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Abstract: Three dimensional (3-D) FinFET devices with an ultra-high Si-fin aspect ratio have been
developed after integrating a 14Å nitrided gate oxide upon the silicon on insulator (SOI) wafers
through an advanced CMOS logic platform. Under the lower gate voltage (VGS-VT) and the higher
drain/source voltage VDS, the channel-length modulation (CLM) effect coming from the interaction
impact of vertical gate field and horizontal drain field was increased and had to be revised well as
the channel length L was decreased. Compared to the 28-nm MOSFETs, the interaction effect from
the previous at the tested FinFETs on SOI substrate with the short-channel length L is lower than that
at the 28-nm device, which means the interaction severity of both fields for nFinFETs is mitigated,
but still necessary to be concerned.

Keywords: FinFET; SOI; early effect; CMOS; MOSFET; drive current.

1. Introduction

With the evolution of process technology and the need of marketing, exploring the
high speed, low cost, and high-volume capacity in integrated-circuit (IC) chips is the
development trend in the modern semiconductor industry [1–3]. As the process of tech-
nology enters the nano-node generation, seeking the better device structure compatible
with the Si-based process flow is a good way to promote the drive current and product
competition. The fin field-effect transistor (FinFET) structure is one of the impressive
candidates in the tremendous competitive FET devices [4–7]. In order to obtain ultra-high
density metal-oxide-semiconductor FET-like (MOSFET) IC products, a 3D FinFET device
has been incorporated as a promising candidate as compared to other double gate de-
vice structures [8,9] owing to its process compatibility with conventional logic devices.
Furthermore, FinFET devices demonstrate the advantages of avoiding the shallow trench
isolation process as well as effective improvement of drive current ION, device leakage
IOFF, subthreshold swing, drain-induced barrier lowing (DIBL) effect, and short channel
effect (SCE) due to the good controllability of gate electrode surrounding the erected silicon
body of Si-fin [10,11]. Besides the substrate with silicon bulk substrate [12,13], the device
fabricated by adopting the silicon-on-insulator (SOI) wafer [14,15] in high-performance
computing (HPC) products including the advanced 5G/6G communication systems, smart
phones, quantum calculation, artificial intelligent applications, and driverless systems are
a feasible choice [16–18]. Using the SOI wafer, the benefits for IC chips compared with the
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conventional bulk silicon substrate chiefly contain lower supply power which can reduce
power by 2 to 3 times, high performance which reduces switching delays and gains the
improvement of 20% to 30% in speed, soft error rate and radiation hard reduced because
the FET devices are isolated from substrate [19,20]. Moreover, HPC products adopting
FinFET devices usually operate at the high-frequency or microwave range [21,22], the
complication of IC design is increased more, including the noise issue [23,24].

Consequently, besides the improvement of physical process development, the precise
simulators for IC design houses are indeed necessary to make sure IC production is
successful because each investment of nano-node IC products is over a couple million US
dollars or more. With the accurate sets of intellectual property (IP), the successful rate in
IC design is possible and hugely raised. Hence, providing a set of accurate device models
bridging the foundry and the design houses in the nano-node era with fin-Si structure is an
important contribution. Due to this effort, in addition to promoting the drive current [25]
and indirectly increasing the operation speed, the reliable device models consolidating the
process and device simulation software will enhance the stability of circuit operation. In
the past, some researchers studied the device model with early voltage [26–29] causing
from the channel-length modulation effect at the 28-nm process technology with traditional
bulk wafers. However, the device model is chiefly focused on the higher vertical field at
the gate electrode. The model of the early effect under the low-field operation was not
described well. To compensate this insufficiency, this study will entirely probe the early
effect on the single-fin and multi-fin FinFETs with some various channel-length devices,
as shown in Figure 1. Adopting the multi-fin FinFETs to possibly reduce series resistance
and source/drain-to-gate capacitance, the source/drain current IDS is also increased more,
but not unlimited and linearly increased with the increase of fin number [30–32]. One of
the possible causes is that the micro-loading effect in the etching process is more distinct,
especially in the high aspect ratio of fin height/fin channel width. The other side effect
for the increment of fin number degrades the performance of device reliability such as
in the hot-carrier stress [33] because carrier conduction in the steep Si fins of FinFETs is
different for a device with multiple number of fins and probably affects device performance
and reliability. In general, the unsuitable device models will influence the accuracy of
circuit performance in simulation and real operation [34]. Thus, seeking the more accurate
device model [35,36] is the main task in this study. In this case, the contours of the tested
FinFETs are the channel width/the channel length (W/L) on mask: 0.12/0.10, 0.12/0.24,
and 0.12/0.50 (µm/µm) as well as one and eleven fins.
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2. Brief Illustration of Device Formation

Designing a set of device layout patterns following the design rules is necessary to
probe the accuracy of process flow and device performance, as shown in Figures 2 and 3.
Furthermore, the SOI wafers before the definition of the active area were well done in
preparation and clean. Continuously, the location and implantation of N/P-well was
defined and processed, respectively. With photo-lithography and etch technology, the
Si-fin shape was formed. The threshold-voltage implants (VT implant) for n-channel and
p-channel FinFETs [37,38] were executed to determine the adequate VT values. Applying
the photo lithography and etch process, the desired gate patterns with 11-nm channel
width under the over-exposure and adequate etch assistant were obtained. The fin height
was about 87 nm [39]. The nitrided oxide with the physical thickness 14Å played as a gate
oxide was grown [40,41] as a cap oxide. The undoped poly-Si with epitaxy technology
of a chemical vapor deposition (CVD) method was deposited on the gate oxide. The
source/drain extension (SDE) implants for n/p-FinFETs were followed to form a protection
shield against the hot-carrier effect (HCE) [42]. Consequently, the spacer was deposited to
the designed thickness. The source/drain (S/D) implants for both type of FinFETs, and
beneficial for the poly-gate conduction, were conducted, respectively. On the heels of the
anterior process, the cobalt-silicide process [43] was adopted to reduce the contact resistant
and avoid the contact spiking.

Continuously, with strain technology processes [44,45] is helpful to the increase of
channel mobility. Following the sub-65nm conventional CMOS process until M1 layer, the
front-end FinFETs were completely manufactured. In the end, the back-end of line (BEOL)
processes [46,47] including the signal connection patterns, passivation deposition, and
contact window were step by step followed up to protect the whole devices and extract
the electrical characterization of the devices. The simple cross-section of a complementary
n/p-channel FinFET is demonstrated in Figure 4. The cross-sectional TEM (transmission
electron microscope) photos with single Si-fin under different photo exposure energy are
as shown in Figure 5. The top-view SEM (scanning electron microscope) photos for multi
Si-fin and single Si-fin are exhibited in Figure 6 and the concise process flow is denoted in
Figure 7.
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3. Results and Discussion

For an n-channel FinFET (nFinFET), the drive current (IDS) at the saturation mode can
be represented as Equation (1) [28,29]:

IDS ≈ Wt

2 · m · L
µn Cox (VGS − VT)

2 (1 +
∆L
L

), (1)

where Wt: total channel width = fin channel width + 2 fin height = Wfin + 2 Hfin, L: channel
length, m: body effect factor, µn: channel mobility, Cox: gate capacitance per area at the
inversion mode, VGS: gate/source voltage, ∆L: pinch-off region, as shown in Figure 8.
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In the past, the ∆L/L was only described to relate the horizontal field VDS. It could be
represented as Equation (2):

∆L
L

≈ λ VDS, (2)

where λ is the channel length modulation factor as 1/VA and VA is the early voltage.
When we consider the vertical contribution, Equation (2) may be modified as Equation (3):

∆L
L

≈ λ VDS + α (VGS − VT) + β (VGS − VT)VDS, (3)

where α and β are also the channel length modulation factors related to the vertical field
and the mutual-interaction between both, respectively. The effective channel length L’ is
defined as (L−∆L).

One of the measured results for the electrical characteristics of the S/D currents vs.
VGS-VT or VDS with W/L = 0.12/0.10 (µm/µm) on mask at room temperature is shown
in Figure 9. Generally, the multi-fin FinFET is to increase the drive current compared
with the single FinFET or 2-D MOSFET due to the multi-channel or the increment of fin
height increasing the whole channel gate width and drive current. The intercept voltage
operated at each VGS–VT indicates the early voltage (VA). When the vertical field (VGS–VT)
operated is lower and fixed and the VDS is higher, Equation (3) can be simplified as
∆L/L ≈ [λ+ β(VGS–VT)]VDS, which means the minor contribution of α(VGS–VT) is able to
be ignored because of comparing the other terms in the right-hand side of Equation (3) in
this assumption. For the different channel lengths, the extracted values for λ and β are
listed at Tables 1–4. The distribution of β-values can be treated as two mechanisms. In
Tables 1 and 2, the vertical field is lower and the β-value linearly plays a slope of 1/VA
vs. (VGS–VT), as shown in Figure 10. Reversely, it is higher in Tables 3 and 4 and the
contribution of β-value is hugely reduced. We suggest that when the higher drain and gate
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fields are applied, the carrier transport mechanism in channel is not pure to be explained
with the uniform charge distribution, but includes the quantum mechanical effect [29] and
the ballistic transport with Boltzmann distribution [48].
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λ −6.0893 −0.15 −0.5492 

Figure 9. IDS vs. VDS with W/L=0.12/0.10 (µm/µm): (a) single-fin and (b) multi-fin.

Table 1. Extracted parameters for λ and β values under VDS = 1.2 V and VGS-VT = 0.1~0.3 V
with single-fin.

W/L (µm/µm) 0.12/0.10 0.12/0.24 0.12/0.50

λ −6.0893 −0.15 −0.5492
β 20.023 0.375 1.7857

Table 2. Extracted parameters for λ and β values under VDS = 1.2 V and VGS–VT = 0.1~0.3 V
with multi-fin.

W/L(µm/µm) 0.12/0.10 0.12/0.24 0.12/0.50

λ −9.1018 −0.5778 −0.4222
β 26.632 0.9998 1.1667

Table 3. Extracted λ and β parameters under VDS = VGS–VT = 1~1.2 V with single-fin.

W/L(µm/µm) 0.12/0.10 0.12/0.24 0.12/0.50

λ −0.6019 −0.2611 −0.3319
β 0.3175 0.1667 2.083

Table 4. Extracted λ and β parameters under VDS = VGS–VT = 1~1.2 V with multi-fin.

W/L(µm/µm) 0.12/0.10 0.12/0.24 0.12/0.50

λ −1.4767 −0.2897 −4.0787
β 0.7515 0.1190 2.4963
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Through the decrease of the channel lengths, the β-factor is increased, especially at
the shortest one which means the contribution coming from the vertical field is more dis-
tinct [49]. As the establishment of the device models at the short channel part, this vertical
effect dominating the accurate model must be of concern more than before. Comparing
the extracted consequence for β-factor with Reference 26 (β ≈ 1.4~1.6), the β-factor for the
FinFET at the long-channel device is a little higher than that at the 28-nm MOSFETs. As
the device channel length is narrowed down, the vertical-field contribution to the drive
current is gradually increased, as shown in Figure 10. On the contrary, when the VDS
and the VGS–VT are higher, the β-factor at FinFETs with short-channel device is less than
that at Reference 26, as shown at Tables 3 and 4. There is a turning point observed at
the L = 0.24 µm, showing the minimum value owing to the bias of photo-lithography.
This channel-length modulation should be adjusted and the β-factor must be extracted
carefully. For the multi-fin device, the process issues are also possible to influence the
electrical performance. For instance, the micro-loading effect for the multi-fin devices in
etching process technology is a tremendous challenge, affecting the etching performance
and probably causing the expected aspect ratio of fin height/ fin channel width, which
cannot be approached. In spite of this, using the β value to justify the etching performance
in different multi-fin structures can be treated as an extra benefit in process monitoring. In
addition to the foregoing lithography [50] and dry etch [51] impacting the roughness and
uniformity of Si-fin strongly correlated to the β-factor, the ion doping factors including the
doping energy, doping dosage, and dopant species in adjustment of threshold implantation
will probably influence the β-factor. Hence, each novel or changed process flow will follow
a new set of device models.

The related electrical characteristics of IDS vs. VGS and IGS vs. VGS for the tested
device with W/L = 0.12/0.1 (µm/µm) are demonstrated in Figures 11 and 12, respectively.
The measurement equipment is Keysight B1500A which can provide the accuracy current
range until fA (10−15 A) level. The threshold swings (SS) for single and multi-fin FinFETs
are 96 and 85 mV/decade, respectively. These electrical performances in device design
are acceptable although the SS value for single fin is a little higher, which is still less than
100 mV/decade. Because the SS value is an index to illustrate the capability of ON/OFF
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speed of FinFETs. As the single and multi-fin FinFETs are scanned by the gate bias, the
multi-fin device usually provides more drive current than the single one. Hence, we
suggest that the swing capability of the multi-fin device should be better than that of the
single one.
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Concerning the contribution of plasma etching with micro-loading effect, the main
effort focused on the multi-fin contour. The interface integrity of single FinFET on the
channel surface has been suffered a little more. The gate leakage in accumulation mode
as source/drain grounded is low like noise and in inversion mode is gradually raised
up as VGS is positively increased. The speculation is that because the substrate of tested
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devices is SOI-type floating, not bulk-type, the channel potential for the tested device is
unstable at the accumulation mode. Thus, the gate leakage in measurement is treated as
noise. However, as the SOI devices are biased at the inversion mode, the channel potential
is grounded with source/drain electrodes. Hence, the pseudo noise issue is reduced more
and the gate leakage is truly responding. In the future, the simulator provides not only
the simulation functions of process and device, but the reliability functions together. In
reliability concern, the electrical performance in devices or IC shifting is 10% in operating
or thermal stress is treated as a failed sample. Thus, providing an accurate set of device
models is urgently needed at the sub-28-nm node, which can shorten the IC development
time, advance the yield of IC products, and save more money in the entire project.

4. Conclusions

Considering the 3-D FinFET device upon SOI wafer with an ultra-thin Si-fin, it is
indeed feasible to be employed to deep sub-nano process technology such as the sub-
14-nm node [52–54]. Before the high-k dielectric integrated into HPC IC products or the
low-cost consideration, providing the oxy-nitride (SiON) dielectric as gate dielectric is
still an adoptable way to temporarily satisfy the need of IC design houses. In this article,
while the FET device is narrowed down, the device model in channel-length modulation
becomes more complicated owing to the contribution of the vertical gate field. In these
tested FinFETs, we observed that the β-factor illustrating the contribution of the vertical
field was increased as the channel length decreased at the higher VDS and lower VGS-VT
case. For both at the higher, the trend of the β-factors with the channel lengths were reverse.
Using these consequences incorporating into the device model beneficially improving the
device performance at the sub-28-nm node is desirably expected. Furthermore, this kind of
application in model improvement also can be extended to gate-all-around (GAA) FETs or
multi-bridge-channel (MBC) FETs for sub-7-nm manufacturing technology [55–57] or other
FET-like devices [58].

Author Contributions: Conceptualization, M.C.W.; methodology, W.C.H.; formal analysis, C.R.L.,
W.S.L., and W.S.L.; data curation, W.L.C.; writing—original draft preparation, M.C.W.; writing—
review and editing, W.C.H., W.S.L. and W.H.L.; project administration, C.R.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors sincerely appreciate United Microelectronics Corporation in Taiwan
for supporting 8” SOI wafers, and the financial support from Ministry of Science and Technology of
Republic of China under Contract Nos. MOST 109-2622-E-159-001.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiao, H. Introduction to Semiconductor Manufacturing Technology, 2nd ed.; SPIE: Washington, DC, USA, 2012; pp. 1–93.
2. Dosi, G. Technical Change and Industrial Transformation: The theory and an Application to Semiconductor Industry, 1st ed.; Macmillan

Press: London, UK, 1984; pp. 100–200.
3. Baldauf, T.; Wei, A.; Illgen, R.; Flachowsky, S.; Herrmann, T.; Höntschel, J.; Horstmann, M.; Klix, W.; Stenzel, R. Study of 22/20

nm trigate transistors compatible in a low-cost hybrid FinFET/planar CMOS process. In Proceedings of the IEEE ISDRS, College
Park, MD, USA, 7–9 December 2011.

4. Pham, D.; Larson, L.; Yang, J. FinFET device junction formation challenges. In Proceedings of the IEEE IWJT, Shanghai, China,
15–16 May 2006.

5. LaPedus, M. Transistor Options beyond 3 nm. Semicond. Eng., Feb. 2018. Available online: https://semiengineering.com/
transistor-options-beyond-3nm/ (accessed on 3 January.2021).

https://semiengineering.com/transistor-options-beyond-3nm/
https://semiengineering.com/transistor-options-beyond-3nm/


Crystals 2021, 11, 262 11 of 12

6. Vidya, S.; Kamat, S.; Khan, A.; Venkatesh, V. 3D FinFET for next generation nano devices. In Proceedings of the IEEE ICCTCT,
Coimbatore, Tamil Nadu, India, 1–3 March 2018.

7. Razavieh, A.; Zeitzoff, P.; Nowak, E. Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE
Trans. Nanotech. 2019, 18, 999–1004. [CrossRef]

8. Hisamoto, D.; Lee, W.C.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; King, T.J.; Bokor, J.; Hu, C. FinFET-a
self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 2000, 47, 2320–2325.

9. Wong, H.S.P.; Chan, K.K.; Taur, Y. Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel. In
Proceedings of the IEEE IEDM, Washington, DC, USA, 10 December 1997.

10. El-Mamouni, F.; Zhang, E.X.; Ball, D.R.; Sierawski, B.; King, M.P.; Schrimpf, R.D.; Reed, R.A.; Alles, M.L.; Fleetwood, D.M.; Linten,
D.; et al. Heavy-ion-induced current transients in bulk and SOI FinFETs. IEEE Trans. Nucl. Sci. 2012, 59, 2674–2681. [CrossRef]

11. Li, Y.; Hwang, C.H. Effect of fin angle on electrical characteristics of nanoscale round-top-gate bulk FinFETs. IEEE Trans. Electron
Dev. 2007, 54, 3426–3429. [CrossRef]

12. Han, M.H.; Chang, C.Y.; Chen, H.B.; Cheng, Y.C.; Wu, Y.C. Device and circuit performance estimation of junctionless bulk FinFETs.
IEEE Trans. Electron Dev. 2013, 60, 1807–1813. [CrossRef]

13. Mittl, S.; Guarín, F. Self-heating and its implications on hot carrier reliability evaluations. In Proceedings of the IEEE IRPS,
Monterey, CA, USA, 19–23 April 2015.

14. Poljak, M.; Jovanovic, V.; Suligoj, T. SOI vs. bulk FinFET: Body doping and corner effects influence on device characteristics. In
Proceedings of the IEEE MELECON, Ajaccio, France, 5–7 May 2008.

15. Aziz, M.N.I.A.; Salehuddin, F.; Mohd Zain, A.S.; Kaharudin, K.E.; Radzi, S.A. Comparison of electrical characteristics between
bulk MOSFET and silicon-on-insulator (SOI) MOSFET. J. Telecom. Electron. Comp. Eng. 2014, 6, 45–49.
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