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Abstract: We report a facile synthesis of β-SnWO4 nanoparticles via a microwave heat treatment using
SnCl2 and H2WO4 in the presence of tamarind seed powder. An X-ray diffraction analysis confirmed a
crystalline nature revealing a cubic structure of β-SnWO4 nanoparticles. The morphological features
were visualized using a scanning electron microscope that exhibited homogenously distributed
clusters of nanoparticles, which were further confirmed using a transmission electron microscope.
The micrographs also displayed some porosity. Energy dispersive X-ray spectroscopy confirmed the
elemental contents such as tin, oxygen and tungsten in the same stoichiometric ratio as expected by
the respective empirical formula. A high-resolution transmission electron microscope was used to
find the d-spacing, which was ultimately used to analyze the structural parameters. The spectrum
obtained using Fourier transform infrared spectroscopy illuminated different stretching vibrations.
Additionally, a Barrett–Joyner–Halenda analysis was carried out to investigate the N2 adsorption-
desorption isotherm as well as to govern the pore size distribution. Cyclic voltammetry measurements
were implemented to analyze the ongoing electrode reactions throughout the charge/discharge for
the β-SnWO4 nanostructures. The galvanometric charge/discharge curves for β-SnWO4 are also
discussed. A high specific capacitance (600 mAhg–1 at 0.1 C) and excellent columbic efficiency
(~100%) were achieved.

Keywords: Li-ion battery; anode; β-SnWO4 NPs; microwave

1. Introduction

The demand of energy storage devices with enhanced capabilities has increased mani-
fold in the 21st century. In this context, researchers worldwide are looking for such devices
and materials that might lead the scientific community to cope with energy storage needs
by designing and developing innovative resources. In the current era, energy renovation is
at the forefront of research [1]. Lithium-ion batteries (LIBs) are considered to be promising
because of their high power density, life cycle and gravimetric and volumetric energy along
with long self-discharge properties. Therefore, LIBs are still unbeaten in the energy storage
industry [2]. Meanwhile, the earth’s crust has a limited availability of lithium resources and
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their use is beyond the limits. Consequently, they are becoming costly [3,4]. Alternatively,
batteries are facing various problems including storage capacity and chemical stability [5].
Additionally, its specific capacity is extremely low, i.e., 372 mAhg–1. To resolve such issues,
there is a need to investigate other favorable electrode materials exhibiting promising
specific capacities and chemical stabilities. In the realm of rechargeable LIBs, various
nanomaterials are under discussion as potential electrode materials.

Historically, LIBs have shown a massive intensification through two decades in specific
energy values ranging from 90 to 250 mAhg–1 [6]. In this regime, there have been many
breakthroughs in energy storage devices (as electrode materials) due to the advancement in
the field of nanomaterials [7–11]. Nanomaterials have exceptionally attractive physical and
chemical properties; hence, they are reflected as being suitable for energy storage devices.
The use of single metal oxides including TiO2 [12], SnO2 [13] and Ta2O5 [14] has led to a loss
in capacity with cycling. A literature survey reveals a good electrochemical performance
of β-SnWO4 nanoparticles. These nanoparticles also offer an excellent diffusion of Li+

ions along exceptional cyclic stability as well as a high capacity. Furthermore, they are
widely utilized as anode materials, for water splitting, for photodynamic tumor therapy, for
humidity sensing and photocatalytic degradation, for example. Various routes have been
adopted for the synthesis of SnWO4 including hydrothermal synthesis [15], a combustion
method and a microwave method [16]. Initially, the gas sensing properties as well as the
phase structure of α- and β-SnWO4 were reported by Solis and Lantoo by employing
different spectroscopic techniques [16,17]. Ede et al. adopted microwave synthesis to
prepare SnWO4 [16]. Warmuth et al. employed a microwave assisted method to synthesize
β-SnWO4 nanoparticles [18]. Furthermore, the photoelectrochemical properties of β-
SnWO4 nanomaterials were analyzed by Cho et al. [19]. ZnWO4 nanocrystals/reduced
graphene oxide hybrids were prepared by Wang Xiao et al. via a facile hydrothermal
route that revealed a performance of 477 mAhg−1 after 40 cycles [6]. α-SnWO4/reduced
graphene oxide nanoparticles were synthesized by Renkun Huang et al. through a facile
single step hydrothermal reaction exhibiting a capacity of 500 mAhg–1 after 20 cycles [20].

The search for the finest electrode material for LIBs with a high capacity and that can
easily be diffused into Li+ ions along with an increased life cycle is still under investigation.
Owing to the promising features associated with β-SnWO4 nanoparticles and their wide
utilization in energy storage applications, here we report a facile synthesis based on a
rapid microwave heat treatment by the reaction of SnCl2 and H2WO4 in the presence of
tamarind seed powder. We present a detailed analysis of the electrochemical performance
for potential use as an electrode material in LIBs. The material owed an exceptional
specific capacitance (600 mAhg−1 at 0.1 C) and a remarkable columbic efficiency nearly
approaching 100% was achieved.

2. Experiment
2.1. Synthesis of β-SnWO4 Nanoparticles

β-SnWO4 nanoparticles were prepared through a rapid microwave heat treatment
by the reaction of tin (II) chloride (SnCl2) and tungstic acid (H2WO4) in the presence of
tamarind seed powder. A typical procedure involved the addition of 220 mg of SnCl2 and
249 mg of H2WO4 in a clean and dried crucible. In the meantime, 220 mg of tamarind seed
powder was also added followed by the addition of 10 mL of distilled water. The obtained
blend was stirred for about 10 min. At that time, the crucible was kept in a microwave oven
at 900 W for 5 min. The resultant product was taken out of the oven and allowed to cool to
room temperature naturally. It was then ground in a clean dried mortar and calcined at
700 ◦C for 4 h under static air. A schematic of the sample synthesis is presented in Figure 1.
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JCM-6000 Plus scanning electron microscopy (SEM) and JEOL-JEM-2100 transmission 
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chrome Nova 2200E-BET (surface area analyzer), the pore size and surface area were de-
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Figure 1. Schematic illustration of the sample synthesis.

2.2. Characterization

A Rigaku’s (Tokyo, Japan) Smart Lab X-ray diffractometer (XRD) with Cu-Kα radi-
ations (λ = 1.5406 Å) was used to determine the crystalline nature and the confirmation
of the phase. The molecular vibrations and structures of the materials were analyzed
from 350–4000 cm−1 using a Bruker (Billerica, Massachusetts, United States) Alpha-P
Fourier transforms infrared (FTIR) spectrometer by the KBr pellet method. JEOL(Tokyo,
Japan)-JCM-6000 Plus scanning electron microscopy (SEM) and JEOL-JEM-2100 trans-
mission electron microscopy (TEM) were utilized to observe the morphological features,
particle size and structural parameters of β-SnWO4 nanoparticles, respectively. Using a
Quanta chrome Nova 2200E-BET (surface area analyzer), the pore size and surface area
were determined.

2.3. Electrode Fabrication for the Lithium Ion Battery

A coin cell was made to examine the electrochemical performance of β-SnWO4 nano-
materials by fabricating it on a copper foil. The slurry was prepared by mixing the active
materials (β-SnWO4 nanoparticles), PVDF (polyvinylidene fluoride) and acetylene black
using a weight ratio of 80:5:15, respectively, using a few drops of N-methyl pyrrolidine
as a solvent. The prepared slurry was uniformly coated on a Cu foil and subsequently
dried at 100 ◦C for 12 h in a vacuum oven. During the coil cell fabrication, a polypropylene
membrane (Celgard-2400) was utilized as a separator. LiPF6 (1M) dissolved in ethylene
carbonate, dimethyl carbonate and diethyl carbonate (2:2:1) was used as an electrolyte.
Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) studies were recorded
using a Bio-logic BCS 805 battery system. The CV measurements were performed in the
voltage window from 0.01 to 3 V at a 50 mV/s scan rate. The voltage range of 0.01–3 V was
also applied during the GCD analysis.

3. Results and Discussion

The XRD pattern of the sample was recorded in the 2θ range of 15–70◦, as shown
in Figure 2a. The existence of intensity peaks corresponding to the (200), (020), (001),
(100), (−112), (202), (411), (222), (112), (212), (211), (322), (820) and (811) planes was per-
fectly matched with JCPDS (Joint Committee on Powder Diffraction Standards) reference
no. 01-070-1497 [16], a characteristic reference pattern of β-SnWO4. It confirmed the
wolframite-type cubic crystal structure of the sample, having space group no. 198 and
a space group category of P-213 [21]. There were no extra peaks signifying the phase
purity of the sample [18]. Further, the magnified image of a few peaks was illustrated to
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differentiate between these peaks (Figure 2b). The lattice parameter (a) was calculated from
following equation:

a =
λ
√

h2 + k2 + l2

2sinθB
. (1)

The lattice parameter was measured to be a = b = c = 7.298 Å, resulting in a unit cell
volume of 388.697 Å3. The average crystallite size (Dhkl) was determined using Scherrer’s
formula as described by Equation (2) [22]:

D =
kλ

βcosθB
(2)

where β was line broadening termed as full width at half maximum (FWHM), θB repre-
sented Bragg’s angle, λ was the wavelength with a value of 1.54 Å and k = 0.9, the shape
factor. The crystallite size as evaluated by this formula was 28.63 nm.

The crystallite size of the as-synthesized samples was also calculated using the
Williamson–Hall (W–H) method as given by Equation (3) [23]:

β cos θ = kλ/D + 4ε sin θ (3)

where ε represented the lattice strain. Figure 3 indicates the W–H plot of β-SnWO4 plotted
between 4sinθ at the x-axis and βcosθ along the y-axis. The D was measured from the
y-intercept and depicted to be 24.32 nm while ε measured the slope of the linear fit and
was measured to be 7.2 × 10−2. The linear fit of the W–H plot was expected to be a
straight line parallel to x-axis but in the manifestation of ε it gave a non-zero slope [24].
The measured crystallite size (24.32 nm) from the W–H plot was in close agreement with
Scherrer’s formula (28.63 nm).

Crystals 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 

sample [18]. Further, the magnified image of a few peaks was illustrated to differentiate 
between these peaks (Figure 2b). The lattice parameter (a) was calculated from following 
equation: 

a = ఒ√௛మା௞మା௟మ

ଶ௦௜௡ఏಳ
. (1)

The lattice parameter was measured to be a = b = c = 7.298 Å, resulting in a unit cell 
volume of 388.697 Å3. The average crystallite size (Dhkl) was determined using Scherrer’s 
formula as described by Equation (2) [22]: 

D = ௞ఒ
ఉ௖௢௦ఏಳ

 (2)

where β was line broadening termed as full width at half maximum (FWHM), θB repre-
sented Bragg’s angle, λ was the wavelength with a value of 1.54 Å and k = 0.9, the shape 
factor. The crystallite size as evaluated by this formula was 28.63 nm. 

The crystallite size of the as-synthesized samples was also calculated using the Wil-
liamson–Hall (W–H) method as given by Equation (3) [23]: 

βcosθ = kλ/D + 4ߝsinθ (3)

where ߝ represented the lattice strain. Figure 3 indicates the W–H plot of β-SnWO4 plot-
ted between 4sinθ at the x-axis and βcosθ along the y-axis. The D was measured from the 
y-intercept and depicted to be 24.32 nm while ߝ measured the slope of the linear fit and 
was measured to be 7.2 × 10−2. The linear fit of the W–H plot was expected to be a straight 
line parallel to x-axis but in the manifestation of ߝ it gave a non-zero slope [24]. The meas-
ured crystallite size (24.32 nm) from the W–H plot was in close agreement with Scherrer’s 
formula (28.63 nm). 

 
Figure 2. (a) Indexed X-ray diffractometer (XRD) pattern and (b) magnified image of certain peaks 
of β-SnWO4 nanoparticles. 

 

Figure 2. (a) Indexed X-ray diffractometer (XRD) pattern and (b) magnified image of certain peaks of
β-SnWO4 nanoparticles.

Crystals 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 

sample [18]. Further, the magnified image of a few peaks was illustrated to differentiate 
between these peaks (Figure 2b). The lattice parameter (a) was calculated from following 
equation: 

a = ఒ√௛మା௞మା௟మ

ଶ௦௜௡ఏಳ
. (1)

The lattice parameter was measured to be a = b = c = 7.298 Å, resulting in a unit cell 
volume of 388.697 Å3. The average crystallite size (Dhkl) was determined using Scherrer’s 
formula as described by Equation (2) [22]: 

D = ௞ఒ
ఉ௖௢௦ఏಳ

 (2)

where β was line broadening termed as full width at half maximum (FWHM), θB repre-
sented Bragg’s angle, λ was the wavelength with a value of 1.54 Å and k = 0.9, the shape 
factor. The crystallite size as evaluated by this formula was 28.63 nm. 

The crystallite size of the as-synthesized samples was also calculated using the Wil-
liamson–Hall (W–H) method as given by Equation (3) [23]: 

βcosθ = kλ/D + 4ߝsinθ (3)

where ߝ represented the lattice strain. Figure 3 indicates the W–H plot of β-SnWO4 plot-
ted between 4sinθ at the x-axis and βcosθ along the y-axis. The D was measured from the 
y-intercept and depicted to be 24.32 nm while ߝ measured the slope of the linear fit and 
was measured to be 7.2 × 10−2. The linear fit of the W–H plot was expected to be a straight 
line parallel to x-axis but in the manifestation of ߝ it gave a non-zero slope [24]. The meas-
ured crystallite size (24.32 nm) from the W–H plot was in close agreement with Scherrer’s 
formula (28.63 nm). 

 
Figure 2. (a) Indexed X-ray diffractometer (XRD) pattern and (b) magnified image of certain peaks 
of β-SnWO4 nanoparticles. 

 

Figure 3. Williamson–Hall (W–H) plot of β-SnWO4 nanoparticles.



Crystals 2021, 11, 334 5 of 12

The accurate phase analysis and quantitative phase measurement of β-SnWO4 were
determined through a Rietveld refinement analysis via X’pert HighScore (Worcestershire,
UK) Plus software. Figure 4 shows the well fitted XRD pattern of β-SnWO4 at the same
positions as prescribed in Figure 2. No significant phase transformation was perceived
attributing the pure phase formation of the specimen. The structural reliability was evalu-
ated by measuring R-factors such as the R-profile (Rp), the R-expected (Rexp), the R-profile
(Rwp) and the R-Bragg (RB) as well through the following Equations [25]:

Rwp =

[
Σiwi (Ic − I0)

Σiwi I2
0

]1/2

. (4)

Rexp =

[
N − P
Σiwi I2

0

]1/2

. (5)

RBragg =
Σ |I(0)− I(c)|

Σ |I(0)| . (6)

Rp =
Σ |I(0i)− I(ci)|

Σ |I(0i)|
. (7)

Here, P and N represented the number of refined parameters and the number of exper-
imentally observed points and Io and Ic presented the observed and calculated integrated
intensities, respectively. Accordingly, wi was the illustrating weight factor at i point of the
diffraction profile and the goodness of fit (χ2) was measured using Equation (8), given
as [25]:

χ2 =
Rwp

Rexp
. (8)

The measured parameters from a Rietveld refinement analysis are summarized
in Table 1. The obtained smaller value of χ2 depicted the pure phase development
of β-SnWO4.
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Table 1. Data obtained through Rietveld refinement of the diffraction data of β-SnWO4.

Rexp Rp Rwp Dstatics Wt. Dstatics χ2

10.84 13.73 18.04 0.44 0.56 2.77
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The SEM images for β-SnWO4 are illustrated in Figure 5a–c. The micrographs were
obtained at diverse magnifications revealing the formation of β-SnWO4 nanoclusters along
with a few sorts of layered and rough structures as well. Stone-like arbitrary and amal-
gamated particles of various sizes and shapes could be perceived in the micrographs.
Figure 5b,c illustrates some rock-like structures along with very small particles. Further-
more, the images also revealed the porosity present in the samples.
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The EDX spectrum of β-SnWO4 was profiled (Figure 5d). It confirmed the existence
of all of the constituent elements such as tin, oxygen and tungsten in the sample. The table
shown in an inset of Figure 5d demonstrates the mass percentages of all of the elements.

The morphology of β-SnWO4 was also examined using TEM and high resolution
transmission electron microscope (HR-TEM) to obtain a detailed breakdown of the struc-
tures and to determine the interlayer d-spacing. Figure 6a,b illustrates the TEM images
obtained at different magnifications. The micrographs profiled almost spherical shaped
particles accompanied by some amalgamation. Further, a few pores could also be professed
in the micrographs. The interlayer d-spacing was examined through HR-TEM and found
to be 0.33 nm [24] and can be seen in Figure 6c. The lattice fringes of the (001) lattice plane
of a wolframite-type cubic crystal structure β-SnWO4 could be perceived (Figure 5d) as
sketched by a selected area electron diffraction (SEAD) pattern. The occurrences of bright
rings in the concerning pattern illustrated the company of highly crystallite particles. The
existence of the lattice plane was in good agreement with the XRD pattern.

The FTIR spectrum for β-SnWO4 was recorded in the range of 350–4000 cm−1, as
shown in Figure 7. The peak appearing around 609 cm–1 demonstrated an asymmetric
stretching vibration of the WO−6

6 group [24,26]. In the same way, the peaks emerging at
768 and 851 cm−1 illuminated the stretching vibrations of the W–W and W–O–W bridging
bonds [26]. The structural vibrations of the C–C or C–O–C bonds were in agreement with
the peak occurring at 1443 cm−1. Further, the existence of a strong peak at 1640 cm−1
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and a broad peak at 3421 corresponded with the stretching and bending vibrations of the
hydroxyl (–OH) group. The symmetric stretching vibration of the C–H bond could be
observed from the peak befalling at 2921 cm−1. The co-existence of all of the stretching and
vibrational peaks confirmed the formation of the β-SnWO4 structure [27].
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A Barrett–Joyner–Halenda (BJH) analysis was carried out to investigate the N2 adsorption-
desorption isotherm as well as to determine the pore size distribution. The curve sketched
in Figure 8a clearly offered a desorption hysteresis of a type-IV isotherm curve [28,29] ob-
tained under a relative pressure (P/Po) of 0.1–1.0. The characteristics of the mesostructured
materials could be well explained on the basis of sharp capillary condensation steps occur-
ring between the relative pressure intervals of 0.40–0.95. It also perceived an irregularity
of mesopores in the product. The BJH pore size distribution is profiled in Figure 8b. A
sharp peak could be depicted in the beginning of the distribution curve demonstrating an
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average pore diameter of 3.35 nm. The pore volume and surface area of the particles in the
sample were determined using a Brunauer–Emmett–Teller (BET) analysis. Accordingly,
due to its plentiful range of pore diameters (2–80 nm), it could accumulate a higher number
of charge carriers thus improving the electrolyte performance of the current specimen.
Hence, it can offer its utilization in a wide collection of potential applications.
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CV measurements were implemented to analyze the ongoing electrode reactions
throughout the charge/discharge for the β-SnWO4 nanostructures. The CV profile was
mapped under various current cycles and a potential window of 0.01 to 3.0 V and is demon-
strated in Figure 9a. The composition clearly described the actuality of the anodic/cathodic
peaks. Similar current humps could be perceived from all of the current cycles. During
lithiation, three peaks could be depicted specifying a multi-lithiation progression [21].
The reduction of β-SnWO4 to Sn and W was noticed from the first reduction peak and
appeared around 2.31 V as prescribed in Equation (9). Another reduction peak occurred
at 1.59 V justifying the Sn-metal reaction in the excess vicinity of the Li+ ions (alloying
reaction) [30]. The following reaction could be perceived in Equation (10). In addition, the
W-metal reaction with LiSn and excessive Li+ ions could be observed in Equation (11) that
resulted from the existence of a third reduction peak at around 0.77 V. The reverse of the
reduction known as oxidation also occurred. The anodic peak that appeared around 0.53 V
was attributed to the de-alloying of LixSn while the peak that appeared at 2.40 V identified
the oxidation of Sn and W to β-SnWO4. The probable electrochemical reactions were as
follows [21]:

β-SnWO4 + xLi+ + xe− → Sn + W + xLi2O. (9)

Sn + Li+ + e− ↔ LiSn. (10)

LiSn + W + xLi2O↔ Sn + WO3 + xLi+ + xe− + Li2O. (11)

The galvanometric charge/discharge (GCD) curves for β-SnWO4 at a scan rate of
0.1 C and in the voltage range of 0.01–3.0 V can be seen in Figure 9b. The first cycle
exhibited a discharge capacity of 1180 mAhg−1 and the second cycle displayed charge
and discharge capacities of 608 mAhg−1 and 638 mAhg−1, respectively. Theoretically,
β-SnWO4 demonstrates a capacity of 850 mAhg−1 [26]. The excessive discharge capacity is
mainly due to interfacial storage [31]. As the curves depicted a higher discharge capacity
than charge capacity, this could be attributable to factors such as electrolyte decomposition,
unavoidable solid electrolyte interface (SEI) formation and the generation of Li2O owing to
irreversible Li-ion interactions [12]. A decrease in the charge/discharge capacities with an
increase in the current rate represented an excellent ionic and electrical conductivity and
an exceptional rate capability.
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The rate capability of β-SnWO4 was examined at numerous current rates (0.1–3 C) and
is shown in Figure 9c. A specific capacity of 54 mAhg–1 was attained at a current rate of 3 C.
Further, an excessive specific capacitance of 600 mAhg–1 was noticeable when the reverse
current was brought at 0.1 C. The contemporary extreme electrochemical performance of
β-SnWO4 indicates a highly stable electrode material towards energy storage applications.
Table 2 illustrates a comparative study of the specific capacities of pure β-SnWO4 and for
various dopants.

Table 2. Comparative study of specific capacities along different C-rates for pure β-SnWO4 and for other dopants.

Composition Synthesis Method C-Rates Specific Capacity
(mAhg−1) References

β-SnWO4–rGO
Solution combustion method

followed by a low temperature
hydrothermal method

0.1 C 578 [21]

β-SnWO4 ~ 0.1 C 271 [21]

β-SnWO4–rGO ~ 3 C 165 [21]

β-SnWO4 ~ 3 C 35 [21]

β-SnWO4 Rapid microwave heat treatment 0.1 C 600 Current work

β-SnWO4 ~ 3 C 54 Current work

The specific charge-discharge capacities and columbic efficiency of β-SnWO4 were
performed at a C/10 rate and are profiled in Figure 9d. From the graph it was evident that
almost constant and stabilized charge-discharge capacities of 105 and 58 mAhg−1 were
obtained. In addition, a coulombic efficiency of nearly 100% was professed.

The kinetic behaviors specifying the charge transfer properties of the as-synthesized
electrodes were examined by means of a powerful electrochemical impedance spectroscopy
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(EIS) tool. The EIS measurements were obtained before and after CD cycles and a Nyquist
plot was sketched (illustrated in Figure 10) using a Randles circuit model (inset Figure 10).
The outcome of the graph was a slope line in the low frequency region signifying an
electron diffusion process and a semicircle arc in the high frequency region attributing
the charge transfer resistance (Rct) [32]. The Rct could be indicated from the radius of
the semicircle at the electrolyte/electrode interface. The formation of semicircles of two
different diameters indicated different Rct values. The Rct value for β-SnWO4 after CD was
much lower (108 Ω) than that of before CD (163 Ω) characterizing the presence of negative
charges on the β-SnWO4 surface. It thus hosted an electrostatic repulsion between the
electrolyte/electrode boundaries leading to a low rate charge transfer [32].
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4. Conclusions

β-SnWO4 nanoparticles were synthesized by a microwave heat treatment method
facilitated by the reaction of SnCl2 and H2WO4 in the presence of tamarind seed powder.
An XRD analysis confirmed the crystalline nature of β-SnWO4 nanoparticles, which were
found to be cubic in nature. A SEM analysis revealed the formation of β-SnWO4 stone-like
arbitrary and amalgamated nanoclusters with some traces of porosity. An EDX analysis
confirmed the existence of all constituent elements, i.e., tin, oxygen and tungsten, in the
desired stoichiometric ratio. Spherical shaped particles were perceived by TEM analysis
and an interlayer d-spacing was examined through HR-TEM, which was found to be
0.33 nm corresponding to a (001) plane. The occurrence of bright rings in the pattern
illustrated the highly crystallite nature of the sample. The peaks emerging in the FTIR
spectrum at about 609, 768, 851and 1443 cm−1 illuminated the stretching vibrations of
the WO−6

6 group, the W–W and W–O–W bridging bonds and the C–C or C–O–C bonds,
respectively. The irregularity of the mesopores in the product was perceived by a BJH
analysis. A sharp peak as evident in the beginning of distribution curve demonstrated
an average pore diameter of 3.35 nm. The CV profile was mapped under various current
cycles, which confirmed the composition by describing the actuality of the anodic/cathodic
peaks (multi-lithiation and de-lithiation processes). The reduction peak appearing around
2.31, 1.59 and 0.77 V demonstrated the reduction of β-SnWO4 to Sn and W and the Sn-metal
reaction and W-metal reaction, respectively. In the GCD analysis, the first cycle exhibited a
discharge capacity of 1180 mAhg–1 and the second cycle displayed charge and discharge
capacities of 608 and 638 mAhg–1, respectively. Moreover, a decrease in charge/discharge
capacities was observed with an increase in the current rate that represented excellent
ionic and electrical conductivity and an exceptional rate capability of about 600 mAhg−1

at 0.1 C (reverse current). In addition, it also exhibited ~100% columbic efficiency. The
EIS measurements owed a high resistance for β-SnWO4 before CD (163 Ω) than that of
after CD (108 Ω) cycles. Thus, β-SnWO4 is highly favorable to be utilized as an electrode
material for energy storage devices.
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