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Abstract: The formation of SAPO-5 molecular sieves is studied under hydrothermal conditions in
the presence of a new templating agent, 1-benzyl-2,3-dimethylimidazolium hydroxide ([bzmIm]OH).
The syntheses were carried out by varying the synthesis parameters, viz. crystallization temperature,
heating time and reactants molar composition (SiO2, Al2O3, P2O5, [bzmIm]+, H2O) in order to inves-
tigate the role of each synthesis parameter on the formation of SAPO-5. The results showed that these
synthesis parameters had significant influences on the entire crystallization process (induction, nucle-
ation, crystal growth, and Ostwald ripening) and physicochemical properties of SAPO-5 (morphology
and crystal size). Moreover, this study also demonstrated a fast hydrothermal synthesis approach
where a SAPO-5 molecular sieve with hexagonal prism morphology could be crystallized within
10 h instead of days using a novel [bzmIm]OH heterocyclic template, thus offering an alternative
route for synthesizing zeolite-like materials for advanced applications.

Keywords: SAPO-5; microporous material; hydrothermal synthesis; imidazolium template; crystal-
lization process

1. Introduction

Aluminophosphate (AlPO-n) and silicoaluminophosphate (SAPO-n) microporous
solids are zeolite-like materials that are widely used in catalysis, adsorption, and separation
processes [1,2]. Typically, SAPO-5 is among the most important zeotype materials due to
its mild acid strength, unidimensional pore channel system, and large pore mouth opening
(0.73 × 0.73 nm2) [3].

SAPO-5 can be readily crystallized under hydrothermal conditions at 180–200 ◦C
for 1–3 days in the presence of alkylamine organic templates, such as triethylamine,
tripropylamine, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and
N-methyldicyclohexylamine [4–8]. The use of so-called structure-directing agents (SDAs)
with different molecular shapes, sizes, and polarities have been found to form SAPO-5
crystals with different morphological and physicochemical properties [9,10]. Isomorphous
Si substitution, surface area, particle size and surface acidity of the SAPO-5 samples are
affected when different SDAs are used in the crystallization process.
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Recently, imidazolium compounds have been explored as novel SDAs in the synthesis
of AlPO-5 and SAPO-5 materials [11,12]. Unlike aliphatic amines, the delocalized π elec-
trons in their cyclic ring together with their bulkier molecules create a versatile platform
for adding functional properties and chemical modifications, thus altering the overall
crystallization process of SAPO-5 materials [13,14]. The crystallization rate, crystallinity
and solid yield can be tuned by using imidazolium templates with different substituted
groups [10]. Besides SDAs, the crystallization process of SAPO-5 might also be affected
by the synthesis parameters such as heating time, crystallization temperature, synthesis
technique, amount and source of reactants, solvent, and aging [15]. Nevertheless, the
knowledge about the impacts of those synthesis parameters on the crystallization and
morphology of SAPO-5 templated by imidazolium SDA are still not well understood and
hence are worth further investigation.

In this work, the crystallization and morphological profiles of SAPO-5 templated by
1-benzyl-2,3-dimethylimidazolium hydroxide as a novel SDA is studied by carefully con-
trolling the synthesis parameters. The formation mechanism of SAPO-5 is then proposed
based on the X-ray diffraction and microscopy data obtained.

2. Experimental
2.1. Synthesis of 1-Benzyl-2,3-Dimethylimidazolium Chloride, [bzmIm]Cl

Typically, 1,2-dimethylimidazole (30.00 g, 98%, Merck, Darmstadt, Germany) was
first dissolved in ethanol (40 mL, 99.7%, QRëc, New Zealand) in a 250-mL round-bottom
flask before benzyl chloride (66.00 g, 99%, Merck, Darmstadt, Germany) was added. The
resulting mixture was refluxed for 7 h at 100 ◦C under stirring. The shiny white crystalline
solid formed was then purified with acetone several times before it was dried at 100 ◦C.
The resulting product was [bzmIm]Cl with a solid yield of 87.09% (Scheme 1). 1H NMR
(400 MHz, ppm, D2O): δ = 2.48 (3H, s, imidazole N-C(CH3)-N), 3.70 (3H, s, imidazole N-
CH3), 5.28 (2H, s, imidazole N-CH2-C6H5), 7.22 (1H, d, J = 3 Hz, imidazole N-CH=CH-N),
7.24 (1H, d, J = 3 Hz, imidazole N-CH=CH-N) and 7.28–7.41 (5H, phenyl). FT-IR (cm−1, KBr
disk): 3074 (=C–H stretching), 2948 (C–H stretching), 1598 and 1452 (aromatic C=C), 1020
(imidazolium, C–N), 1536 (imidazolium, C=N). Anal. cacld for C12H15N2Cl: C, 64.72%; H,
6.79%; N, 12.58%; Cl, 15.92%; found: C, 65.03%; H, 6.66%; N, 11.55%; Cl, 16.77%.

2.2. Preparation of 1-Benzyl-2,3-Dimethylimidazolium Hydroxide ([bzmIm]OH) Solution

The [bzmIm]OH template solution was prepared by ion exchanging the [bzmIm]Cl
ionic salt with Amberlite® IRN-78 hydroxide ion-exchange resin (Sigma-Aldrich, St. Louis,
MO, USA). The resulting solution was separated from the resins by filtration and titrated
with 0.1 M HCl solution where 90% OH− ion exchange was achieved. The hydrox-
ide solution was then concentrated to 33.0 wt% at 50 ◦C before it was further used for
SAPO-5 synthesis.
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2.3. Synthesis of SAPO-5 Microporous Solids

SAPO-5 was synthesized as follows: Firstly, aluminum isopropoxide (3.2260 g, 98%,
Acros), [bzmIm]OH solution (26.2753 g), and distilled water (5.8279 g) were mixed and
stirred (500 rpm) for 40 min. Then, phosphoric acid (4.4615 g, 85%, Merck) was slowly
added into the slurry dropwise where the addition process took about 15 min to complete.
HS-40 colloidal silica (0.5464 g, Sigma-Aldrich) was successively added, forming a hydrogel
with a final chemical composition of 1Al2O3:2.5P2O5:2.5[bzmIm]2O: 0.47SiO2:180H2O. The
resulting precursor was loaded into a 50 mL Teflon-lined stainless-steel autoclave, sealed
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tightly, and heated at 150 ◦C for 10 h. The obtained solid product, denoted as SH-4, was
purified with distilled water via centrifugation (9000 rpm, 10 min) until pH 7 prior to freeze-
drying. For the study of the effects of various synthesis parameters, a similar procedure
was applied where the chemical composition of precursor hydrogels (SH1–SH20) and their
respective synthesis conditions are summarized in Table 1.

Table 1. Chemical composition and crystallization conditions of SH1–SH20 hydrogels together with the products obtained
after altering the individual synthesis parameter.

Synthesis
Parameters Samples

Gel Molar Composition
T (◦C) t (h) Si/(P + Al +

Si) Ratio * Products †
Al2O3 P2O5 [bzmIm]2O SiO2 H2O

Time

SH1

1 2.5 2.5 0.47 180 150

2 0.008 Amor.

SH2 4 0.021 Amor.

SH3 8 0.051 Amor. + AFI

SH4 10 0.056 AFI

SH5 14 0.057 AFI + AFO

P2O5

SH6

1

2.0

2.5 0.47 180 150 10

- No solid

SH4 2.5 0.056 AFI

SH7 3.0 0.062 AFI

SH8 3.5 0.067 AFI + cristobalite

P2O5
/[bzmIm]2O

SH9

1

1.5 1.5

0.47 180 150 10

0.059 AFI

SH10 2.0 2.0 0.057 AFI

SH4 2.5 2.5 0.056 AFI

SH11 3.0 3.0 0.053 AFI

H2O

SH12

1 2.5 2.5 0.47

135

150 10

0.053 Amor. + AFI

SH4 180 0.056 AFI

SH13 225 0.057 AFI

SH14 270 0.061 Tridymite

SiO2

SH15

1 2.5 2.5

0

180 150 10

0 AFI (AlPO-5)

SH16 0.23 0.031 AFI

SH4 0.47 0.056 AFI

SH17 0.7 0.061 AFI

Temperature

SH18

1 2.5 2.5 0.47 180

100

10

0.010 Amor.

SH19 120 0.021 AFI

SH4 150 0.056 AFI

SH20 200 0.064 Tridymite

* Determined by XRF. † Amor. = Amorphous; AFI = SAPO-5; AFO = SAPO-41.

2.4. Characterization

The crystallinity and phase composition of powder samples were analyzed using a
Bruker Advance D8 XRD diffractometer with Cu Kα radiation (λ = 0.15418 nm, 40 kV,
10 mA, step size = 0.02◦, scan speed = 0.2◦/min). The morphological properties of samples
were studied using a Leo Supra 50VP field emission scanning electron microscope (FESEM)
operated at 20 kV. The particle size distributions (PSDs) of samples were analyzed and
plotted using the ImageJ (1.8.0_172) software by randomly measuring 100 particles of the
FESEM images obtained from different spots. The elemental compositions of the solid
samples were analyzed using an XRF spectrometer (Phillips X’Unique).

3. Results and Discussion
3.1. Effect of Crystallization Time

SH1, SH2, SH3, SH4, and SH5 samples with a composition of 1Al2O3:2.5P2O5:2.5
[bzmIm]2O:0.47SiO2:180H2O were heated at 150 ◦C for 2, 4, 8, 10, and 14 h, respectively
(Table 1). According to XRD analysis, the SH1 and SH2 samples were amorphous with
no significant diffraction peaks and a broad hump observed at 2θ ≈ 20◦–35◦ (intensity
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of the hump was low in relative to the other crystalline samples), indicating the phase
reorganization between amorphous particles, forming a secondary and more reactive
amorphous entity (Figure 1) [16]. When the time was extended to 8 h, the XRD peaks due to
SAPO-5 started to appear at 2θ = 7.3◦ [100], 14.8◦ [200], 19.6◦ [210], and 25.8◦ [202], revealing
that SAPO-5 nuclei started to form in the amorphous bulk solid [17]. After 10 h of heating,
the amorphous solid was fully converted into crystalline SAPO-5 solid and further crystal
growth of SAPO-5 crystals was observed after 14 h, as indicated by the narrower and more
intense peaks of crystalline AFI microporous framework. However, a phase transformation
of SAPO-5 (AFI framework) into SAPO-41 (AFO framework) was also observed with
prolonged crystallization time. The XRD analysis thus demonstrated that the formation
evolution of SAPO-5 underwent four distinctive stages, namely induction, nucleation,
crystallization and Ostwald ripening, which will be described in detail in Section 3.7.
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Figure 1. XRD patterns of (a) SH1, (b) SH2, (c) SH3, (d) SH4 and (e) SH5 samples prepared with a
molar composition of 1Al2O3:2.5P2O5:0.47SiO2:2.5[bzmIm]2O:180H2O and heated at 150 ◦C for 2 h,
4 h, 8 h, 10 h and 14 h, respectively. Asterisks denote the presence of SAPO-41 phase.

The FESEM images of SH1, SH3, SH4 and SH5 were also captured to study the
crystallization process of SAPO-5. SH1 sample was formed by the agglomerated and
irregular-shaped particles, confirming the amorphous nature of this sample (Figure 2A(a)).
The particle size distribution (PSD) of SH1 was plotted and a monomodal curve centered
at 120 nm was obtained (Figure 2B(a)). This peak was shifted to larger particle sizes
after 8 h, indicating amorphous phase reorganization as proven by the XRD analysis
(Figure 2B(b)). In addition, another PSD centered at 500 nm was also observed, thus
showing the presence of two different phases in SH3 sample. As seen, SH3 sample was a
semi-crystalline solid with the SAPO-5 crystals of hexagonal prism shape growing on the
amorphous entities (Figure 2A(b)). At 10 h, the small amorphous solids disappeared, and
the SAPO-5 crystals grew further (mean size: 650 nm), as confirmed by the FESEM and
PSD studies (Figure 2A(c),B(c)). Successive phase transformation of SAPO-5 into SAPO-41
was also observed in SH5 after 14 h of heating where larger secondary particles made
by agglomerated primary crystals of SAPO-5 and SAPO-41 (both in hexagonal prism
shape [18,19]) were detected (Figure 2A(d),B(d)).
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3.2. Effect of P2O5/Al2O3 Molar Ratio

The amount of P2O5 and Al2O3 in the initial hydrogel is important since both species are
the basic elements for building the AFI framework. Hence, the effects of P2O5/Al2O3 ratio
were studied using a precursor hydrogel of 1Al2O3:wP2O5:2.5[bzmIm]2O:180H2O:0.47SiO2,
where w varied from 2.0 to 3.5. When w = 2.0 (SH6), no solid was precipitated after
hydrothermal treatment at 150 ◦C for 10 h, which could be explained by the high alkalinity
of the hydrogel (pH 10.2) as the amount of H3PO4 added was much lower than that of
alkaline [bzmIm]OH introduced. Hence, the solid product formed tended to re-dissolve
back into the mother liquor [20]. When the P2O5/Al2O3 ratio increased to w = 2.5 (SH4),
the alkalinity of the reaction mixture reduced significantly to nearly neutral (pH 7.5) and a
solid product was successfully precipitated. The solid was found to be SAPO-5 crystalline
solid based on the XRD observation (Figure 3). In addition, the SAPO-5 solids exhibited
hexagonal prism shape with an average crystal size of 650 nm (Figure 4A(a),B(a)).

Further increasing the P2O5/Al2O3 ratio to w = 3 induced crystal growth where it
could be confirmed by the narrower and more intense XRD peaks in HS7 sample. The
XRD observation was also supported by the FESEM study where large spherical particles
formed by intergrown SAPO-5 crystals were captured (Figure 4B(b)). Meanwhile, partial
phase transformation of SAPO-5 into dense cristobalite phase was observed with further in-
creasing the P2O5/Al2O3 ratio (w = 3.5, pH 4.8), where an evolution change of morphology
to intergrown grain secondary particles was also detected (Figures 3 and 4). Obviously, an
increase in P2O5 content had a profound effect on the crystallization profile of SAPO-5 [21].
Whether the cristobalite phase is purely composed of pure silica, aluminophosphate, or
silicoaluminophosphate could not be ascertained at this stage.
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the presence of cristobalite dense phase.

Crystals 2021, 11, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 3. XRD patterns of (a) SH4 (w = 2.5), (b) SH7 (w = 3.0) and (c) SH8 (w = 3.5) solids where the 

solid products were prepared using precursor hydrogels with a molar composition 

of1Al2O3:wP2O5:2.5[bzmIm]2O:180H2O:0.47SiO2 heated at 150 °C for 10 h. The asterisks show the 

presence of cristobalite dense phase. 

 

Figure 4. (A) FESEM images and (B) particle size distributions of (a) SH4 (w = 2.5), (b) SH7 (w = 3.0) and (c) SH8 (w = 3.5) 

where the solid products were prepared using precursor hydrogels with a molar composition of 

1Al2O3:wP2O5:2.5[bzmIm]2O:180H2O:0.47SiO2 heated at 150 °C for 10 h. 

Further increasing the P2O5/Al2O3 ratio to w = 3 induced crystal growth where it could 

be confirmed by the narrower and more intense XRD peaks in HS7 sample. The XRD ob-

servation was also supported by the FESEM study where large spherical particles formed 

by intergrown SAPO-5 crystals were captured (Figure 4B(b)). Meanwhile, partial phase 

Figure 4. (A) FESEM images and (B) particle size distributions of (a) SH4 (w = 2.5), (b) SH7 (w = 3.0) and
(c) SH8 (w = 3.5) where the solid products were prepared using precursor hydrogels with a molar composition of
1Al2O3:wP2O5:2.5[bzmIm]2O:180H2O:0.47SiO2 heated at 150 ◦C for 10 h.

3.3. Effect of [bzmIm]2O/P2O5 Molar Ratio

An equimolar amount of [bzmIm]2O and P2O5 (x) was used to control the pH of
precursor hydrogel since the crystallization of SAPO-5 is more favorable at nearly neutral
pH condition, as observed in Section 3.2. The pH values of the hydrogels of SH9 (x = 1.5),
SH10 (x = 2.0), SH4 (x = 2.5) and SH11 (x = 3.0) were measured to be 6.42, 6.15, 6.07 and
6.14, respectively. As seen, all samples successfully produced SAPO-5 crystalline phase
with no impurity but with different XRD peak widths, suggesting different crystal sizes
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(Figure 5). This could also be confirmed by the PSD analysis that the mean crystal size was
reduced from 1.5 µm to 1.1 µm, 650 nm and 380 nm when the x value increased from 1.5 to
2.0, 2.5 and 3.0, respectively (Figure 6B). Furthermore, the morphology of SAPO-5 crystals
was also changed from hexagonal plate shape to hexagonal prism form when increasing
the x values (Figure 6A).
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Figure 5. XRD patterns of (a) SH9 (x = 1.5), (b) SH10 (x = 2.0), (c) SH4 (x = 2.5) and (d) SH11
(x = 3.0) where the solid products were prepared using precursor hydrogels with a molar composition
of1Al2O3:xP2O5:x[bzmIm]2O:180H2O:0.47SiO2 at 150 ◦C for 10 h.
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Figure 6. (A) FESEM images and (B) particle size distributions of (a) SH9 (x = 1.5), (b) SH10 (x = 2.0), (c) SH4 (x = 2.5)
and (d) SH11 (x = 3.0) where the solid products were prepared using precursor hydrogels with a molar composition of
1Al2O3:xP2O5:x[bzmIm]2O:180H2O:0.47SiO2 at 150 ◦C for 10 h.

It is known that the crystal size of zeolites can be predetermined from the extent of
nuclei present in the precursor hydrogel. On account of this, an increase in the alkalinity of
the hydrogel during the addition of a large amount of organic template, followed by adding



Crystals 2021, 11, 279 8 of 15

H3PO4 to reach nearly neutral pH, promotes low polymerization of aluminate, phosphate
and silicate species. As a result, a large number of nuclei are formed under supersaturation
condition [14,22,23]. For this reason, small-sized SAPO-5 crystals are produced when the x
value increases.

3.4. Effect of H2O Content

The amount of water present in the precursor hydrogel determines the concentration
of reactants, which affects the properties of the final solid product (e.g., phase purity,
crystallinity, size, morphology) [24]. In respect to this, four samples of different water
contents (SH12, SH4, SH13 and SH14) were prepared by heating the precursor hydrogels
with a molar composition of 1Al2O3:2.5P2O5:2.5[bzmIm]2O:yH2O:0.47SiO2 (y = 135, 180,
225 and 270) at 150 ◦C for 10 h, respectively. It was observed that the crystallinity, crystal
size, and purity of SAPO-5 could be controlled by simply tuning the water content. The
SH12, which contained the lowest amount of water (y = 135), showed very weak XRD peaks
of AFI phase at 2θ = 12.89◦ [110], 20.83◦ [002], 25.90◦ [220], and 29.00◦ [311] (Figure 7a).
Thus, the sample was a semi-crystalline nano-solid (mean size of 141 nm) with a non-
distinctive shape (Figure 8A(a),B(a)). The crystallinity of SAPO-5 increased when the water
content was increased to y = 180 (SH4, Figure 7b). No amorphous solid was detected
under microscopy investigation. Instead, it contained crystals with a hexagonal prism
shape (mean size of 650 nm), viz. a typical morphological feature for an AFI-type material
(Figure 8A(b),B(b)) [9,25]. The crystallinity and crystal size further increased when the
water contents were increased to y = 225 and 270 where co-crystallization of tridymite as
minor dense phase was observed in the latter sample (Figures 7 and 8A). Furthermore, the
SAPO-5 crystals with distinguished bimodal size distribution were also shown, indicating
the important role of water in the crystallization of SAPO-5 (Figure 8B).
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Figure 7. XRD patterns of (a) SH12 (y = 135), (b) SH4 (y = 180), (c) SH13 (y = 225) and (d) SH14
(y = 270) solid products, which were prepared using precursor hydrogels with a molar composition
of1Al2O3:2.5P2O5:2.5[bzmIm]2O:yH2O:0.47SiO2 heated at 150 ◦C for 10 h. The asterisks show the
presence of tridymite dense phase.
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Figure 8. (A) FESEM images and (B) particle size distributions of (a) SH12 (y = 135), (b) SH4 (y = 180), (c) SH13 (y = 225)
and (d) SH14 (y = 270) solid products, which were prepared using precursor hydrogels with a molar composition of
1Al2O3:2.5P2O5:2.5[bzmIm]2O:yH2O: 0.47SiO2 heated at 150 ◦C for 10 h.

It is known that the supersaturation condition favors the formation of a large number
of nuclei when the water content is reduced. Concurrently, the enhanced alkalinity of
the precursor hydrogel induces low polymerization of aluminate, phosphate and silicate
species, thus leading to the formation of smaller SAPO-5 crystals [26,27]. However, with
increasing the water content, a less concentrated hydrogel with more acidic environment
is prepared, and it tends to retard the nucleation process, which leads to the formation
of larger-sized SAPO-5 crystals [28]. Furthermore, tridymite is also co-crystallized when
increasing the water content because dense crystalline phases preferably crystallize under
an acidic environment [29].

3.5. Effect of SiO2/Al2O3 Molar Ratio

In this study, the effects of silica content (expressed in SiO2/Al2O3 molar ratio) were
studied considering the significance and high tendency of silicon atoms insertion into
the parent AlPO-5 during the crystallization process [30,31]. Hence, the hydrogels with
a composition of 1Al2O3:2.5P2O5:2.5[bzmIm]2O:180H2O:zSiO2, where z = 0 (SH15), 0.23
(SH16), 0.47 (SH4) and 0.70 (SH17), were prepared. The XRD patterns of the samples
were recorded and shown in Figure 9. Without adding any SiO2, the so-called AlPO-5
sample (SH15) showed an XRD pattern that perfectly matched with the AFI structure
(Figure 9a). The diffraction peaks were broad, indicating small crystallite size, and it
could be confirmed from the FESEM image that showed secondary micron-sized particles
with layered morphology formed by agglomerated nanocrystals (mean size of 170 nm)
(Figure 10A(a),B(a)). The phase purity remained the same when the Si content was in-
creased to z = 0.23, 0.47, and 0.7, but a significant change in crystal size and morphology
was observed (Figure 10A(b–d)). As seen, the SAPO-5 crystals tended to grow in c-direction
when more Si atoms were incorporated, forming hexagonal prism crystals with an elon-
gated shape and intergrown structure. As a result, the mean particle size of SAPO-5
increased from 260 nm (z = 0.23) to 650 nm (z = 0.47) before reaching to 4.2 µm (z = 0.7)
(Figure 10B(b–d)).
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Figure 9. XRD patterns of (a) SH15 (z = 0), (b) SH16 (z = 0.23), (c) SH4 (z = 0.47) and (d) SH17
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at 150 ◦C for 10 h.
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Figure 10. (A) FESEM images and (B) particle size distributions of (a) SH15 (z = 0), (b) SH16 (z = 0.23), (c) SH4 (z = 0.47) and
(d) SH17 (y = 0.70) prepared with a molar composition of 1Al2O3:2.5P2O5:2.5[bzmIm]2O:180H2O:zSiO2 heated at 150 ◦C
for 10 h.

3.6. Effect of Heating Temperature

The synthesis temperature affects the crystallization process of zeolite materials since
it provides the energy needed for nucleation and crystal growth [24,32]. Hence, the
hydrogel with a molar composition of 1Al2O3:2.5P2O5:2.5[bzmIm]2O:180H2O:0.47SiO2
was hydrothermally heated at 100, 120, 150 and 200 ◦C for 10 h (Table 1). The XRD
patterns of the samples were recorded (Figure 11); while the FESEM images and particle
size distribution were compiled in Figure 12A,B, respectively. The SH18 sample heated
at 100 ◦C yielded an amorphous solid (mean size of 120 nm) with a non-distinctive shape
(Figures 11a and 12A(a),B(a)). Thus, it revealed that the rate of crystallization of SAPO-5
is slow at 100 ◦C due to insufficient energy supplied to the system [22]. Increasing the
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temperature to 120 ◦C slightly accelerated the crystallization rate but the solid was partially
converted to SAPO-5 as an amorphous hump was still observed at 2θ = 20◦-30◦ (Figure 11b).
On the other hand, the morphology of the solids changed to a relatively hexagonal shape
having a mean size of 374 nm (Figure 12A(b),B(b)). At 150 ◦C, fully crystalline SAPO-5 was
obtained (Figure 11c, Figure 12A(c)). Thus, this showed that the crystallization of SAPO-5
is a thermally activated process that requires energy to convert amorphous precursors into
crystalline solids. Nevertheless, supplying excessive energy by increasing the temperature
to 200 ◦C resulted in the crystallization of a tridymite dense phase. This is because SAPO-5
is a metastable crystalline phase and it tends to transform into a denser phase at very
high temperatures [33].
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Figure 11. XRD patterns of (a) SH18, (b) SH19, (c) SH4 and (d) SH20 prepared with a molar
composition of 1Al2O3:2.5P2O5:2.5[bzmIm]2O:180H2O:0.47SiO2. The samples were heated at 100,
120, 150 and 200 ◦C for 10 h, respectively.
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Figure 12. (A) SEM images and (B) particle size distributions of (a) SH18, (b) SH19, (c) SH4 and (d) SH20 prepared with
a molar composition of 1Al2O3:2.5P2O5:2.5[bzmIm]2O:180H2O: 0.47SiO2. The samples were heated at 100, 120, 150 and
200 ◦C for 10 h, respectively.
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3.7. Formation Pathway of SAPO-5 Crystals

In general, the formation of SAPO-5 crystals templated by [bzmIm]OH organic tem-
plate involves four successive stages, namely, induction, nucleation, crystal growth, and
Ostwald ripening (Figure 13). At the induction stage Al2O3, P2O5, and SiO2 precursors are
hydrolyzed in the presence of H2O, forming low molecular-weight monomers and dimers
as primary building units (Step 1) [34]. Phase reorganization also occurs when longer chain
oligomers are formed via polycondensation, as proven by the XRD analysis (Figure 1a,b).
These oligomers tend to align and enfold around the [bzmIm]+ molecules via restricted elec-
trostatic interaction between the [bzmIm]+ cation and the anionic silicoaluminophosphate
species, forming an organic–inorganic intermediate species.
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An equilibrium is established between the hydrolyzed intermediate species and the
phase re-organized species, which later results in the nucleation stage (Step 2). During
this phase, the formation of AFI framework by higher molecular-weight oligomers takes
place [34]. The reaction equilibrium begins to shift to the direction of small nuclei with
three-dimensional ordering so that they propagate into the eventual SAPO-5 framework
structure. These nuclei serve as seeds or starting points for crystal growth in the secondary
amorphous particles [35]. At this stage, the XRD and SEM analyses hardly detect the
presence of SAPO-5 crystalline phase.

Further prolonging the heating time results in the complete conversion of amorphous
particles into SAPO-5 crystalline solids (Step 3). This phenomenon happens due to the fact
that the amorphous particles are less thermodynamically stable in the mother liquor and
they tend to re-dissolve or be consumed as nutrients for further crystal growth [36].

The last stage involves Ostwald ripening, which is always experienced by large-pore
zeolites due to their more opened structures and low metastability (Step 4) [37,38]. Thus,
a successive crystal phase transformation from SAPO-5 to SAPO-41 with less opened
structure occurs.

The induction, nucleation, crystal growth, and Ostwald ripening are also affected by
other synthesis parameters. In particular, heating temperature has the most profound effect
on those stages because increasing the reaction temperature will supply more energy to the
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system to ease breaking and new formation of P–O–T bonds (T = Al, P, Si), and directly
increase the crystallization rate [24]. Furthermore, SAPO-5 may undergo different kinds of
structural change via reconstructive phase transformation to a more metastable phase at
high temperature. This is achieved by unit cell volume contraction through the removal
of the water and/or [bzmIm]+ cations from the pores [22,39]. Furthermore, the addition
of SiO2 as one of the primary building units also affects the entire crystallization process
of SAPO-5. During hydrothermal treatment, the silicates compete with aluminates and
phosphates in the construction of AFI framework where the former species affects the
crystal growth orientation, forming SAPO-5 crystals with different shapes and sizes [40].

Furthermore, the pH of precursor hydrogel has been suggested to control the nucle-
ation rate of SAPO-5, affecting the crystal size and purity. Large and intergrown SAPO-5
crystals with co-crystallized dense phase are obtained when the crystallization occurs
under acidic environments (high P2O5/Al2O3 ratio or high H2O content) because of rapid
hydrolysis and polycondensation reactions at low pH [41]. In contrast, when the crys-
tallization takes place at nearly neutral environment (~6.0) in the excessive amount of
[bzmIm]+ template, a supersaturation condition is formed. It thus facilitates rapid and ho-
mogeneous nucleation rather than crystal growth, forming SAPO-5 crystals with uniform
and smaller sizes [42].

4. Summary

SAPO-5 microporous solids with defined morphologies and sizes were successfully
synthesized using a new imidazolium template, [bzmIm]OH. The effects of the synthe-
sis parameters were systematically investigated. It was found that SAPO-5 undergoes
four evolutionary processes, namely, induction, nucleation/propagation, crystal growth,
and Ostwald ripening. Small SAPO-5 particles can be prepared with gel composition of
1Al2O3:2.5P2O5:2.5[bzmIm]2O:180H2O:0.47SiO2 at 150 ◦C for 10 h. These relatively low
temperature, low water content, and concentrated template conditions favor nucleation
over crystal growth. In contrast, the high molar ratio of P2O5/Al2O3 (low pH), high SiO2
content, long crystallization time, and high heating temperature favor the formation of big
SAPO-5 crystals and in most cases, tridymite and cristobalite dense phases are also formed.
Similar to aliphatic amine templates, the SAPO-5 solids crystallized using [bzmIm]OH
also exhibit hexagonal prism morphology. Hence, they are suitably used as advanced
material in catalysis, membrane separation, sensor, heat pump, drug carrier and adsorption
technologies. Comprehensive work on studying SAPO-5 in those aspects is in progress.
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