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Abstract: Detecting a variety of biological samples accurately and swiftly in an integrated way is
of great practical significance. Currently, biofluorescent spectrum detection still largely relies on
microscopic spectrometers. In this study, we propose an integrable method to detect biofluorescent
spectrums with designed liquid crystal tunable filter (LCTF), in order to identify typical biological
samples such as cells and bacteria. Hela cells labeled with red and green fluorescent proteins and
Pseudomonas with fluorescence wavelengths of 610 nm, 509 nm and 450 nm, respectively, are
inspected. High-resolution (6 µm) biofluorescent results have been achieved, together with clear
images of the Hela cell clusters and the Pseudomonas bacteria colonies. Biofluorescence signals can
be detected at a high transmittance (above 80%), and the response time of the device can reach 20 ms
or below. The proposed method has the potential to be integrated into a microfluidic system to detect
and identify the biofluorescent signals as a high throughput, low-cost option, for both high resolution
and large field observation applications.

Keywords: biofluorescence detection; liquid crystal tunable filter; high transmittance

1. Introduction

Biological specimen diagnostic platforms have been widely used in laboratories world-
wide for more than 50 years. They can provide information related to the degree of en-
vironmental pollution, the risk of injury and specific health conditions with biosensor
devices [1–5]. Medical-level biomedical diagnostic platforms can also diagnose and predict
many diseases [6–9]. However, traditional biomedical diagnostics are mainly carried out
by sending collected samples to analytical laboratories outside the field for testing. Today,
the popularization of biosensors and microfluidic technology fundamentally changes this
situation. Analysis can be performed immediately at the sampling site by developing
point-of-care testing (POCT) small-volume diagnostic equipment. These methods elimi-
nate complex processing procedures of the test sample in the laboratory and obtain the
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test results in a short time. In addition, there is a wide range of sensing mechanisms,
including optical, mechanical, magnetic and electric field effects [10–15]. Because of the
advantages of contact-free, noninvasive, high specificity and so on, optical biomedical
diagnostic systems are extensively applied. Tests with fluorescent optical signals have
been accepted as an inexpensive and secure technology for developing a multipurpose
biosensors with high detectability and sensitivity. Therefore, realizing a high throughput,
real-time and integrable fluorescent device with microfluidics becomes an important option
towards various clinical applications with biological samples.

To detect biological samples with fluorescence efficiently and sensitively, several
approaches based on liquid crystal tunable filter (LCTF), correlation spectrometer and
spectrophotometer were put forward [16–19]. Among the various sensing modalities
used in the development of biofluorescence spectrometric analysis methods, liquid crystal
has been utilized for biofluorescence sensing with enormous potential due to its simple
mechanism and wide field of view [20–22]. As the core device of multispectral imaging
technology, liquid crystal had been incorporated into clinical biofluorescence detection
in the past decades because of playing a guiding, real-time monitoring role in cancer
surgery and wound healing [23–25]. However, previous work focused on a maximum
transmittance of about 60% in a sophisticate system [26]. Meanwhile, the instruments with
a spectrometer are not suitable for integration and miniaturization.

Here, a compact and integrable biosensor with a liquid crystal filter as core device
was developed and integrated in a biofluorescence detection system. Hela cells labeled
with red and green fluorescent proteins and Pseudomonas were chosen as experimen-
tal objects, which are the most typical specimen in cancer research and environmental
protection [27–30]. First, dynamic experiments were conducted with a dedicated opti-
cal system to verify the response speed and sensitivity of designed liquid crystal filter
with variable voltages. Furthermore, static parameters were tested to determine the cor-
responding maximum transmittance for each biofluorescence wavelength. A variety of
samples were eventually characterized with different spatial and time-resolution con-
ditions. The proposed devices not only meet the demand of a compact and integrable
biofluorescence system, but also have an advantage in terms of cost compared with other
common biofluorescence detection techniques, as shown in Table S2 of Supplementary
Materials. This work provides a novel mean of detecting biological specimens with a
portable and integrable feasibility.

2. Materials and Methods
2.1. System Design and Experiment Preparation

The schematic and physical setups of the experimental system comprise the designed
liquid crystal filter, Charge-coupled Device (CCD) camera and signal generator (3390,
Keithley, Cleveland, Ohio, U.S.), as shown in Figure 1a,b. A pair of parallel polarizers
was added on both sides of the liquid crystal layer to filter light, which could realize the
transformation of phase retardation to amplitude difference. A titanium-coated glass plate
was placed on the polarizer above the liquid crystal layer to construct an environment
suitable for the survival of the sample and prepare the basis for the minimum resolution in
the subsequent experiment. Four letter patterns with B, U, A and A with different sizes
(20.83 mm2, 3.8 mm2, 0.95 mm2, 0.25 mm2) and eight round holes with diameters from
70 µm to 6 µm were fabricated by photolithography. The thickness of the titanium layer
was 120 nm, which was prepared by electron beam evaporation. Figure 1a also shows the
structure of designed liquid crystal filter in detail. The liquid crystal cell was a symmetrical
structure combined with glass substrates, Indium Tin Oxides (ITO) and alignment layer;
the liquid crystal molecular layer was in the middle. Considering of the sensitivity and cost,
we chose a parallel oriented nematic liquid crystal for electrically controlled birefringence,
which was packed in a 4.2 µm thick liquid crystal cell.
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Figure 1. (a) Fast tunable biofluorescence detection system with integrable liquid crystal filter (LCTF);
Red fluorescent protein labeled Hela cells (RFP); Green fluorescent protein labeled Hela cells (GFP);
(b) Experimental System setups; (c) Cell excitation light through designed LCTF; (d) UV excitation
light and Pseudomonas fluorescent light.

We cultured red fluorescent protein labeled Hela cells (RFP), green fluorescent protein
labeled Hela cells (GFP) and Pseudomonas with patterned shadow masks, and stimulated
them to produce red (610 nm), green (509 nm) and blue (450 nm) fluorescent light. The
fluorescence was captured by the CCD detector of the microscope (CKX53, Olympus,
Tokyo, Japan) after passing through the liquid crystal system, and was finally imaged
on the computer. During the experiment, the selective filtering of the liquid crystal was
implemented in a square wave signal of 2.5 kHz at both ends of the liquid crystal layer.
The transmittance of the liquid crystal filter could be controlled by adjusting the voltage
amplitude of the square wave through a LabVIEW program. In addition, the microscope
could provide two cell fluorescence excitation light sources (the excitation light band of
RFP is 510 to 550 nm, and the excitation light band of GFP is 460 to 490 nm), while the
fluorescence excitation devices of the bacteria are a separate ultraviolet (UV) light source
(365 nm–370 nm). The details of experimental facility are shown in Figure 1c,d, respectively.
The processes of pattern preparation and cells cultivation are shown in supplementary
material Figure S1.

2.2. Spectrum Filtering Based on Integrable Liquid Crystal Filter

To detect the biosample fluorescence, an integrated and tunable spectral filtering tech-
nology is desired. Considering the weak signal properties of the biosample fluorescence, a
high transmittance of the spectrum-filter device is preferable. Hereby, based on electrically
controlled birefringence (ECB), a single-stage liquid crystal tunable filter, which can avoid
excessive transmission loss caused by multiple transmission, was designed and fabricated
to distinguish typical biological fluorescent signals with wavelengths of 610 nm (red),
509 nm (green) and 450 nm (blue), respectively.

The test schematic of the designed liquid crystal filter is shown in Figure 2a,b. A Lyot
structure [31,32] with polarizer and analyzer paralleled to each other was used, and the
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liquid crystal was sandwiched between with the optical axis deviating 45◦ to the polarizer.
A broadband light source (AvaLight-HAL) covering all three fluorescent wavelengths and
a high-resolution spectrometer (Ocean Optics HR4000) was employed to characterize the
designed filter. The detected spectral data was recorded and processed automatically by a
LabVIEW program.

Figure 2. (a) Experimental setup for spectrum filtering based on electrically controlled birefringence;
(b) Corresponding optical path physical map.

The main architecture of the electrically tunable liquid crystal spectral filter is shown
in Figure 3a. It consists of two glass substrates coated with a transparent ITO layer as
electrode, alignment layers defining the molecular director of nematic liquid crystal layer
(E7 from Merck, Darmstadt, Germany). An antiparallel planer alignment configuration
with alignment direction along the long axis of the cell is applied for a homogenous liquid
crystal director distribution. In this configuration, the liquid crystal molecules demonstrate
a property of ECB. In the absence of an electric field, the liquid crystal molecules follow the
initial condition defined by alignment layers to be uniformly aligned. When the external
electric field is applied across two substrates, the liquid crystal directors, representing
the orientation of liquid crystal molecules, will be titled towards the electric field vector,
as shown in Figure 3a. This distortion introduced by the electric field is so-called splay
deformation. The elastic energy density is given by [33]:

felastic =
1
2

[
K11(×n)2 + K22(n ××n)2 + K33(n ××n)2

]
(1)
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where n is the liquid crystal director, K11, K22 and K33 are the splay, twist, and bend elastic
constants of the liquid crystal, respectively. The electric energy density is given by:

felectric = −1
2

ε0∆ε(E·n)2 = −1
2

ε0∆εE2 sin2 θ (2)

Figure 3. (a) Schematic diagram of electrically controlled distribution of molecular directors
and corresponding textures under polarized microscope; (b) The fluorescence transmittances ver-
sus applied voltages for the three wavelengths; (c) The curve of the maximum transmittance at
different wavelengths.

Where ∆ε is the dielectric anisotropy of the liquid crystal molecule, θ is the tilt angle
of director. For reaching equilibrium state, the director distribution satisfies the minimum
of total free energy f = felastic + felectric. Figure 3a shows that the amplitude of the electric
field corresponds to the average induced tilt angle of liquid crystal directors θ(E).

The effective birefringence ∆neff(E) deviates from the initial optical anisotropy
∆n(E = 0) = ne − no, here no/ne is the reflective index of ordinary and extraordinary light (for
E7 mixture, no = 1.517 and ne = 1.741). Once the averaged tilt angle induced by the electric
field θ(E) is determined, the effective birefringence ∆neff(E) can be calculated as [34]:

∆ne f f =
none(

n2
o cos2 θ + n2

e sin2 θ
)1/2 − no (3)

With the effective birefringence controlled by the electric field, the transmittance of a
single stage liquid crystal filter is:

I/I0 = cos2
(

π∆ne f f (E)d
λ

)
(4)

As shown in Figure 3a, with different voltage amplitudes, the ECB effect leads to a
shift of central wavelength of the tunable filter. At 1.45 V, 1.65 V and 1.9 V, the textures
observed under a microscope show uniform colors corresponding to wavelengths of
450 nm, 509 nm and 610 nm, respectively.
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3. Results and Discussion
3.1. Electro-optical Characterizations

For the purpose of distinguishing three typical fluorescent wavelengths of 450 nm,
509 nm and 610 nm, the compact and integrable liquid crystal filter based on ECB was
designed for high transmittance and low driving voltage. The integration time of each
measurement is 100 ms. The nematic liquid crystal mixture E7 (with ne of 1.741 and
no of 1.517) was filled into a 4.2 µm-thick planer-aligned cell. When applied voltage
signals with an amplitude exceed threshold Vth (Vth < 1 V), the electrically controlled
transmittance exhibits a dependence on the incident wavelength, as shown in Figure 3b. For
detecting Hela cell with 509 nm green fluorescence, the corresponding voltage was 1.45 V.
In this case, the transmittance of target wavelength 509 nm was greater than 84%, and the
transmittance of other fluorescence 450 nm or 610 nm was below 10%. Similarly, to detect
the fluorescence of Pseudomonas (450 nm) and Hela cells (610 nm), the corresponding
voltages were measured to be 1.65 V and 1.9 V for realizing transmittance of 82% and
85%, respectively. The system gave priority to the detection of 509 nm and satisfied the
detection of 450 nm and 610 nm. If there are requirements for other wavelengths (any
fluorescence), the system can make flexible adjustments according to actual situations to
meet detection effect.

In our approach, the high optical transmittance facilitated the weak fluorescence
signal detection, which was critical for the enhancement of image resolution and detection
accuracy. The optimization of the liquid crystal design was conducted considering the
low intensity and narrow linewidth property of fluorescence. Thus, a single-stage liquid
crystal composed of a single liquid crystal cell sandwiched between parallel polarizers
was employed for high throughput of the system. Moreover, based on the flexibility of
device design, including liquid crystal layer thickness and optical birefringence, multiple
combinations of fluorescent wavelengths could be distinguished separately.

The electrical tunability of the central wavelength provided the possibility for detection
of various fluorescent samples. To prove it, in the process of voltage increasing from 1 V to
2 V in steps of 0.001 V, the transmittance in the wavelength range of 400 nm–650 nm was
recorded. The experiment results fitted by polynomials (7 orders) showed a trend that the
corresponding maximum transmittance increases as the wavelength increases. As shown
in Figure 3c, the maximum transmittance of three typical fluorescent wavelengths, 450 nm,
509 nm and 610 nm, was 85% (1.65 V), 87% (1.45 V) and 86% (1.9 V), respectively. In the
whole visible range, the maximum transmittance maintained at about 80%, and with slight
oscillation within ±4%, as the maximum transmittance curve in Figure 3c shows, due to
interference between reflections from two transparent electrode ITO layers.

3.2. Static Characterization and Resolution

To verify the ability of the designed system (as shown in Figure 1a) to detect and
identify biofluorescent signals, the shadow mask cultivated with Pseudomonas bacteria
colonies, GFP-labeled Hela cells and RFP-labeled Hela cells was placed on the liquid crystal
filter for static characterization. Figure 4 shows the scanning electron microscope (SEM)
and the fluorescent images of the observed bacteria and cells. Before the measurement, the
density of Hela cells and Pseudomonas was controlled to about 20%.
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Figure 4. Static characterization of the cells and Pseudomonas with scanning electron microscope
(SEM) and fluorescent microscopic photographs.

Column (a) shows SEM images of the Pseudomonas bacteria colonies, the aggregated
Hela cells and the single Hela cell, respectively, which indicated that the previous sample
cultivation process had no effect on the morphologies of the biological samples. Columns
(b) and (c) show the fluorescent images of two dimensions of the letters filled with biological
samples, captured by the LCTF-based detection system. Columns (d) and (e) show the
fluorescent images of hole (70 µm and 6 µm in diameter, respectively) arrays filled with
biological samples, captured by the LCTF-based detection system. These clear images
demonstrate the feasibility of our fast tunable biofluorescence sensing device in detecting
biological samples with different dimensions and morphologies.

The diameters of some typical cells are summarized in the Supplementary Information,
Table S1 [35]. Figure 4e ii and iii indicates the possibility of our detection system to identify
the fluorescent signal of the single cell for further biological and clinical research. Moreover,
our device is not designed for detection with a certain biological sample. As long as the size
and fluorescence characteristics are suitable for our device, we can perform fluorescence
detection on it. The detection of circulating tumor cells (CTCs) plays a crucial role in
cancer biology and clinical research, since the metastasis of tumor cells is the main cause of
cancer-related deaths. It can be seen from Figure 4d ii and iii that the proposed system may
provide enormous potential for CTCs detection. Cells with different fluorescent proteins
can be detected by the selective transmittance of liquid crystal implemented in impressed
voltage through the specific binding of fluorescent proteins to cells.

3.3. The Dynamic Characterizations

In order to further determine the accuracy of the experimental results and explore the
feasibility of the device in the condition of a variety of samples, a dynamic characterization
experiment based on the optical system was designed and carried out.

First, the driving scheme of the designed liquid crystal filter was based on amplitude
modulation of AC voltage signals. When the voltage was determined, the transmittance of
corresponding wavelengths within a certain frequency range (between 0 Hz and 3000 Hz)
was compared. The stabilization time of the liquid crystal was set to 100 ms and the sweep
interval was 1 Hz. It was demonstrated that the frequency dependence of transmittance was
severe at frequencies below 1 kHz, as shown in Figure 5a. Then, the electrically controlled
transmittance reached saturation, which was 83% for 450 nm at 1.65 V, 84% for 509 nm
at 1.45 V, and 85% for 610 nm at 1.9 V, respectively, within a frequency range of 1 kHz to
3 kHz. Thus, AC signals with a frequency of 2.5 kHz were used for our driving scheme.
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Figure 5. (a) The relationship between the transmission of liquid crystal at different wavelengths
and the signal frequency at both ends of the liquid crystal at a specific voltage; (b) Experimental
confirmation of the speed of liquid crystal reaction.

Then, the electro-optical dynamic behavior was evaluated using the electrically con-
trolled transmittance of a 532 nm laser. Assuming that the laser source had good monochro-
maticity and stable intensity, it can characterize the response speed of the liquid crystal
filter to a voltage change. Normally, the switching time was defined as the time of trans-
mittance changed from 10% to 90%, as shown in Figure 5b. Given the corresponding
voltages for three fluorescent signals, V1 = 1.45 V (λ1 = 509 nm), V2 = 1.65 V (λ2 = 450 nm),
and V3 = 1.9 V (λ3 = 610 nm), respectively, τ12 = 12.66 ms represented the switching time
from green to blue fluorescence. Table 1 shows the switching time between three typical
fluorescent signals, which decreased to 20 ms or below; this was much faster than reported
in prior work [21]. Some comparisons of the liquid crystal tunable filter for biodetection
can be found in Supplementary Materials Table S3.

Table 1. Switching time of liquid crystal among multiple fluorescence.

τ12 τ23 τ32 τ21

Switching time (ms) 12.66 13.17 20.78 10.85

4. Conclusions and Future Work

A fast, tunable biofluorescence detection device with integrable liquid crystal tunable
filter was demonstrated. The experimental results show that the transmittance of three
biofluorescence signals in the system is more than 80%, which is considerably higher than in
existing technology. Furthermore, we observed the patterns of three biofluorescence signals
clearly with high resolution (6 µm) and large field (70 µm). It is also worth noting that the
voltage and frequency dependence corresponding to the high transmittance are reasonable
and controllable. The response time of the device can achieve 20ms or below, which greatly
improves the accuracy of our experimental results and the probability for rapid detection of
various biological samples. The experimental results provide strong support and evidence
for fabricating a device, which is simple to construct and cost-effective for testing under
different resolution requirements without tedious pretreatment. Furthermore, research and
development of this technology will promote innovation of traditional bioassay technology
and satisfy the increasing demand of a miniaturized, multipurpose and fast detection
platform with high sensitivity and low power consumption.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-435
2/11/3/272/s1, Table S1: The diameters of some typical cells. Table S2: Summary of biofluorescence
detection techniques. Table S3: Some comparisons of the liquid crystal tunable filter for biodetection.
Figure S1: Pattern production and cells cultivation.

https://www.mdpi.com/2073-4352/11/3/272/s1
https://www.mdpi.com/2073-4352/11/3/272/s1
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