correlation between wear track
roughness and friction coefficient (Figure 4 of Ref [47]) a COF of f = 0.18 is assumed for
a coating with approximately Ra = 20 nm, as actual measurement of the COF vs. time
curves was not permitted with the utilized scratch setup. A point of contention here is that
for NCD films, which have a large fraction of atoms at the grain boundaries containing
disordered sp2-hybridized carbon atoms, hydrocarbons and impurities [48], COF values
can be significantly different and not comparable to high-quality diamond films [47]. In any
case, the COF of our NCD coatings likely does not change as a function of adhesion layer
chemistry since the microstructure is consistent across the different samples. Therefore, the
error generated by the differences between actual and assumed COF affects all adhesion
measurements equally (Equation (1)), thus still allowing for relative comparisons.
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Figure 7. Practical work of adhesion for the NCD coatings as a function of different adhesion layer
compositions. The adhesion values are obtained from scratch testing, assuming a constant COF value
of f = 0.18 between the NCD surface and the diamond tip during scratching. The grey line is the
work of adhesion for the NCD coating without an additional adhesion layer.

In general, the work of adhesion (Figure 7) is improved by the addition of any adhesion
layer, with all samples showing at least a 50% improvement over the NCD coatings with
no adhesion layer. In particular, the majority of the Cr–Ta alloy compositions show at least
a factor of two improvement in the work of adhesion, consistent with their higher critical
loads (Figure 5b). In previous adhesion studies, an apparent increase in the adhesion of
hard coatings was observed in systems with a more compliant substrate or adhesion layer,
due to the ability of these layers to plastically deform and absorb some of the energy [49].
Similarly, brittle films have been shown to propagate interfacial cracks [32] and can thus
actually lead to reduced coating performance. While Cr–Ta alloy is not known as a ductile
material, it is possible that it is less brittle than the W–Ta and W–Cr alloys, or that the Cr2Ta
phase (laves phase), which is located in the 35–38 at% Ta region of the phase diagram,
contributes to significant toughening of the adhesion layer [50]. Figure 7 also indicates that
the adhesion energy obtained for the pure Cr interlayer is very different between the W–Cr
and the Cr–Ta system, while for the other single element areas the values compare relatively
well to one another. Since the thickness of pure Cr is also similar in both cases (67 nm vs.
64 nm, Table 1), the observed differences between the two adhesion layer patches are most
likely due to their respective position in NCD chamber, as they are located on opposite
ends of the adhesion layer arrays. The influence of adhesion layer thickness will be further
discussed in Figure 8.
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Cr–Ta adhesion layers show a strong positive correlation with thickness. Dotted lines, corresponding
to the different binary alloys, are added to guide the eye.

The simplified adhesion model presented in Section 2.1 makes a number of assump-
tions that need to be addressed:

Firstly, the model in general does not take into account multiple layers but rather
assumes a single coating on an infinite substrate. However, in the current study there is
the main coating of interest, the NCD (120–150 nm), as well as the underlying adhesion
layer (35–75 nm) which results in two different interfaces as well as two different coating
properties to incorporate into the model. The thickness of the interlayers is between
20–35 % of the total coating thickness. Even though it proves impossible to cross-section a
buckle in every single scratch trace, there is evidence that delamination in the investigated
systems predominantly occurs at the NCD-adhesion layer interface (Figure 6). Therefore,
ignoring the effect of the adhesion layers while calculating the practical work of adhesion
with the Laugier model is justified to some extent. However, a closer look at the work of
adhesion values as a function of adhesion layer thickness indicates a potentially interesting
trend (Figure 8). This variation of adhesion layer thickness is an unintended result of
modulating sputter power and chemical composition for individual adhesion layer squares
(Figure 1a), which also slightly influenced the deposition rates.

For the Cr–Ta system, a strong positive correlation between the work of adhesion and
the adhesion layer thickness is observed. However, there is no correlation for the W–Cr
case, and potentially a slightly negative trend with increasing thickness for W–Ta. Since it
is not possible to de-convolute the effect of adhesion layer thickness and composition for
this particular study, it is unclear if the increased adhesion energy observed with Cr–Ta is
due to a change in the adhesion layer composition, the layer thickness, or a combination
of both effects. While it is not possible to determine the extent of the effect adhesion
layer thickness has on the adhesion energy calculation, the results do exemplify why this
combinatorial method is such an important method for rapid investigations to improve
upon the adhesion promoting capabilities of the system.
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Secondly, the effect of internal stresses in both the NCD coating as well as the adhesion
layer have been ignored for this study. Although the internal stress of the NCD coatings
was not measured, one could imagine that under the employed deposition conditions,
the NCD films do not have a large build-up of stress, as their significant porosity could
allow for stress relaxation of the coating as a whole. However, it is also well known that
in very porous thin films intrinsic tensile stress may arise due to interatomic forces across
the under-dense regions [51,52]. Typically, tensile residual stresses are associated with
coating fragmentation, while compressive residual stresses facilitate buckling and delami-
nation [53]. A substantial amount of internal stress could therefore lead to delamination at
lower (or higher) critical loads [54], since the work required to delaminate the coating is a
combination of the applied stress and internal stress in the coating [21]. To clarify that point,
a more detailed investigation of NCD films stresses would be required. However, since mi-
crostructure and porosity of the NCD films are consistent throughout the different material
combinations, one can at least assume their stress states to be comparable. Therefore, the
error introduced by neglecting intrinsic NCD stresses still allows for relative comparison
between the different adhesion layers. The effect of any internal stresses in the adhesion
layers themselves was also not considered and can likely have a profound effect on the
results, even though they are considered as part of the substrate from a delamination point
of view and therefore would not directly enter into the adhesion calculation (Equation (3)).
In addition to chemical composition and thickness, different residual stress states in the
adhesion layers can affect the mechanical behavior and associated absorption of energy at
a certain applied load, thereby influencing the critical coating failure load during scratch
testing. Due to the limited thickness of the adhesion layers, characterization of internal
stresses was not permitted, thus making it impossible to infer the magnitude of the effect
on adhesion energy.

Besides the potential influence of NCD porosity on residual coating stresses, signifi-
cant porosity at the NCD-adhesion layer interface (Figure 4) can directly impact coating
adhesion. Interface porosity is mainly a result of the chosen deposition parameters and was
observed for all NCD coatings, independent of adhesion layer composition. Compared to
a homogeneous and dense interface structure, the interface porosity could facilitate crack
propagation along the interface and contribute to the consistently observed delamination
behavior at the NCD-adhesion layer interface. In comparison, the delamination behavior
of dense Al2O3 on combinatorial adhesion layers changes as a function of adhesion layer
chemistry, resulting in a change of the delaminating interface across the wafer [6]. When
comparing the obtained adhesion energy values to industrially relevant applications, inter-
face roughness of both the NCD coating to adhesion layer as well as the adhesion layer to Si
substrate need to be considered. It is well documented that increased interface roughness
increases the practical adhesion of a coating to the substrate [55–57], so the atomically
smooth silicon wafer used as a substrate in this investigation will give lower values of
adhesion energy than if the same experiment were repeated on an engineering substrate.

Another important discussion point is the possible formation of carbides in the ad-
hesion layers during NCD deposition, which can significantly alter their ductility and
mechanical properties. All of the refractory metals used as combinatorial interlayers (Ta,
W, Cr) form stable carbides in the presence of carbon or hydrocarbons [58,59]. However,
due to the high carbide stability and the low solubility of carbon in these metals, no carbon
diffusion into the volume of interlayer is expected at the modest deposition temperature of
350 ◦C. Instead, an intermediate carbide surface layers forms, whereby the layer growth
rate is influenced mainly by the substrate temperature, the carbon concentration and dif-
fusion coefficient in the particular carbide. Diamond nucleation starts readily after the
adhesion layer surface is carburized [58]. Cross-sectional SEM and TEM analysis did
not reveal carbide layers of significant thickness on the surface of the adhesion layers.
Therefore, carbide formation is considered to be negligible in this case.

Ultimately, the presented combinatorial adhesion method provides a fast and useful
comparison between adhesion promoting layers, even if it is nontrivial to isolate specific
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contributions of individual parameters or quantify a specific value for interfacial adhesion.
Even though in this particular case no direct benefit of binary adhesion layers compared
to their single element counterparts has been observed in terms of critical failure load,
the evolution of the maximum buckle length does indicate potential beneficial and harm-
ful alloy compositions. Furthermore, alloying allows for adaptation of the interlayers
to specific processing or application requirements or design and improve their overall
property profile, combining i.e., adhesion promotion with thermal stability, low diffusivity
or specific optical properties in the case of transparent top coatings.

5. Conclusions

A combinatorial material design method was utilized to help facilitate a quick and effi-
cient way of testing different compositions of an adhesion-promoting layer for a nanocrys-
talline diamond (NCD) coating on a silicon substrate. Seven different binary compositions
together with their single element counterparts were deposited for each material combi-
nation (W–Ta, W–Cr, and Cr–Ta), followed by MEPS-NCD deposition and scratch testing
to compare the relative adhesion strengths of the resulting bilayer thin films. In general,
the addition of any adhesion layer showed a 75% improvement in the practical work of
adhesion compared to the NCD coating without an adhesion layer and consistently, delam-
ination was observed at the NCD-adhesion layer interface. Among the tested alloys, the
majority of Cr–Ta compositions exhibit the highest critical failure loads and shortest buckle
lengths during scratch testing, equating to improved interfacial adhesion. In summary,
scratch testing has been proven to be a valuable analysis method and alternative to nanoin-
dentation for combinatorial adhesion studies. While it remains challenging to quantify
adhesion, the method is more versatile in terms of observed failure morphologies suitable
to evaluate and compare adhesion energies over a wide range of different materials systems
and direct subsequent detailed analysis towards an overall improved property profile.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11040357/s1, Video S1: Movement of the shutter system producing a 2D array of
adhesion layers.
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