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Abstract: Cement is among the major contributors to the global carbon dioxide emissions. Thus,
sustainable alternatives to the conventional cement are essential for producing greener concrete
structures. Rice husk ash has shown promising characteristics to be a sustainable option for further
research and investigation. Since the experimental work required for assessing its properties is both
time consuming and complex, machine learning can be used to successfully predict the properties
of concrete containing rice husk ash. A total of 192 data points are used in this study to assess the
compressive strength of rice husk ash blended concrete. Input parameters include age, amount of
cement, rice husk ash, super plasticizer, water, and aggregates. Four soft computing and machine
learning methods, i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference system
(ANFIS), multiple nonlinear regression (NLR), and linear regression are employed in this research.
Sensitivity analysis, parametric analysis, and correlation factor (R2) are used to evaluate the obtained
results. The ANN and ANFIS outperformed other methods.

Keywords: rice husk ash; sustainable concrete; artificial neural networks; multiple linear regression;
eco-friendly concrete; green concrete; sustainable development; artificial intelligence; data science;
machine learning

1. Introduction

The world is making progress by leaps and bounds. New technologies and innovations
are being introduced every day in every field. These advancements have altered the course
of human history. One of the main aspects that has played a crucial role in shaping modern
human civilization is infrastructure. From caves, mankind has started to live in strong
and pleasing dwellings made by their own creative and innovative minds. Still, today
infrastructure is considered to be the main element for progress in any country. The
construction material that is used in abundance throughout the world for the construction
of infrastructure is cement. However, along with the advantages of cement there are also
certain adverse effects. Cement is said to be responsible for seven percent of the total
carbon dioxide emissions worldwide [1]. It produces carbon dioxide while reacting when
water is added to it. Secondly, a high temperature is required during the production of
cement [2]. This high temperature is achieved by burning fossil fuels which increase the
carbon footprint of cement. Our planet earth is suffering from problems of grave danger.
Environmental deterioration and global warming are some of these alarming issues. If not
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controlled in due time, these problems will push the earth to the brink of extinction. One
of the major causes of environmental degradation and global warming is said to be the
emission of carbon dioxide from different products and processes [3,4]. Since cement is a
crucial contributor to the total carbon dioxide emissions of the world, the importance of
infrastructure cannot be undermined. It must be replaced with some other material that has
a smaller carbon footprint as well as possessing the same or better properties than cement.

The materials that replicate the properties of ordinary Portland cement (OPC) are
known as secondary cementitious materials (SCMs). They have smaller carbon dioxide
emission rates [5]. SCMs are generally waste materials and byproducts of different indus-
tries. These materials become sources of various types of pollution if not discarded or
utilized properly. SCMs can be used in different proportions and combinations to replicate
the desired properties of OPC. Some of the SCMs are fly ash (FA), corn cob ash (CCA),
sugarcane bagasse ash (SCBA), rice husk ash (RHA), ground granulated blast furnace slag
(GGBFS), etc [6–9]. RHA is one of the SCMs obtained from the agricultural waste of rice
crop. Rice grains are covered in rice husks (RH) which are used as a fuel to boil paddy
in rice mills. RHA is obtained after utilizing rice husks as fuel. It contains more than
90 percent silica and can be used successfully as an SCM to synthesize concrete [10]. An
illustration of the chemical composition of RHA is shown in Figure 1 [11]. Ameri et al. [12]
conducted a research on concrete containing RHA. It was found that concrete containing
RHA showed a vigorous increase in early compressive strength. However, by increasing
the RHA content by more than 15 percent, the compressive strength was decreased. This is
attributed to the excess amount of silica present in RHA which remains unreacted. The
compressive strength of concrete with RHA as an SCM was 9, 12, 13, and 16 percent higher
than that of control mix. Similarly, Chao Lung et al. [13] incorporated RHA in concrete and
concluded that concrete containing RHA showed a strength 1.2 to 1.5 times greater than
that of the control mix. Chindaprasirt et al. [14] tested the concrete containing RHA for
sulphate attack resistance and reported that concrete containing RHA proved to be highly
effective against sulphate attack. It was reported by Thomas et al. [15] in a review paper
that concrete containing RHA has a dense microstructure, so it can be used to reduce the
water absorption of concrete by up to 30 percent. Rattanachu et al. [16] conducted research
in which grounded RHA was used with steel reinforcements. It was observed that the use
of RHA in the presence of steel resisted the corrosion of steel due to the fine structure of
RHA. Thus, several studies have been made on environmental impact of RHA. They are
reported in Table 1:

Table 1. Environmental impact of rice husk ash (RHA).

Material in Which RHA Is Used Results Reference

Concrete Utilization of RHA results in reduction of global
warming potential (GWP) [17]

Mortar Use of RHA results in reduction of harmful
environmental impacts [18]

Concrete RHA aids in reducing carbon footprint of concrete [19]

Concrete blocks Utilization of RHA shows positive environmental
results [20]

Hence, RHA can be utilized successfully as a cementitious material. RHA does not
produce excessive amount of carbon dioxide. It can be used as a structural concrete. Not
only does it contribute towards the strength of the concrete but also towards the long term
durability properties of concrete [21].
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Figure 1. Chemical composition of RHA.

The rate of environmental deterioration does not allow one to spend an extensive
amount of time on research and development of RHA blended concrete (RBC). Conse-
quently, extensive lab works cannot be carried out on RBC. Along with that there is always
an uncertainty regarding the mix design of RBC. This is due to the hygroscopic nature of
RHA. Therefore, to predict the properties of different SCMs, artificial intelligence (AI) is
being used throughout the globe. AI is used by different researchers to assess and predict
the strength of concrete mixes. Table 2 lists the different previous studies conducted on
SCMs to predict different properties. Different techniques such as artificial neural net-
works (ANN), LR, adaptive neuro-fuzzy inference system (ANFIS), and MNLR are used to
successfully model and predict different properties of materials [22,23].

As AI research depends on mathematical modelling and parameters, it is a complex
programming work and needs great optimization and care. Therefore, four programming
techniques are being used to predict the compressive strength of RHA-based concrete
in this research. These techniques are ANFIS, ANN, MNLR, and LR. To achieve the
targeted accuracy and to cater the complexity of programming these four techniques will
be compared with each other. A vast database of peer reviewed literature is used to model
the prediction of compressive strength.
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Table 2. Some recent studies using AI.

Material Used No. of Data Points Property Predicted Modelling Technique Used Reference

SCBA 65 Compressive strength
GEP, Multiple Linear Regression

(MLR), Multiple Nonlinear Regression
(MNLR)

[22]

Silica fume (SF) and
zeolite 18 Compressive Strength ANN [23]

Recycled concrete
aggregate 17 Compressive strength ANN, Response Surface Methodology

(RSM) [24]

Recycled rubber
concrete 72 Compressive strength ANN, MNLR, ANFIS, Support vector

machine (SVM) [25]

Cellular concrete 99 Compressive strength Backpropagation Neural Network
(BPNN) [26]

Fly ash (FA) and blast
furnace slag (BFS) 135 Compressive strength ANN [27]

Foamed concrete 91 Compressive strength Extreme Learning Machine (ELM) [28]

Recycled aggregates 74 Compressive strength ANN Convolutional Neural Network [29]

Rubberized concrete 112 Compressive strength ANN [30]

Steel fiber added
lightweight concrete 126 Compressive strength ANN [31]

Fiber reinforced
polymer concrete (FRP) 98 Shear strength ANN [32]

FRP 84 Shear strength ANN [33]

High strength concrete
(HSC) 187 Compressive strength ANN [34]

2. Data Collection

To predict the compressive strength (CS) of RHA, mathematical models are developed
using a dataset of 192 data points from the vast literature review and existing studies on
machine learning [12,13,35–39]. These data were collected through google Scopus. The
constituents of concrete include RHA, OPC, aggregates, super plasticizer (SP), and water.
The type of cement and curing methodology used in all the mixes is same. The CS of cubic
specimens is converted into CS of cylinders by using 0.8 as a factor (as per BS 1881: Part
120:1983). The only output parameter in this study is compressive strength. The input
parameters consist of main variables such as percentage of SP, curing age (CA), quantity
of water used (W), amount of OPC (OPCP), quantity of aggregates (AGG), and amount
of RHA (RHAP). Moreover, the description of collected data and its statistics are given
in Table 3.

Table 3. Statistical analysis of input data.

Parameters Mean Standard Deviation Kurtosis Skewness Minimum Maximum

Input parameters
Age (days) 34.57 33.52 −1.02 0.75 1 90

Plain cement (kg/m3) 409.02 105.47 3.66 1.55 249 783
RHA (kg/m3) 62.33 41.55 0.07 0.44 0 171
Water (kg/m3) 193.54 31.93 −0.74 −0.42 120 238

Super plasticizer (kg/m3) 3.34 3.52 −0.82 0.69 0 11.25
Aggregates (kg/m3) 1621.51 267.77 −0.27 −0.74 1040 1970

Response
Experimental compressive strength

(MPa) 48.14 17.54 0.75 0.83 16 104.1
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3. Methodology

The methodology section provides a brief detail about the approaches being made to
determine the CS of concrete mathematically as shown in Figure 2. First, the AI processes
used in this research are explained. The results obtained from AI data processing techniques
are assessed for validity by different statistical parameters.
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Figure 2. Adopted methodology for study.

3.1. Modeling Techniques

Machine learning-based modeling has been used in the past to predict the different
mechanical properties of materials [40–42]. These types of modeling techniques can be
utilized to develop models for prediction of a property of material. They do not need any
knowledge of the rudimentary experimental processes. This section of paper provides a
brief introduction of the predictive models used in this study. These models are as follow:

3.1.1. ANN

ANN is an artificial data analyzing technique. It is inspired by the learning capability
of human brain. The most widely used type of ANN is feedforward back propagation
(FFBP). As evident from Figure 3, an FFBP consists of at least three layers, namely, the input
layer, hidden layer, and output layer. The nodes of these layers are connected in a proper
sequence along with some weights. The input layer nodes do not perform any function
on input data. Their function is to just receive the data from outside. It is a hidden layer
where data are biased, weighted, and summed up. These processed data are then sent out
to the output layers [43,44].

There are basically two types of FFBP, namely, single layer perceptron (SLP) and
multiple layers perceptron (MLP). Both types of FFBP have their own advantages and dis-
advantages. Alhough the SLP is simple and easy to use, it cannot handle nonlinear relations.
On the other hand, MLP are complex, but they can be applied to nonlinear relations.
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Mathematically, an MLP operates in following way:
Step 1: The inputs are summed and weighted as

sj = ∑n
i = 1 ωij Ii + bj j = 1, 2, 3, . . . . . . , h (1)

where n = number of total inputs, Ii = current input number, ωij = weight between the
previous layer, and the jth neuron and b are used to define the termination of process.

Step 2: This step includes an activation function. There are various types of activation
functions such as sigmoid, ramp, and Gaussian functions. However, this research utilizes
sigmoid function which is defined as

sj =
1

1 + e−sj
j = 1, 2, 3, . . . . . . . . . , h (2)

Step 3: This represents the final outputs. The final outputs depend on the outputs
calculated by hidden nodes. The final outcome can be expressed as

Ok = ∑h
j = 1

(
ωjk· sj

)
+ b′k, k = 1, 2, . . . , m (3)

Ok = sigmoid (Ok) =
1

(1 + e−Ok )
, k = 1, 2, . . . , m (4)

In above equation, ωjk = weighted connection between kth output node to jth hidden
node. Similarly, b′k = bias output of kth output node.

In this research, 70 percent of the data points are selected randomly for the training of
data, and 30 percent for validation.

3.1.2. ANFIS

ANFIS is a technique that utilizes the combined effect of artificial neural networks and
fuzzy logic [45]. Figure 4 shows a brief illustration of the ANFIS technique. An artificial
neural network is used to minimize the chances of error in the output data. Thus, the fuzzy
logic is implied to demonstrate the expert knowledge [42]. Fuzzy logic rules are applied as
if-then while mathematically programming for the desired input and output datasets. An
ANFIS model consists of five layers normally. These are (1) fuzzification, (2) set of rules, (3)
normalization, (4) defuzzification, (5) aggregation.
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Layer 1 is the fuzzification layer. It contains all the function members of the input
variables. A Gaussian function is used in this layer to predict the outcome. Mathematically,
it can be expressed as

µui (x) = exp
[
− (x− ai)

2 εi
2

]
(5)

where ai and εi are parameters of a function membership.
Layer 2 contains nodes which send the output by multiplying the input by certain

weightages. This layer utilizes the fuzzy AND logic by using the equation listed below:

wi = µui (x) × µvi (y) (6)

Layer 3 has an aim to normalize the data. It normalizes the functions of membership.
It calculates the ratios between different firing strength using the following expression:

w =
wi

∑i wi
(7)

Layer 4 is known as the defuzzification layer. It contains nodes that conclude the
fuzzy logic rules. This layer contains square nodes, which can be expressed by following
function:

wi fi = wi × (mix + niy + ri) (8)

where mi, ni, and ri are linear parameters.
Layer 5 has a function of aggregation. It sums up the previous layers and presents the

final output mathematically as follows:

∑
i

w fi =
∑i wi fi

∑i wi
(9)

All the data points are used for the training of data.
Off the shelf functionality of MATLAB is used for ANN and ANFIS techniques in this

research.

3.1.3. MNLR

MNLR is a technique which is used to model a random nonlinear relationship be-
tween the dependent and independent variables. The following equation represents the
MNLR [41]:

Y = a + β1Xi + β2Xj + β3Xi
2 + β4Xj

2 + . . . . . . .. + βkXiXj (10)

where a = intercept, β = slope or coefficient, K = number of observations. The above
equation can make an estimate for the value of Y for each value of X.

3.1.4. LR

LR is a technique in which there is linear relationship between the dependent and
independent variables. It can be represented mathematically as follows:

Y = a + β1X1 + β2X2 + β3X3 + . . . . . . .. + βiXi (11)
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The above equation can be utilized to find values of Y for each input value X.
In above equations of MNLR and LR, “Y” stands for compressive strength of RHA.

Similarly, the values of “X” represents inputs which are age, water content, RHA content,
SP content, and the percentage of aggregates.

The models are developed in Microsoft Excel by authors for MNLR and LR techniques
using the above equations.

4. Results

A total of 192 data points are used for all the models and techniques. A total of
134 data points are used for training, and 58 data points for validation. The results of
machine learning techniques and regression models are given in Appendix A.

4.1. ANN

Parametric adjustments are made before running the proposed ANN model. These
parameters include number of hidden layers, total number of neurons per hidden layer,
training function for neural networks, epochs, and maximum number of iterations. These
parameters are determined through the hit and trial method in this research. The details of
the parametric adjustment are given in Table 4.

Table 4. Parametric adjustment of the developed model.

Parameters Description

Total number of hidden layers 2
Maximum number of neurons per hidden layer 10

Training function Levenberg–Marquardt
Epochs 3

Training completed at epoch 2

MATLAB was used to predict the compressive strength of RBC through ANN. ANN
gave the results which were closest to the experimental results. The same can be verified
through the statistical parameters of ANN.

It is noteworthy that the correlation factor for ANN predicted CS (R2 = 0.98) is quite
high. The prediction result for ANN is plotted in Figure 5.
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4.2. ANFIS

Similarly, before training the data on ANFIS, parametric adjustments were made.
These included total number of epochs and function used for the activation of ANFIS. The
parametric adjustments for ANFIS are given in Table 5.

Table 5. Parametric adjustments for ANFIS.

Parameters Description

Training function trimf
Epochs 6

Training completed at epoch 2

MATLAB is used for ANFIS. The correlation factor for ANFIS predicted CS (R2 = 0.89)
is also quite high. Figure 6 shows that the predicted results are quite close to the experi-
mental values.
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4.3. MNLR

The results predicted by MNLR were not close to the experimental results. The
correlation factor for MNLR predicted CS (R2 = 0.70) confirms the same. The correlation
factor for training and validation is 0.75 and 0.69, respectively. The same can be confirmed
by the dispersion of points in Figure 8 below.

4.4. LR 40

LR gave the results which were far away from the experimental results. A weak corre-
lation (R2 = 0.63) existed between the experimental and predicted results. The correlation
factor for LR training and LR validation is 0.64 and 0.62, respectively. It can be seen in
Figure 9 below that points are dispersed.

4.5. Sensitivity and Parametric Analysis

Different variables are used to find the CS of RBC. Sensitivity analysis (SA) is used
to determine the relative contribution of these variables to the result. SA is carried out
mathematically by using the following Equations:

Ni = fmax(xi) − fmin(xi) (12)

SA =
Ni

∑
j = 1
n Nj

(13)

where fmax(xi) is the maximum, and fmin(xi) is the minimum output of the predictive
models, respectively. Thus, i represents the input domain and other input variables that
are kept constant. It is obvious from the graphical representation (shown in Figure 10) that
the contribution of different input variables on the CS of RBC is same as that in real life.
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Figure 9. LR (a) training, (b) validation, (c) testing.
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Figure 10. Contribution of inputs to the output.

Along with sensitivity analysis, a parametric analysis (PA) is also carried out. This
helps in determining the influence of the input parameters on the output parameter. This
shows the trend of CS when all the input variables are kept constant at their mean value
except one input. The change in CS is recorded when one input variable is varied from its
minimum value to its maximum value. All the results of PA are shown in Figure 11 below.

The sublots in front of each graph in Figure 11 represent the constant parameters of
parametric analysis for each input. The literature used for obtaining experimental values
includes [12,35–39]. It can be observed from the results that when water is increased from
a certain limit, a reduction in CS occurs. This is also obvious from previous studies. De
Sensale [39] conducted research in which a water to cement ratio (w/c) of 0.4 gave more
CS than w/c of 0.5. RHAP contributes towards the enhancement of strength, but when
RHAP is increased by 30 percent, it results in decrease of compressive strength. This is due
to the fact that, as discussed in Section 1, RHA contains 90 percent silica. By increasing the
RHA percentage, the amount of silica is also increased. This silica remains unreacted by
increment of RHA and results in reduced CS of RBC [37].

It can be seen from the above results that the regression models did not show sat-
isfactory results as compared to the machine learning processes. This is due to certain
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limitations in regression models, such as pre-defined equations that cannot learn the rela-
tionship between input variables and the function properly. Whereas, machine learning
has efficiently predicted the relationship between input and output variables. The machine
learning techniques gave results closer to the experimental values.
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Figure 11. Parametric analysis of inputs. (a) Age, (b) cement, (c) RHA, (d) water content, (e) superplasticizer, (f) aggregates.

5. Conclusions

Different models for prediction of CS of RBC are developed in this study. The models
developed in this study are based on wide range of data which consist of different parame-
ters demonstrated by experimental studies that are available in the literature. The models
considered the most influential parameters on CS as inputs. The results obtained in this
research are closer to the experimental research. The following conclusions can be drawn
from the obtained results:

1. The PA has shown that the input parameters used in this research are effectively
utilized by the model to predict the CS. Moreover, the statistical parameter R2 shows
the accuracy of the data used for the training and validation of different models.

2. The R2 for the predicted strengths of ANN, ANFIS, MNLR, and LR is 0.98, 0.89, 0.70,
and 0.63, respectively.

3. It is evident by the comparison of ANN and ANFIS with the regression models that
both ANN and ANFIS have a high command on prediction of CS of RBC. Therefore,
they are suitable for the predesign of RBC.

4. The proposed models can provide the basis for using RBC in different structures
rather than discarding it.

Concrete containing RHA has a great potential to replace OPC concrete. It is rec-
ommended that extensive research be carried out by including more parameters. These
parameters should include temperature, corrosion, and resistance to chlorine and acid
attacks. Other advanced programming techniques such as an M5P tree and gene expression
programming can be used to make further predictions.
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Abbreviations

Nomenclature Definition

AGG Amount of aggregates
AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
CA Curing age
CCA Corn cob ash
CS Compressive strength
FA Fly ash
FFBP Feed forward back propagation
GGBFS Ground granulated blast furnace slag
GWP Global warming potential
LR Linear regression
MLP Multi layer perceptron
MNLR Multiple nonlinear regression
OPC Ordinary Portland cement
OPCP Amount of OPC
RBC RHA blended concrete
RH Rice Husks
RHA Rice husk ash
RHAP Amount of RHA
SCBA Sugarcane baggase ash
SCM Secondary cementitious material
SLP Single layer perceptron
SP Superplasticizer
W Water used

Appendix A

Table A1. Compressive strength (CS) (MPa) results obtained through different models.

Experimental ANN Prediction ANFIS Prediction LR Prediction MNLR

18.16 17.91 31.12 45.00 40.31
16.72 12.06 27.21 41.43 30.10
17.6 15.19 31.43 41.21 34.24
15.76 18.26 29.00 39.39 33.65
27.76 30.28 42.86 45.59 40.46
30.24 30.12 43.81 42.02 30.25
27.36 27.30 42.54 41.88 34.41
26.08 29.29 40.42 40.21 33.86
38.32 37.24 33.33 45.51 44.64
33.04 30.89 28.89 41.93 34.44
38.96 36.67 33.62 41.71 38.58
36.16 35.72 31.05 39.89 37.99
14.08 14.95 14.11 27.75 25.72
48.64 50.77 45.60 46.09 44.79
51.12 49.99 45.85 42.52 34.58
48.56 50.10 45.25 42.38 38.75
45.84 48.30 43.04 40.71 38.20
48.48 49.97 37.76 46.52 48.79
40.8 42.73 32.25 42.95 38.59
49.44 51.43 38.02 42.72 42.73

24 23.64 24.81 30.02 24.01
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Table A1. Cont.

Experimental ANN Prediction ANFIS Prediction LR Prediction MNLR

25.2 23.86 25.39 30.85 28.80
26 23.83 27.60 31.67 30.22

28.4 23.95 28.54 32.50 31.01
24.8 24.43 25.31 33.33 31.46
22.08 22.04 22.70 23.90 23.28
23.76 24.07 25.01 23.52 23.27
20.56 20.25 20.97 23.16 20.56
46.08 46.67 35.13 40.90 42.14
66.88 64.77 51.09 47.10 48.94
25.92 23.20 25.88 28.85 29.66
61.12 62.83 49.95 43.53 38.73
66.24 66.69 50.67 43.39 42.90
63.36 60.64 48.28 41.73 42.35
28.24 27.61 26.93 25.55 27.87
28.88 28.21 27.26 25.17 26.58
58.24 60.42 60.99 51.83 57.53
47.68 50.46 49.89 48.25 47.32
58.16 54.92 61.09 48.03 51.46
35.6 36.04 34.11 35.33 32.74
36.4 37.66 34.88 36.16 37.53
39.6 38.16 37.72 36.98 38.95
40 37.39 38.61 37.81 39.75

34.4 35.20 33.55 38.64 40.19
29.68 32.60 29.98 29.33 28.05
33.44 33.46 34.23 28.96 32.49
30.08 29.41 30.17 28.59 30.37
53.76 54.72 56.59 46.21 50.87
76.16 75.21 79.90 52.41 57.68
68.56 67.37 71.43 48.84 47.47
75.44 70.38 79.14 48.70 51.63
32.24 30.73 32.25 34.34 33.92
37.52 32.79 37.51 33.94 38.46
72.24 70.61 75.79 47.04 51.08
41.2 40.88 42.37 42.41 38.23
42.8 43.35 43.43 43.24 43.02
44.8 45.59 46.88 44.06 44.44
47.6 47.49 48.07 44.89 45.24
41.6 49.06 42.34 45.72 45.68
66.56 66.98 66.55 67.50 67.30
53.44 65.68 53.44 63.93 57.09
65.76 66.02 65.76 63.71 61.23
60.64 60.01 60.65 61.89 60.64
34.64 34.06 34.65 44.88 41.78
36.8 36.36 36.85 44.51 41.77
29.76 30.66 29.74 44.14 39.06
44.4 45.77 44.01 51.01 42.51
45.2 45.74 45.49 51.83 47.30
50.4 46.92 49.25 52.66 48.72
51.2 48.40 51.52 53.49 49.52
48.8 49.83 48.52 54.31 49.96
47.2 46.94 47.20 49.75 48.38
83.28 83.60 83.29 68.09 67.45
75.2 75.35 75.20 64.52 57.24
82.64 83.02 82.64 64.38 61.40
79.28 78.48 79.27 62.71 60.85
39.5 39.69 39.50 42.75 45.55
30.5 30.47 30.50 41.75 43.76
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Table A1. Cont.

Experimental ANN Prediction ANFIS Prediction LR Prediction MNLR

29.7 29.35 29.70 33.47 35.31
23.6 23.61 23.60 33.19 34.09
22.7 23.21 22.70 26.39 26.79
20.8 26.18 20.80 26.05 25.81
51.4 50.15 51.40 48.06 54.28
47.4 47.08 47.40 47.06 52.50
40.8 40.61 40.80 38.78 44.04
39.4 40.25 39.40 38.50 42.82
34.5 29.33 34.50 31.70 35.53
35.9 36.13 35.90 31.36 34.54
64.5 64.94 64.50 63.74 64.05
68.5 69.42 68.50 62.74 62.27
51.5 51.89 51.50 54.46 53.81
57.3 57.27 57.30 54.17 52.59
44.4 43.98 44.40 47.38 45.30
52.9 52.55 52.90 47.04 44.31
25.2 26.10 25.23 30.56 17.15
25.68 25.92 25.73 30.00 21.15
26.64 26.24 26.88 29.25 21.23
27.6 26.90 27.46 28.31 20.45
26.88 26.18 26.53 27.20 19.16
23.44 24.15 23.45 25.90 17.47
23.2 21.95 23.16 24.42 15.46
33.36 31.93 33.37 37.39 34.36
34.16 33.71 33.61 36.82 38.37
35.36 36.30 35.56 36.07 38.45
37.44 38.46 36.98 35.14 37.67
34.8 38.45 36.07 34.03 36.38
31.6 37.15 31.50 32.73 34.69
30.56 35.91 30.67 31.25 32.68
39.28 37.51 39.44 44.47 39.86
40.16 39.41 39.95 43.90 43.86
41.68 42.31 42.42 43.15 43.94
44.24 43.81 44.16 42.22 43.16
44.16 42.63 43.10 41.10 41.87
37.6 40.41 37.76 39.81 40.18
36.72 38.56 36.63 38.33 38.17
42.08 43.41 41.98 53.07 44.13
43.92 45.62 43.95 52.50 48.14
45.84 48.62 46.40 51.75 48.21
48.96 48.95 47.45 50.82 47.44
44.4 46.41 45.86 49.70 46.15
41.52 43.25 41.14 48.40 44.46
40.16 40.79 40.18 46.92 42.45

41 40.43 53.59 65.61 68.86
30 30.26 41.92 37.55 31.04
27 28.62 37.95 37.54 36.42
26 26.13 36.87 38.13 35.68
19 19.53 31.29 38.54 33.46
16 15.26 25.75 23.81 18.84
59 52.03 54.44 66.11 73.19
46 39.32 42.89 38.05 35.37
41 38.71 39.35 38.05 40.75
38 37.54 38.27 38.64 40.02
32 32.63 32.88 39.04 37.80
26 25.29 27.13 24.32 23.18
62 60.76 56.13 67.12 77.34
50 47.89 44.83 39.06 39.53
47 48.19 42.14 39.06 44.90
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Table A1. Cont.

Experimental ANN Prediction ANFIS Prediction LR Prediction MNLR

47 47.53 41.06 39.65 44.17
43 43.50 36.06 40.05 41.95
37 35.53 29.91 25.33 27.33
63 64.01 59.09 68.89 81.37
54 52.69 48.22 40.83 43.56
52 53.58 47.03 40.83 48.93
52 52.95 45.93 41.42 48.20
51 48.99 41.63 41.82 45.98
40 41.96 34.77 27.10 31.36
66 67.67 65.01 72.43 86.08
56 56.63 55.01 44.37 48.26
61 58.11 56.80 44.37 53.64
60 58.28 55.69 44.96 52.90
54 55.56 52.77 45.36 50.68
47 47.06 44.48 30.64 36.06
69 70.31 72.59 79.51 91.57
60 61.89 64.09 51.45 53.75
62 63.30 68.19 51.45 59.13
61 63.18 67.77 52.04 58.39
60 60.58 65.74 52.44 56.17
51 51.74 56.18 37.72 41.55
74 72.72 73.15 88.11 95.85
67 67.64 66.03 60.05 58.03
67 68.51 65.54 60.04 63.41
69 67.15 67.40 60.63 62.67
64 63.34 62.65 61.04 60.45
56 54.59 54.77 46.32 45.83

22.08 22.04 22.70 23.90 23.28
22.4 22.26 23.66 23.78 23.84
23.44 23.49 24.42 23.65 23.75
23.76 24.07 25.01 23.52 23.27
22.96 23.29 24.63 23.40 22.55
21.92 21.81 23.13 23.28 21.64
20.56 20.25 20.97 23.16 20.56
27.36 27.33 25.81 25.67 27.31
28.24 27.61 26.93 25.55 27.87
28.8 28.72 27.69 25.42 27.78
31.44 29.08 28.12 25.29 27.30
28.88 28.21 27.26 25.17 26.58
26.8 26.79 25.47 25.05 25.67
24.88 25.41 23.52 24.93 24.59

32 32.36 32.04 29.21 32.01
33.04 32.86 33.46 29.09 32.58
33.44 33.46 34.23 28.96 32.49

34 32.88 34.33 28.83 32.00
31.04 31.26 32.52 28.71 31.28
30.08 29.41 30.17 28.59 30.37
28.08 27.85 28.61 28.47 29.29
34.64 34.06 34.65 44.88 41.78
35.84 36.36 35.81 44.76 42.35
36.56 37.27 36.54 44.64 42.26
36.8 36.36 36.85 44.51 41.77
34.4 34.58 34.26 44.39 41.05
30.96 32.60 31.06 44.26 40.14
29.76 30.66 29.74 44.14 39.06
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45. Çaydaş, U.; Hasçalık, A.; Ekici, S. An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM. Expert Syst. Appl.
2009, 36 Pt 2, 6135–6139. [CrossRef]

http://doi.org/10.1016/j.compositesb.2010.03.003
http://doi.org/10.1016/j.conbuildmat.2011.12.008
http://doi.org/10.1016/j.conbuildmat.2005.01.054
http://doi.org/10.1016/j.cemconcomp.2004.05.002
http://doi.org/10.1016/j.conbuildmat.2007.06.011
https://www.sid.ir/en/journal/ViewPaper.aspx?ID=140499
https://www.sid.ir/en/journal/ViewPaper.aspx?ID=140499
http://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(367)
http://doi.org/10.1016/j.cemconcomp.2005.09.005
http://doi.org/10.1016/j.conbuildmat.2019.117266
http://doi.org/10.1016/j.asoc.2017.12.030
http://doi.org/10.1016/j.catena.2018.12.033
http://doi.org/10.1016/j.advengsoft.2015.05.007
http://doi.org/10.1016/j.compstruc.2011.08.019
http://doi.org/10.1016/j.eswa.2008.07.019

	Introduction 
	Data Collection 
	Methodology 
	Modeling Techniques 
	ANN 
	ANFIS 
	MNLR 
	LR 


	Results 
	ANN 
	ANFIS 
	MNLR 
	LR 40 
	Sensitivity and Parametric Analysis 

	Conclusions 
	
	References

