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Abstract: This paper gives an approach to the probabilistic percent corrosion depth estimation
model for the CuAlNi Shape Memory Alloy (SMA) in different marine environments. Real testing
was performed for validation of the theoretical model, where CuAlNi SMAs were exposed to 6
and 12 months in different seawater environments. Focus Ion Beam (FIB) analysis was used to
measure the real corrosion depth on the surfaces of tested samples. A statistical approach to the
investigation of the corrosion rate of CuAlNi SMA is given, where the corrosion rate is observed
as a continuous random variable described by a linear corrosion model, with the assumption that
corrosion starts immediately upon alloy surfaces being exposed to the influences of the marine
environment. The three best-fitted two-parameter distributions for estimating the cumulative density
function and the probability density function of the random variable were obtained by applying
adequate statistical tests. Furthermore, using EDX analyses, we identified the chemical composition
of the corroded materials, and with the help of Principal Component Analyses, we determined which
corrosion environment had the most dominant influence on the corrosion process. The research
results indicated that the changeable environment in the tides had a more heterogenic chemical
content, which accelerated the corrosion rate.

Keywords: CuAlNi Shape Memory Alloy; corrosion rate; probabilistic method; Focus Ion Beam
analysis; two-parameter distributions

1. Introduction

Although in the last century, special attention was focused on smart materials based
on the research of alloys, polymers, ceramics, composites, and hybrid systems, the most
significant discoveries are related to Shape Memory Alloys (SMA). Since 1932, when the
Swedish physicist who determined that gold–cadmium (Au–Cd) alloys could be deformed
plastically when cool, and returned to their original shape when heated, a lot of research
has been conducted [1]. Later in 1938, Greninger and Mooradian [2] first observed the
Shape Memory Effect (SME) for copper–zinc (Cu–Zn) alloys and copper–tin (Cu–Sn) alloys,
and in 1959 [3], the NiTi alloy was discovered by William Buehler, and the potential
commercialization of NiTi was available from 1962 [3], which was known as nitinol [4].

Further, numerous research was performed to investigate its key thermo-mechanical
SMA properties such as SME, superelastic and pseudoelastic effects, high damping capacity,
and double SME.
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Considering the basic mechanical, chemical, and characteristics of alloys, as well as
their characteristic shape memory, they have a wide variety of applications for engineering
and technical applications, such in medicine, aerospace, vibration control, biomechanics,
automotive, marine, robotic and different domestic applications. SMAs were applicable
for blood clot filters, orthodontic corrections in biomedicine [5], eyeglass frames, antennas
of mobile phones, bra underwires for domestic application, fluid connectors, coupling
and thermal actuators, fire safety valves, and electric circuit breakers in industrial applica-
tions [6], pipe and tube couplings in the aircraft industry, sensors and thermal or electrical
actuators in automobiles and connectors in robotic arms [6].

Numerous alloys have been investigated to date in order to improve Shape Memory
Alloys’ thermomechanical properties. Furthermore, we can consider about 20 elements
in the central part of the Periodic Table whose alloys exhibit SME. Binary, trinary, and
fourth systems of alloys were investigated, but mainly three alloy systems were the focus
of research and development of the shape memory phenomena based on NiTi, Cu, and Fe.

NiTi Shape Memory Alloy is one of the more functional, successful, commercial, and
useful alloys. Furthermore, the NiTi SMAs are biocompatible, exhibit high wear resistance,
are thermally stable, and show excellent shape memory strain up to 8% [7]. NiTi is generally
deployable up to 80 ◦C, thus extensive research has been devoted to it by developing new
alloy compositions in order to increase their transformation temperatures above 100 ◦C [7].
In that sense, ternary NiTi alloys were investigated by adding Pd, Pt, Hf, or Zn. However,
their commercial applications are limited due to some of their disadvantages, such as low
transformation temperatures, difficulty in production and processing, complexity, and cost.

Among the different Cu-based SMAs, CuAlNi alloys have a higher thermal stability
(around 200 ◦C) than CuZnAl, CuAlBe, and CuAlMn alloys (maximum 120 ◦C) [5], while
the CuZnAl alloys show better ductility as compared to CuAlNi alloys for low temperature
applications [7]. Furthermore, CuAlNi alloys have low production cost, better machinabil-
ity, better work/cost ratio, are easier to manufacture, and have a higher range of potential
transformation temperatures [8]. The SME of CuAlNi alloys is able to display, at a specific
composition, about 11–14 wt.% for aluminum and 3–5 wt.% for nickel [5].

However, the base alloys suffer from bad cold workability and martensite stabilization;
hence, ternary quaternary additions in various amounts have been tried by different
investigators to improve upon the properties and remove the drawbacks [9]. The biggest
disadvantage of polycrystalline CuAlNi alloys is their small reversible deformation (one-
way memorized effect, up to 4%, and two-way memorized effect: Only around 1.5%),
which occurs thanks to intergranular fracture already at low average stress levels [10].
However, CuAlNi SMAs suffer from high brittleness, which is associated with the large
elastic anisotropy and large grain size. As a result, many researchers have tried to refine the
grain size of Cu-based SMAs through the addition of alloying elements and/or applying
different thermal aging treatment conditions [10].

In many articles, additional alloying elements were analyzed with CuAlNi alloys,
such as Zr and Ti or Mn and B, in order to investigate the microstructure and mechanical
properties of this alloy system [5]. It has been shown that the poor workability of CuAlNi
alloy caused by brittle intergranular fracture can be reduced by refining the microstructure
through the addition of Co, Mn, Ti, or Zr [7]. Rapid solidification constitutes an alternative
route for grain refinement and the suppression of brittle phases in Cu-based SMAs [7].

Metal materials are affected mainly by electrochemical corrosion when in the marine
environment, or the atmosphere, that is affected by the sea. In these conditions, the cor-
rosion rate and the change in chemical composition caused by corrosion depend mainly
on the conductivity of seawater, wind, sea waves, salinity, ph, temperature, and other
environmental factors. Corrosion rate and the change in the chemical composition will
vary if a metal material is exposed to the marine environment, atmosphere, and change-
able conditions at the sea surface directly. This is caused by the merging of the sea and
atmosphere due to waves and ebb and flood tides.
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1.1. Shape Memory Alloys in Marine Enviroments

Although the application of SMAs in marine and maritime applications is not as
common as in medicine and the transport industry, different potential applications can
be found from the deep sea to the sea surface. New SMAs can be used for connecting
tubes in the deep sea due to their superelasticity properties. SMA-based tendons may
potentially resolve problems in tension-leg platform structures, SMA thermostats for subsea
equipment, and transferring thermal energy in electricity under the power plant [11].

The application of SMAs in marine and maritime applications will certainly depend
not only on the mechanical, chemical, physical, and thermo-mechanical characteristics of
the material but also on their resistance to the specific environmental conditions in which
they are located, and, above all, to corrosion. From the literature, it was observed that the
current density for samples in austenitic structures is much greater than for martensitic
structures in SMAs. This demonstrates that SMAs have more corrosion resistance than
traditional alloys due to the hyperplastic behavior of their polycrystalline structure [12].

For porous NiTi SMAs, the corrosion rate is high due to their large surface area and
specific surface morphology, while stress corrosion causes cracking in NiTi alloys [13].

In the research on the CuZnNi alloy, where the wt% of the Ni content was increasing
from 2–9, or increasing the zinc concentration in alloy composition, it should be concluded
that increases in the corrosion resistance property of the alloy also increases in the three
different corrosive mediums—freshwater, hank’s solution, and seawater [13].

The addition of aluminum to the Cu-based alloys increases its corrosion resistance due
to the formation of a protective layer of alumina, while the presence of nickel is important
in the passivation of Cu–Ni alloys because of its incorporation in the Cu(I) oxide, which is
formed on the corroded surface of the alloy [5].

In the article where the influence of different chloride ion concentrations (0.1%, 0.5%,
0.9%, and 1.5% NaCl solution) on the electrochemical behavior of the cast CuAlNi alloy
was examined, polarization measurements revealed that an increase in chloride ion concen-
tration leads to an increase of the corrosion current density values and a decrease of the
polarization resistance values, which indicated a higher corrosion attack on the alloy [8].

1.2. About the Corrosion Rate of Metal Structures in Marine Enviroments

Corrosion accelerates the decay of a metal that is exposed to various influences of the
environment significantly. Previous research focused on the development of the models
of pitting and general corrosion, which was described on the basis of the depth and rate
of corrosion, as well as the conditions which cause corrosion. The application of new
materials in the past typically required laboratory testing or a shorter examination in
nature due to the inadequate observation of the materials over the past decades. These
models predicted the probability of the emergence of corrosion through the identification
of key variables and corrosion mechanisms. There are also statistical models, which gather
data on corrosion of the structures in exploitation and then calculate the average and
standard deviation of corrosion rate for metal structures. Numerous studies applied this
model in the examination of the decay of structural materials on ships [14–19].

Figure 1 presents the available corrosion models in accordance with the existing
research results and the analysis of corrosion development over time. Corrosion does not
emerge on the metals protected with surface coatings, even in a corrosive environment.
Corrosion occurs after the wear and cracking of coatings, which can be illustrated by the
different (b and c) curves in Figure 1. The majority of authors consider corrosion an unstable,
time-dependent process, whose rate can be expressed linearly (Figure 1, curve a.) However,
experimental research confirmed that nonlinear models describe corrosion processes better
in certain environmental conditions (Figure 1., b and c curves).
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Figure 1. General model of corrosion rate.

The graphic view of a corrosion process that is increased and accelerated over time will
be concave (b curve in Figure 1) and correspond to the conditions of immersed/submerged
structures. This is especially relevant for the structures with dynamic strain whose metals
are exposed to corrosion constantly. The corrosion, which is initially accelerated and subse-
quently slower, is best illustrated by the c curve in Figure 1. This process is characteristic for
the structures which are not submerged in the sea and whose metals are notably covered by
a corrosive layer that prevents further exposure of the metal to the corrosive environment.

The research on the influences of corrosion on different vessels proves that exposure
to the atmosphere, operating factors of vessels, as well as various biological, chemical, and
physical factors of seawater, can accelerate the corrosion of metal materials. Furthermore,
if we analyze the main marine environment factors such as dissolved oxygen, pH, tem-
perature, water movement, salinity, sulfate-reducing bacteria, galvanic coupling, marine
growths, and their influence on the rate and mechanism of corrosion, we can conclude
that they are strongly correlated. Changing any of the mentioned influences usually pro-
duces changes in others. As a result, the relationships between site, artifact condition, and
corrosion product are often complex, and it is important to analyze it in order to find any
specific correlation. All in all, it is important to predict the corrosion of metal structures
before they are used for any type of marine application.

2. Materials and Methods

Therefore, this research focused on the investigation of CuAlNI SMAs characteristics
and their corrosion resistance in maritime environments. The analysis encompassed 3 types
of samples that were exposed to the sea, atmosphere, and tidal zones for 6 months and
3 samples that were exposed to the same conditions for 12 months. In order to determine
corrosion rate and changes in chemical composition on the surface of CuAlNi SMA samples,
2 databases were used for the verification of research results. The 1st database was related
to corrosion depth on the surface of the CuAlNi samples, which was expressed in nm and
determined by means of the Focused Ion Beam (FIB) method. The 2nd database was related
to the changes in chemical composition, which were determined by an Energy Dispersive
Spectrometer (EDX) analysis.

2.1. Materials
2.1.1. Production of CuAlNi

CuAlNi SMA bars were produced with the continuous casting process with a labo-
ratory scale vertical continuous casting device, Technica Guss, which was connected to
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a 60 kW medium-frequency (4 kHz) Vacuum Induction Melting (VIM) furnace, Leybold
Hereaus. The withdrawal parameters were programmable, thus an almost arbitrary time-
velocity curve can be realized (the limits being set by the performance of the motor and
inertia of moving parts). In that sense, different methods were used for this research [20].

Pure metals were used for the production of CuAlNi SMA bars: Cu (99.99 wt.%), Al
(99.99 wt.%) and Ni (99.99 wt.%) delivered by Zlatarna Celje d.o.o. Slovenia. The bars
were then cut by electro-erosion into test samples with selected dimensions of 2r = 7 mm
(6 pieces) (see Figure 2), which corresponded to the corrosion tests. All test samples were
ground after electro-erosion to remove erosion residues and impurities and then were
prepared metallographically for initial microstructure observation for corrosion testing.

Figure 2. Presentation of CuAlNi casting and cut-off samples for corrosion testing.

2.1.2. Preparation of CuAlNi Samples for Microstructure Observation

To monitor the occurrence of the corrosion process, it was necessary to perform a
microstructure analysis of the initial state cross-section. Based on this, 1 sample was
mounted in a hot-mounting mass and ground with abrasive paper in grades of 180–4000
on the grinding/polishing machines BUEHLER Automet 250 and EcoMet 250. The sample
was polished with a napless cloth and polishing suspension with Al2O3 with the size of
1 µm. After polishing, the sample was cleaned by ultrasound. This process was followed
by etching in order to reveal the microstructure of the sample [21].

Before performing corrosion tests, samples were taken using an Optical Microscope
microstructure overview, microhardness measurement of the test samples (Figure 3a–c).
The chemical composition of CuAlNi was measured using Inductively Coupled Plasma
Optical Emission Spectroscopy—CP–OES (Agilent 720, IMT, Ljubljana, Slovenia) and X-Ray
Fluorescence (XRF) with a Thermo Scientific Niton XL3t GOLDD + XRF Analyzer. The
compositions of the CuAlNi samples were obtained, as shown in Table 1 [21].

Figure 3. CuAlNI alloy: (a) Cross-section of the testing sample, (b,c) typical microstructure.
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Table 1. Percentage composition of the studied CuAlNi alloy.

Sample
% Cu % Al %Ni %Fe

ICP-OES XRF ICP-OES XRF ICP-OES XRF ICP-OES XRF

CuAlNi base base 12 9.4–9.6 3.9 4.4 0.03

2.2. Proposed Problem and Related Methodology

The experiment was based on the observation of the CuAlNi alloy in 3 different
locations. In the 1st location, 2 samples were positioned near the sea, 3 m above the sea
surface, and thus exposed to the influences of the atmosphere and marine environment. The
2nd set of samples was positioned at the sea surface and, thus, exposed to the changeable
influences of the atmosphere and the sea, depending on the ebb and flood tides, as well as
waves (flushing). The 3rd set of samples was immersed into the sea at a depth of 3 m near
the coast.

The paper relied on 2 directions of data analysis, as it is graphically presented on
Figure 4. In the 1st direction, on the basis of Focused Ion Beam characterization were
measuring corrosion depth in nm on the surface of CuAlNi after 6 and 12 months and
applying an appropriate linear corrosion model in order to find the best 2 parameter
distribution functions. In the 2nd direction, using Semi-quantitative Analysis, we obtained
the chemical composition of the alloy surface and applied Principal Component Analysis in
order to discover the influence of the different environments on the change in the chemical
composition of the material.

Figure 4. The scheme of the conceptual model of the research for CuAlNi alloy.

2.2.1. Focused Ion Beam (FIB) Description

Material characterization by the FIB/SEM method (Focused Ion Beam on a Scanning
Electron Microscope) allowed simultaneous physical processing of materials with a Focused
Ion Beam and imaging of the samples below the surface. The FIB/SEM used for the cross-
section milling and upper layer measurements of the samples were a Quanta 200 3D (FEI,
USA) with a gallium ion source.

2.2.2. Semi-Quantitative EDX Analysis

The chemical composition of the selected CuAlNi was determined through the use of
a high-resolution Field Emission SEM Sirion 400 NC (FEI, Watertown, MA, USA), equipped
with an EDX detector—INCA 350 (Oxford instruments, Abingdon, Oxfordshire, UK). The
EDX semi-quantitative analysis determined the chemical composition of the materials after
corrosion, as well as the content of elements on the surface of the examined samples. In
that way, the chemical composition of the CuAlNi surfaces was identified for each selected
sample, up to several spectrums per sample under different magnifications.

2.2.3. Probabilistic Corrosion Rate Estimation Model

In order to undertake investigations of the analytic and probabilistic corrosion rate
estimation model for different CuAlNi samples, which were located in 3 different locations,
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we referred to the survey paper by Qin and Cui [22]. It is well known that the wear of plate
thickness, d(t), due to corrosion may generally be expressed as a power function of the time
(usually expressed in years or months and in mm or nm) after the corrosion starts (see,
e.g., [22,23]), i.e.,

d(t) = c1(t− Tcl)
c2 , (1)

where d(t) is the corrosion wastage expressed in nanometers (nm); t is the elapsed time
after the plate is used; Tcl is the life of the coating;c1 and c2 are positive real coefficients.
This model was proposed in [23]. The coefficient c2 may usually be assumed to be 1/3,
or, pessimistically, assumed to be 1, while the coefficient c1 is indicative of the monthly
corrosion rate. As noticed in [22], in most of the studies on time-dependent reliability of
ship structures (see, e.g., [24,25]), the effect of corrosion was represented by an uncertain
but constant corrosion rate, which resulted in a linear decrease of plate thickness with time,
in spite of several authors establishing that some nonlinear models were more appropriate.

The validity of the expression (1) with c2 = 1 proposed by Paik, Kim, and Lee [14]
was verified in this work. It is assumed that Tcl = 0 months, i.e., d(t) = c1t. This value
was chosen due to the fact that the samples were not treated with anti-corrosion coating,
which means that corrosive processes began immediately after exposure to the seawater
environment, resulting in Tcl = 0 [17]. In order to determine the approximate value of c1,
the values of averages of the depth of corrosion d(t) at time t were used for the CuAlNi
alloy exposed to the different seawater environments.

2.2.4. Principal Component Analyses

Multivariate methods, such as Cluster Analysis (CA) and Principal Component Analy-
sis (PCA) were some of the most used mathematical methods for qualification and classifica-
tion of voluminous and heterogeneous experimental data and determining the relationships
between them [26–29].

These methods were considered suitable, as they enabled successful classification of a
large number of data of different origins, as well as the identification and elimination of
redundant information. Chemometric calculations were made by the Statistics 13.5.017
software (StatSoft Inc., Tulsa, OK, USA). The Origin 6.1 software was used for the processing
of the obtained experimental results.

For this research, PCA was performed on a matrix, in which the experimentally
obtained corrosion parameters from the EDX analyses were variables (columns), while the
different parts on the observed alloy samples (spectrums) represent rows. The matrix data
were standardized before the calculation in order to ensure the equal importance of all the
analyzed parameters.

2.3. Data Collecting Analysis

The experiment with the CuAlNi samples was conducted in 3 different locations and
during the years 2018 and 2019. An adequate evaluation of the influences of the seawater
environment on corrosion was required to conclude relevant environment parameters for
the Bay of Kotor and observed over a long period of time prior to the research.

Average temperatures of the sea and atmosphere were below 20 ◦C during the period
of observation, while the average monthly temperatures of the sea were higher than the
average temperatures of the air. The difference between temperature values varied between
0.8 ◦C for August and 10.3 ◦C for December [30]. Likewise, the maximum temperatures
of the sea were considerably lower than the maximum monthly air temperatures, which
varied between 0.2 ◦C in December and 10.9 ◦C in March, respectively. The minimum
sea temperatures, on the other hand, were significantly higher than the minimum air
temperatures, which varied between 12.0 ◦C in October and 22.6 ◦C in December. This
indicated notably lower aberrations in the sea temperature in comparison with the air
temperature [31].

The data about seawater temperature, conductivity, and salinity show that there were
no significant aberrations in the values obtained on the sea depth up to 5 m. The average
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temperature was 18 ◦C, conductivity was between 44.29 and 47.45, and salinity between
30.83 and 28.79, respectively [31].

The salinity and conductivity of the sea decreased on the surface between September
and May due to the rainy season and the inflow of freshwater. Compared to the atmosphere
collected temperature data, higher sea temperatures in the period observed and other
influences of the sea (salinity and conductivity) rendered the corrosion processes in the sea
significantly faster than the corrosion processes in the atmosphere.

Every CuAlNi surface of all samples was scanned under a particular magnification.
Figure 5 shows a sample after 12 months of exposure to the sea, along with the corrosion
depth on the alloy surface expressed in nm. Other samples exposed to the air, sea, and
tidal zone were scanned in a similar way. Table 2 shows the data on magnifications, as well
as corresponding corrosion depth and average values after 6 and 12 months of exposure.

Figure 5. Focus ion beam (FIB) analyses, (a) place 1 of analysis, (b) photo view of sample, (c) mea-
surement value of the corrosion layer in nm on a sample 1 year in the sea (sample C with 30,000
magnification, Table 2b).
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Table 2. Corresponding corrosion wear for air/tide/sea CuAlNi alloy: (a) After 6 months, (b) after 12 months.

(a)
Corrosion Layer (nm)

Average Value (nm)
AIR Item-1 Item-2 Item-3 Item-4 Item-5

A 1) (×30,000) 300 158.33 175 183.33 241.67 211.66
B 1) (×30,000) 225.15 250 183.33 225 275 231.69
C 1) (×60,000) 341.67 273.5 266.67 295.83 308.36 297.20
D 1) (×60,000) 216.67 162.5 175 262.5 220.83 207.5

TIDE

A 1) (×30,000) 1260 1260 1420 958.33 1090 1197.66
B 1) (×30,000) 575 833.33 825 825 1220 855.66
C 1) (×30,000) 1690 1720 1970 1670 2120 1834
D 1) (×60,000) 545.83 545.83 583.33 866.67 775 663.33

SEA

A 1) (×20,000) 787.5 812.5 812.5 900 662.5 795
B 1) (×30,000) 850 991.67 558.33 741.67 733.33 775
C 1) (×30,000) 758.93 946.43 785.71 482.14 553.57 705.35
D 1) (×60,000) 816.67 879.17 883.33 891.67 787.5 851.66

1 A, B, C, and D are samples’ photo views with different magnification of 20,000, 30,000, 60,000.

(b)
Corrosion Layer (nm) Average Value

(nm)Item-1 Item-2 Item-3 Item-4 Item-5 Item-6 Item-7

AIR

A 1) (×30,000) 191.67 258.33 691.67 166.67 641.67 133.33 475 365.48
B 1) (×30,000) 1200 1110 725 575 791.67 175 216.67 684.76
C 1) (×30,000) 150 125 675 575 783.33 891.67 975 596.43
D 1) (×60,000) 120.83 187.5 187.5 116.67 145.83 116.67 145.83

TIDE

A 1) (×30,000) 2510 1620 2270 2530 2540 3330 2466.67
B 1) (×30,000) 2670 2020 1890 1760 3050 2278.00
C 1) (×30,000) 1250 2170 2020 1810 2350 1920.00
D 1) (×60,000) 1210 2190 2390 2130 1810 1946.00

SEA

A 1) (×20,000) 1970 2150 1970 1950 1800 1968.00
B 1) (×30,000) 2120 2040 2160 2200 2240 2152.00
C 1) (×30,000) 1940 1840 1770 1940 1890 1876.00
D 1) (×60,000) 2030 2010 2040 2010 2110 2040.00

1 A, B, C, and D are photo views with different magnification of 20,000, 30,000, 60,000.

3. Results
3.1. EDX Results

The second investigation included the systematization of the data from the EDX
analysis in order to obtain the presence of the chemical elements on the surface of the
CuAlNi samples, separately for all samples.

Figure 6 and Table 3 show the chemical composition of the CuAlNi samples that were
exposed to the influences of the sea for 12 months. The data presented (from 1 to 3) as the
weight percentage of elements, Mean, Standard Deviation, minimum and maximum values.
The lower detection limits of EDX analysis were considered to be 0.1 wt%, with a relative
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uncertainty of ±2% for major constituents with a mass fraction greater than 10 wt%, when
using contemporary EDX spectrum processing techniques [32]. The error distribution
increased rapidly for minor constituents (<10 wt%), where the relative uncertainty may be
considered to be up to ±25% for commercial fitted standards procedures and up to ±50%
for standardless procedures [33]. The analysis errors were considered to be relevant for
the given investigation of the surfaces of samples after their exposure to seawater and the
surrounding environments.

Figure 6. CuAlNi sample exposed after 12 months in the sea.

Table 3. Chemical composition in wt%.

Spectrum C O Mg Al Si S Cl Ca Cu Total

Spectrum 1 14.58 53.11 5.56 5.79 2.27 1.39 0.36 3.03 13.90 100.00
Spectrum 2 12.51 52.38 5.93 7.03 3.36 0.87 0.55 1.97 15.40 100.00
Spectrum 3 12.01 44.27 7.46 6.97 0.26 0.51 2.64 0.38 25.50 100.00

Mean 13.04 49.92 6.32 6.59 1.96 0.92 1.18 1.80 18.26 100.00
Std. Dev. 1.36 4.91 1.01 0.70 1.57 0.44 1.26 1.33 6.31

Max. 14.58 53.11 7.46 7.03 3.36 1.39 2.64 3.03 25.50
Min. 12.01 44.27 5.56 5.79 0.26 0.51 0.36 0.38 13.90

In the same way, each of the six samples underwent EDX analysis, and a specific
number of spectrums was observed for each sample. Table 4 (a and b) shows the specific
numbers of samples and spectrums for all the CuAlNi alloys samples exposed to different
seawater environments after 6 months and 12 months.
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Table 4. The number of samples and spectrums for: (a) The CuAlNi alloys in the sea, tidal zone, and atmosphere after
6 months’ exposure, (b) the CuAlNi alloys in the sea, tidal zone, and atmosphere after 12 months’ exposure.

CuAlNi

Air Magn. No. of Spec. Tide Magn. No. of Spec. Sea Magn. No. of Spec.

(a) 6 months’
exposure

Sample 1 200 Spec 1–6 Sample 1 200 Spec 1–6 Sample 1 200 Spec 1–6
Sample 2 100 Spec 1–6 Sample 2 100 Spec 1-6 Sample 2 200 Spec 1–6
Sample 3 70 Spec 1–6 Sample 3 70 Spec 1–7 Sample 3 100 Spec 1–6

Sample 4 100 Spec 1–4
Sample 5 70 Spec 1–7

(b) 12 months’
exposure

Sample 1 300 Spec 1–8 Sample 1 300 Spec 1–6 Sample 1 300 Spec 1–3
Sample 2 200 Spec 1–7 Sample 2 200 Spec 1–6 Sample 2 100 Spec 1–3
Sample 3 100 Spec 1–6 Sample 3 100 Spec 1–6 Sample 3 200 Spec 1–3

3.2. The Appropriate Statistical Analysis of Corrosion Rate Related to the CuALNi Alloy

Considering the conceptual model shown in Figure 4, the following two subsections
will be shown the results in two specific directions of research. The first is corrosion
depth and the second is changes in the chemical composition of the alloy due to different
environment and exposure time influences.

Statistical analysis was conducted on the basis of 47 measurements of the depth of cor-
rosion caused by the influences of the air (20 measurements were performed after 6 months
and 27 measurements after 12 months); 41 samples whose depth of corrosion was caused
by flood tide (20 measurements were performed after 6 months and 21 measurements
after 12 months) and 40 measurements of the depth of corrosion caused by the influence of
seawater (20 measurements were performed after 6 months and 20 measurements after
12 months). Table 5 shows the basic characteristics of the measured data.

Table 5. Descriptive statistics for corrosion caused by the influence of different environments.

6 Months 12 Months

Mean Standard Deviation Mean Standard Deviation

Air 237.02 53.97 459.32 346.31
Tide 1137.67 489.56 2167.62 522.78
Sea 781.76 132.85 2009.00 129.16

Since the samples were not treated with anti-corrosion coatings, the initial hypothesis
was that corrosion started immediately after the exposure of samples to the corrosive
influences of the environment. It was assumed, therefore, that Tcl equals 0 (Tcl = 0). The
approximate value of the monthly corrosion rate—C1 coefficient—was determined on
the basis of the mean values from Table 5. The linear model for d(t) was determined
by means of a linear regression, which was performed by the Wolfram Mathematica
9 software. Assuming that corrosion emerges immediately after the exposure of samples to
environmental factors, the linear model for the depth of corrosion caused by the influences
of the air, tide, and the sea was labeled as da(t), dt(t), ds(t) and expressed as:

da(t) = 38.522t, (2)

dt(t) = 182.43014t, (3)

ds(t) = 148.99187t, (4)

Figure 7 shows corrosion depths as functions of time in three types of environment,
which were obtained on the basis of three previous models:
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Figure 7. Corrosion depth expressed as a linear function of time.

The linear models presented confirmed that the corresponding corrosion rate equals
ra(t) = da(t)′= 38.522(nm/month). This linear model was characterized by a p-value that
equals 0.0000811097 and shows that the linear model describes the data from Table 1
properly. A similar conclusion was also reached for the rate of corrosion caused by the
influences of flood tides and the sea. The rate of corrosion influenced by flood tides equals
rt(t) = 182.43014 (nm/month), while the rate of corrosion influenced by the sea, was
rs(t) = 148.99187 (nm/month).

Numerous factors with stochastic characteristics affect corrosion, and, therefore,
the c1 coefficient should be regarded as a continuous random variable rather than a
constant, which is the central idea of the paper. The study proposes a probabilistic
approach to the approximation of the Cumulative Distribution Function (CDF) of
corrosion rate (c1). The subsequent sections propose a methodology that relies on the
statistical analysis of the CDF of c1 coefficient, which is considered a random variable.
With the assumption that the linear model d(t) = c1t is acceptable and statistically
correct, the empirical CDF of the c1 =

d(t)
t coefficient can be determined, and, subse-

quently, two-parameter distributions can be fitted to these empirical values. The best
fitted two-parameter distributions that describe the corrosion rate values are obtained
in this way.

Each of the 27 most frequently used two-parameter distributions (Table 6) was ana-
lyzed for every type of environment (the air, tides, and sea).
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Table 6. List of tested two-parameter continuous distributions.

Distribution Parameters

1 Cauchy σ, µ
2 Chi-Squared (2P) ν, γ
3 Erlang m, β
4 Exponential (2P) λ, γ
5 Fatigue Life α, β
6 Frechet α, β
7 Gamma α, β
8 Gumbel Max σ, µ
9 Gumbel Min σ, µ

10 Hypersecant σ, µ
11 Inverse Gaussian λ, µ
12 Laplace λ, µ
13 Levy (2P) σ, µ
14 Log-Gamma α, β
15 Log-Logistic α, β
16 Logistic σ, µ
17 Lognormal σ, µ
18 Nakagami m, Ω
19 Normal σ, µ
20 Pareto α, β
21 Pareto 2 α, β
22 Pearson 5 α, β
23 Rayleigh (2P) σ, γ
24 Reciprocal a, b
25 Rice ν, σ
26 Uniform a, b
27 Weibull α, β

The statistical analysis whose results were verified by means of the Kolmogorov–
Smirnov test was conducted in order to determine the three best fitted two-parameter
distributions that describe the empirical data obtained on the basis of the measurements of
corrosion rate coefficient (c1) adequately. The corrosion rate coefficient is considered to
be a function of time and is affected by environmental factors. The main advantage of the
Kolmogorov–Smirnov test is the fact that it is non-parametric and distribution-free. The
test is also applicable in cases when it should be detected if a sample originated from a
continuous distribution. Null and alternative hypotheses for the Kolmogorov–Smirnov
test are defined in the following way:

H0—the data follow the specified theoretical distribution,
Ha—the data do not follow the specified theoretical distribution.

The goodness of fit shows how well a selected probability function fits the data
measured. The comparison between a calculated p-value and a critical value for predefined
significance level was made in order to check the quality of the distribution fitted. Table 7
shows the values of significance level α and the corresponding critical values that were
used in the paper.

Table 7. Values used for significance level and corresponding values for critical value.

α 0.2 0.1 0.05 0.02 0.01

Critical Value 0.16547 0.18913 0.21012 0.23494 0.25205

The hypothesis regarding the distributional form was rejected for the chosen α signifi-
cance level if the test statistic exceeded the critical value from Table 7. The p-value was
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calculated based on the test statistics and denoted the threshold value of a significance level.
A null hypothesis would be accepted for all values of α that are lower than the p-value.
The null hypothesis was rejected if the p-value was lower than the selected critical value,
and it can be concluded that the theoretical distribution did not describe the empirical data
for the selected significance level. Generally, if the calculated value of the test statistic was
low, there was not a significant statistical difference between the theoretical and empirical
values. More precisely, the calculated values of the test statistic should be lower than the
critical value selected.

The analyzed two-parameter distributions depend on the set of different parameters
(θ) shown in Table 6. Theoretical distributions were defined on the basis of the Probability
Density Functions (PDF). PDF was also used to determine formulas for the CDF of the
observed theoretical distributions. In the following sections, CDF will be labeled as F(x),
while PDF will be labeled as f (x).

The fitting of theoretical distributions to the set of data obtained through the measure-
ments of corrosion rate in different types of environment (the air, flood tides, and the sea)
aims to determine the value of the set of θ parameters of theoretical distributions. Each
theoretical distribution should describe the distribution of empirical data adequately for
each type of environment examined (the air, flood tides, and the sea). The corresponding
set of θ theoretical parameters for each two-parameter distribution was determined by the
maximum likelihood estimation method.

According to the Kolmogorov–Smirnov test, Weibull, Normal, and Nakagami distribu-
tions were the three best two-parameter distributions fitted to the data that represented the
depth of corrosion influenced by the air. Figure 8 shows the graph of the PDF of best-fitted
two-parameter distributions.

Figure 8. Probability density function (PDF) graphics for the three best fitted two-parameter distribu-
tions for air influence.

The expressions for fitted PDF (denoted as f we
a (x)) and CDF (denoted as Fwe

a (x)) of
the Weibull distribution of c1 in the case of air, influence are, respectively, given by

f we
a (x) = 0.0024e−0.0014x1.7551

x0.755 for x ≥ 0, (5)

Fwe
a (x) = 1− e−0.0014x1.755

. (6)

The corresponding mean and Standard Deviation of the coefficient c1 are, respectively,
equal to 38.046 (nm/month) and 22.378 (nm/month). It is worth noting that the previous
mean value was very close to the corrosion rate r(t) = 38.522 (nm/month) obtained based
on the linear fitted model for d(t) given by Equation (1).
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The expressions for fitted PDF (denoted as f no
a (x)) and CDF (denoted as Fno

a (x)) of
Normal distribution of c1 in the case of air, influence are, respectively, given by

f no
a (x) = 0.01e−0.0003 (x− 22.445)2 for −∞ < x < +∞, (7)

Fno
a (x) = 0.01

∫ x

−∞
e−0.0003 (t− 22.445)2dt. (8)

The corresponding mean and Standard Deviation of the coefficient c1 are equal to
38.799 and 22.445 (nm/month), respectively. The mean value was again very close to the
corrosion rate r(t) = 38.522 (nm/month) obtained based on the linear fitted model for
d(t) given by Equation (1).

Nakagami distribution was ranked as the third best two-parameter distribution. Its
PDF ( f na

a (x)) and CDF (Fna
a (x)) of coefficient c1 in the case of air, influence are, respectively,

given by
f na
a (x) = 0.0025e −0.0004x2

x 0.699 for x ≥ 0, (9)

Fna
a (x) = 0.00256

∫ x

−∞
e −0.0004t2

t 0.699dt =
∫ 0.0004 x2

0
t−0.15e−tdt. (10)

The corresponding mean and Standard Deviation of the coefficient c1 are equal to
38.839 and 22.135 (nm/month), respectively. It can be concluded that the calculated mean
value was very close to the corrosion rate r(t) = 38.522 (nm/month) obtained based on
the linear fitted model.

In terms of the influences of flood tides on corrosion, Fatigue life, Lognormal, and Log-
logistic distributions are considered as the three best fitted two-parameter distributions,
according to the Kolmogorov–Smirnov test. Figure 9 shows the graph of the PDF of the
listed distributions.

Figure 9. PDF graphics for the three best fitted two-parameter distributions for air influence

Fatigue life distribution has the following analytical forms for PDF and CDF, respectively:

f f l
t (x) =

e−
0.02

x −710.41x(149.56 + 26070.56x)

x
3
2

for x > 0, (11)

F f l
t (x) = 1

2 + 4.31× 10−21
(
−1.16× 1020 1√

π

∫ 0.153√
x −26.65

√
x

0 e−t2
dt− 279.179

(
−1.20× 107 + 1.20× 107 1√

π

∫ 0.153√
x +26.65

√
x

0 e−t2
dt
))

. (12)
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Lognormal distribution je was ranked as the second best two-parameter distribution
in the case of the influence of tides on corrosion processes. The PDF and CDF for the
Lognormal distribution are given in the following terms, respectively:

f ln
t (x) =

0.077e−0.019(−0.346+lnx)2

x
for x > 0, (13)

Fln
t (x) =

1
2

(
1− 1√

π

∫ 0.14(0.346−lnx)

0
e−t2

dt
)

. (14)

The following analytic forms of PDF and CDF could be derived for the influences of
flood tides in case of Log-logistic distribution:

f ll
t (x) =

9.77× 10−11x3.785

(1 + 2.04× 10−11x4.785)
2 for x ≥ 0, (15)

Fll
t (x) =

1

1 + 4.897×1010

x4.7851

. (16)

Mean values for Fatigue, Lognormal, and Log-Logistic distribution are 185.0, 185.22,
and 184.36 (nm/month), while.

Standard Deviation values are 65.568, 66.052, and 76.835 (nm/month), respectively.
Notice that mean values for the listed three best two-parameter distributions are very close
to the corrosion rate calculated based on the linear model given by Equation (2).

The fitting of two-parameter distributions to the empirical data obtained through
the measurement of corrosive processes influenced by the sea, along with the data rating
based on the Kolmogorov–Smirnov test, indicate that the three best fitted two-parameter
distributions are GumbelMin, Weibull, and Inverse Gaussian. Figure 10 shows the graph
of the PDF of these theoretical distributions.

Figure 10. PDF graphics for the three best fitted two-parameter distributions for sea influence

PDF and CDF for GumbelMin, Weibull, and Inverse Gaussian distribution, denoted
by f gm

s (x), Fgm
s (x), f we

s (x), Fwe
s (x), and f ig

s (x), Fig
s (x) are respectively

f gm
s (x) = 0.05e(0.05(x−160.32)−e0.05(x−160.32)) for −∞ < x < +∞, (17)

Fgm
s (x) = 1− e−e0.05(x−160.32)

, (18)
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f we
s (x) = 5.43× 10−13e−9.17×10−14x5.92

x4.92 for x ≥ 0, (19)

Fwe
s (x) = 1− e−9.17×10−14x5.92

, (20)

f ig
s (x) = 4.87e−

0.0000029(−5084.6+x)2
x

√
1
x3 for x ≥ 0, (21)

Fig
s (x) =

1
2


1− 1√

π

∫ − 0.0017(x−5084.6)√
x

0 e−t2
dt + 1.06×(

1− 1√
π

∫ 0.0017(5084.6+x)√
x

0 e−t2
dt

)
. (22)

Mean values for GumbelMin, Weibull, and Inverse Gaussian distribution are 148.86,
147.83, and 148.85 (nm/month), while Standard

Deviation values are 25.469, 29.007, and 25.468 (nm/month), respectively. Notice that
mean values for the listed three best two-parameter distributions are very close to the
corrosion rate calculated based on the linear model given by Equation (3).

Figure 11 shows the graphic view of the CDF of the three best fitted theoretical
two-parameter distributions for the three types of environment examined.

Figure 11. Comparative presentation of CDF graphs for the three best fitted two-parameter distribu-
tions for the influence of three different seawater environments.

Tables 8–10 show the three best-fitted distributions that were obtained through the
ratings according to the Kolmogorov–Smirnov test for the influences of the air, tides,
and the sea on corrosion. The values of test statistics and p-value were calculated for
each theoretical distribution based on the Kolmogorov–Smirnov test. The Kolmogorov–
Smirnov test statistic was calculated as the largest vertical difference between theoretical
and empirical CDFs. The rating of two-parameter distributions was organized in a non-
descending array of test statistic values and in a non-ascending array of p-values. The
two-parameter distribution with the lowest value of test statistic is the best fitted theoretical
distribution. Therefore, it can be concluded that a two-parameter distribution with the
lowest value of test statistic best describes empirical data. On the contrary, the best fitted
two-parameter distribution was characterized by the highest p-value.
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Table 8. Kolmogorov–Smirnov test values for the three best fitted two-parameter distributions for
the air influence.

AIR: Kolmogorov–Smirnov Test Ranking

Distribution 1. Weibull 2. Normal 3. Nakagami
Statistic 0.09944 0.10073 0.10282
p-value 0.70408 0.68916 0.66495

Table 9. Kolmogorov–Smirnov test values for the three best fitted two-parameter distributions for
the tide influence.

TIDE: Kolmogorov–Smirnov Test Ranking

Distribution 1. Fatigue Life 2. Lognormal 3. Log-Logistic
Statistic 0.07773 0.07828 0.0783
p-value 0.94906 0.94621 0.94612

Table 10. Kolmogorov–Smirnov test values for the three best fitted two-parameter distributions for
the sea influence.

SEA: Kolmogorov–Smirnov Test Ranking

Distribution 1. Gumbel Min 2. Weibull 3. Inv. Gaussian
Statistic 0.0821 0.10442 0.11332
p-value 0.92996 0.73665 0.64192

The comparison between the values of test statistics in Tables 8–10 and the predefined
critical values for the selected significance level shown in Table 6 indicates that a null
hypothesis was not rejected for the analyzed values of α. Moreover, a null hypothesis was
not rejected for either of the proposed best fitted theoretical distributions for the influences
of the air, flood tides, and the sea.

3.3. The Result of Different Sea Water Environment’s Influence on CuAlNi

In this manuscript, in addition to statistical analysis, a multivariate analysis, PCA,
was applied to the EDX results, with the aim of obtaining information about the influence
of the environment and exposure time on the corrosion behavior of the CuAlNi.

The registration and distinction of the different influences of various types of the
environment on the degradation of metals can be performed through the application of
PCA and in accordance with the EDX results, as confirmed in the previous study. The
analysis of the CuAlNi detected similar trends in corrosive behavior in different types
of environments. Figure 12 shows the corrosive behavior of the alloy based on the EDX
results after six months of exposure to various types of the corrosive environment.
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Figure 12. Score plot as a result of PC1 versus PC2 (after 6 months).

The obtained PCA results confirm that the applied multivariate method of analy-
sis could detect large and small differences in the corrosion behavior of this alloy after
6 months as a function of different environments. As Figure 12 shows, two principal
components (PC1–PC2) give a very good description of the corrosion behavior (with very
small deviations) of the alloy, depending on the characteristics of the environment the
alloy was exposed to. As Figure 12 illustrates, the PCA, with equal precision, registered
the existence of a difference between the corrosion behavior of the alloy when exposed to
flood tides (T) and the air (A), as well as the notably different influence of the sea (S) on
CuAlNi dissolution.

Namely, the corrosive behavior of the CuAlNi samples in the sea was characterized
by the positive values of PC2, while the influence of the air resulted in positive PC1 values
and negative PC2 values. According to the PCA analysis, the samples exposed to the
influences of flood tides were characterized by negative PC1 and negative PC2 values,
which differentiates the samples affected by the flood tides from the samples affected by
the air.

Furthermore, the study examined the possibility of the applied multivariate analysis
to register the influence of the length of exposure of the alloy to the different types of the
environment on the degree of damage.

Figure 13 shows the correlation between PC1 and PC2, which were obtained through
the PCA analysis of the data from the EDX analysis of the CuAlNi samples after 12 months
of exposure to the types of environment examined.
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Figure 13. Score plot as a result of PC1 versus PC2 (after 12 months).

After 12 months, a slightly different image can be registered (Figure 13). As with
the measurements performed after 6 months under these conditions, clear separation of
samples exposed to the air can also still be observed, while between samples exposed to sea
and tides, the noticeable separation that existed after 6 months was lost, and data largely
overlapped. This distribution of the obtained results may indicate that the corrosion of
CuAlNi in the sea and in the air continues the trend of behavior regardless of time, while in
the case of flood tides, the mechanism of dissolution of the CuAlNi changed as a function
of time.

The data obtained through the EDX analysis were examined by means of the PCA
method for each type of environment on the basis of a matrix that contained the data for
the environment examined in both time intervals (6 and 12 months). This examination was
performed in order to provide more precise data on the specific influences of the particular
types of the environment on the behavior of the CuAlNi over the time interval examined.

Figure 14 shows the correlation between PC1 and PC2, which was obtained through
the analysis of the samples that were exposed to the influences of the sea (a), flood tides
(b), and the air (c) over the time interval indicated.

Figure 14. Score plot (PC1 vs. PC2) after both time intervals exposure to (a) sea, (b) flood tides, (c) air.

Figure 14 shows clearly the various effect of the examined environment on the cor-
rosive behavior of the CuAlNi over the time interval examined. The sea (Figure 14a) and
flood tides (Figure 14b) had the same influence on the corrosive behavior of the examined



Crystals 2021, 11, 274 21 of 23

alloy. Namely, in both environments, there was a clear separation of the tested alloy on
the basis of corrosion behavior after 6 and 12 months. The sample that was exposed to
the influence of the air exhibited different trends in corrosive behavior. There was not a
significant difference between the data obtained after 6 and after 12 months, as shown in
Figure 14c. These effects of the marine environment were related to considerably slower
corrosion of the CuAlNi exposed to the influences of the air. Contrary to the influences
of the sea and flood tides, the additional 6 months of exposure to the air did not cause
significant corrosive damage of the CuAlNi.

4. Conclusions

The main findings are as follows:
Empirical data analysis of the marine environment’s influence on the corrosion pro-

cesses of CuAlNI SMA represented by a linear model showed that the mean value of
monthly corrosion for air, tides, and sea, were formatted corrosion layers with depths of
38.522, 182.43014, and 148.99187 nm, respectively. The linear model had shown clearly that
the tides had the greatest influence on the corrosion processes, followed by the sea, while
the air had the lowest influence.

There were 27 continuous two-parameter distributions tested and based on the statis-
tics obtained by the Kolmogorov–Smirnov test, it can be concluded that the best fitted
two-parameter distribution for the air’s influence is the Weibull distribution, for the tides’
influence Fatigue life distribution, and Gumbel Min distribution for the sea’s influence. The
significance level of statistical analysis showed that all three proposed best two-parameter
continuous distributions followed the empirical data describing the corrosion processes in
all three environments (air, tides, sea) adequately.

The graphic analysis showed that the corrosion rates influenced by the air and sea
had a similar curve shape. The similar character of these corrosion values can be explained,
bearing in mind the calculated Standard Deviations ranging between 22.135–22.445 for air
and 25.468–29.007 for the sea, although the influence of the sea on the corrosion processes
is, in principle, greater than the influence of the air. On the other hand, the corrosion rate
of the tides was the fastest because the thickest corrosion layer had formed (mean was
182.43 nm); the rapid increase of the corrosion rate was connected with the longer process
time. In addition, there was a significantly greater dispersion of results calculated in the
tides’ environment (SD was between 65,568 and 76,835), which can be attributed to the
greater tide dynamics, and, with that, major changes in the chemical/physical parameters.

The final conclusion is that PCA analysis registered the boundaries between the
influence of the sea, tides, and atmosphere on the corrosion behavior of the CuAlNI SMA
clearly. Furthermore, the PCA registered that the weather changes in the time of 6 and
12 months had different effects on the corrosion process of the CuAlNi SMA, depending
on the environment to which they were exposed. It was found out that the additional
6 months’ exposure of CuAlNI SMA to the air did not cause significant additional corrosive
damage of CuAlNi SMA, which is contrary to the influences of the sea and flood tides.
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