## **Supplementary Information**

## Role of hydrodynamics, Li+ addition and transformation kinetics on the formation of plate-like {001} calcite crystals

Nives Matijaković Mlinarić, Jasminka Kontrec, Branka Njegić Džakula, Giuseppe Falini, Damir Kralj

| Table SI1.   | SI2  |
|--------------|------|
| Figure SI1.  | SI3  |
| Figure SI2.  | SI4  |
| Figure SI3.  | SI5  |
| Figure SI4.  | SI6  |
| Table SI2.   | SI7  |
| Table SI3.   | SI8  |
| Figure SI5.  | SI9  |
| Table SI4.   | SI10 |
| Figure SI6.  | SI11 |
| Figure SI7.  | SI12 |
| Figure SI8.  | SI13 |
| Figure SI9.  | SI14 |
| Figure SI10. | SI15 |
| Figure SI11. | SI16 |
| Figure SI12. | SI17 |
| Figure SI13. | SI18 |
| Figure SI14. | SI19 |

## Table SI1. A brief derivation of equations 4-6.

$$\frac{dl}{dt} = D V_m (c-c_S) / l \qquad \frac{dl}{dt} = k_{in} ((c-c_S) - 1) \ln(c-c_S) \qquad \frac{dl}{dt} = k_e (c/c_S)^{7/6} ((c/c_S) - 1))^{2/3} (\ln(c/c_S))^{1/6}}{\exp(-K_e / \ln(c/c_S))}$$
Difusion controled crystal growth is descent on growth mechanism descent for the provide mechanism provide mechani

derived from Fick's first law. A flux of matter dn/dt, diffusing through the area A perpendicular to the x-axis is:

dn/dt=DA(dc/dx)

where *D* is the diffusion coefficient and dc/dx is the concentration gradient. In case of a sphere it is defined as:

 $dc/dx = (c - c_s)/r$ 

Where *r* is the radius of the sphere. Deposition of the meter dn the volume of the sphere dV increases for dr.

 $\mathrm{d}V{=}4 \ r^2 \ \pi \ \mathrm{d}r{=} \ V_{\mathrm{m}} \ \mathrm{d}n$ 

For the sufrace of the sphere  $A=4r^2\pi$  it follows that the growth rate controlled by diffusion is proportional to the absolute supersaturation and inversely proportional to the particle size:

 $dr/dt=D Vm (c - c_s)/r$ 

Screw dislocation growth mechanism assumed growth with no need for surface nucleation and the incorporation of growth units into the dislocation on crystal surfaces. The structure of crystal surface with spiral dislocation is characterized by the surface height, d, the average distance between the active growth sites,  $x_0$ , and the distance between two adjacent surfaces,  $y_0$ 

 $x_0 = d S^{1/2} exp(\gamma/k_{\rm B}T)$ 

$$y_0 = 19 d \gamma / k_B T \ln S_B$$

where  $S = c/c_s$ . The surface concentration of active sites can be defined as:

 $1/x_0y_0 = S^{1/2} ln S/19 d^2 (\gamma/k_B T) exp(\gamma/k_B T).$ 

At higher relative supersaturations,  $S^{1/2} \ln S$  can be approximated with (S - 1):

 $1/x_0y_0 \approx (S-1)/19d^2(\gamma/k_BT)exp(\gamma/k_BT)$ 

The rate of linear growth of the crystal surface is proportional to the rate of lateral growth of the surface (adsorption along the column) at supersaturation S < 1.6 and  $x_o < y_0$  the rate of lateral growth is proportional to  $S - 1 = c/c_s$  ( and the density of the column  $y_0^{-1}$ :

 $v_g \sim k_{\ln}(S-1) lnS.$ 

**Polynuclear growth mechanism** assumed that the crystal surface is simultaneously covered by several circular nuclei of thickness *d* and constituent ions in equilibrium with solution. The linear growth rate is inversely proportional to time,  $\tau$ , which takes to cover a surface *A* with a new layer:

$$v_g = d/\tau = d((\pi J' v_{\infty}^2)/3)^{1/3}$$

In the expression, J' is the rate of surface nucleation and  $v_{\infty}$  net lateral velocity of surface island growth

 $J' = (D_s/d^4) \exp(-\Delta G'^*/kT),$ 

where  $D_s$  is the diffusion coefficient. By inserting J' and  $v_{\infty}$  one obtains:

$$v_g = k_e S^{7/6} (S-1)^{2/3} (lnS)^{1/6} exp(-K_e/lnS)$$

where

$$k_{\rm e}=2dv_{\rm in}(K_{\rm ad}c_{\rm s}V_{\rm m})^{4/3}exp(-\gamma/kT)$$

 $v_{in}$  is the integration frequency,  $\gamma$  is the edge energy and

 $K_{\rm e} = \pi \gamma^2 / 3k^2 T^2.$ 



**Figure SI1.** FTIR spectra of the precipitates obtained in the magnetically stirred (MAG) precipitation systems ( $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol } dm^{-3}$ ) after 5 days of aging. Different initial Li<sup>+</sup> concentrations have been applied: a)  $c(Li^+) = 0.0 \text{ mol } dm^{-3}$ , b)  $c(Li^+) = 0.1 \text{ mol } dm^{-3}$ , c)  $c(Li^+) = 0.3 \text{ mol } dm^{-3}$ , d)  $c(Li^+) = 0.5 \text{ mol } dm^{-3}$ , e)  $c(Li^+) = 0.7 \text{ mol } dm^{-3}$  and f)  $c(Li^+) = 1.0 \text{ mol } dm^{-3}$ . # c indicates calcite.



**Figure SI2.** FTIR spectra of the precipitates obtained in the mechanically stirred (MAG) precipitation systems ( $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol } dm^{-3}$ ) after 5 days of aging. Different initial Li<sup>+</sup> concentrations have been applied: a)  $c(Li^+) = 0.0 \text{ mol } dm^{-3}$ , b)  $c(Li^+) = 0.1 \text{ mol } dm^{-3}$ , c)  $c(Li^+) = 0.3 \text{ mol } dm^{-3}$ , d)  $c(Li^+) = 0.5 \text{ mol } dm^{-3}$ , e)  $c(Li^+) = 0.7 \text{ mol } dm^{-3}$  and f)  $c(Li^+) = 1.0 \text{ mol } dm^{-3}$ . # c indicates calcite.



**Figure SI3.** FTIR spectra of the precipitates obtained in the ultrasonicated (US) precipitation systems  $(c_i(\text{CaCl}_2) = c_i(\text{NaHCO}_3) = 0.1 \text{ mol } \text{dm}^{-3})$  after 5 days of aging. Different initial Li<sup>+</sup> concentrations have been applied: a)  $c(\text{Li}^+) = 0.0 \text{ mol } \text{dm}^{-3}$ , b)  $c(\text{Li}^+) = 0.1 \text{ mol } \text{dm}^{-3}$ , c)  $c(\text{Li}^+) = 0.3 \text{ mol } \text{dm}^{-3}$ , d)  $c(\text{Li}^+) = 0.5 \text{ mol } \text{dm}^{-3}$ , e)  $c(\text{Li}^+) = 0.7 \text{ mol } \text{dm}^{-3}$  and f)  $c(\text{Li}^+) = 1.0 \text{ mol } \text{dm}^{-3}$ . # c indicates calcite. \* v indicates vaterite.

| Wavenumber/ cm <sup>-1</sup> | Band assignment*                                           |  |
|------------------------------|------------------------------------------------------------|--|
| Calcite                      |                                                            |  |
| 1425                         | $\nu_3$ , asymmetric C–O stretching mode                   |  |
| 876                          | $v_2$ , CO <sub>3</sub> out of plane deformation mode      |  |
| 713                          | $\nu_4$ , O–C–O bending<br>(in plane deformation) mode     |  |
| Calcite and vaterite mixture |                                                            |  |
| 1485                         | $\nu_3$ , asymmetric C–O stretching mode                   |  |
| 1423                         | $v_3$ , asymmetric C–O stretching mode                     |  |
| 1088                         | $v_1$ , symmetric C–O stretching mode                      |  |
| 876                          | $v_2$ , CO <sub>3</sub> out of plane deformation mode      |  |
| 746                          | $v_4$ , O–C–O bending (in plane deformation) mode vaterite |  |
| 713                          | $v_4$ , O–C–O bending (in plane deformation) mode calcite  |  |

Table SI2. Assignment of IR bands in FTIR spectra of precipitates obtained after 5 days of aging

.

\*Band assignment were done according to F.A. Andersen, Lj. Brečević: Infrared spectra of amorphous and crystalline calcium carbonate, *Acta Chim. Scand.* **45** (1991) 1018-1024.

**Table SI3.** Polymorphic composition of CaCO<sub>3</sub> samples obtained by different stirring modes in precipitation systems,  $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol dm}^{-3}$  and different LiCl content. Magnetically and mechanically stirred systems were agitated for 1 hour and ultrasonicated system for 10 minutes.

| c(Li) / mol dm <sup>-3</sup> | Stirring mode | w(calcite) / wt.<br>% |
|------------------------------|---------------|-----------------------|
|                              | MAG           | $52.57 \pm 3.25$      |
| 0.0                          | US            | $89.91  \pm 10.96$    |
|                              | MECH          | $98.17 \pm 2.56$      |
|                              | MAG           | $3.73~\pm 5.38$       |
| 0.1                          | US            | $62.51 \pm 3.75$      |
|                              | MECH          | $98.96 \pm 2.97$      |
|                              | MAG           | $4.92 \pm 4.37$       |
| 0.3                          | US            | $11.37 \pm 2.37$      |
|                              | MECH          | $55.19 \pm 3.10$      |
|                              | MAG           | $2.35 \pm 4.69$       |
| 0.5                          | US            | $4.8\ \pm 0.10$       |
|                              | MECH          | $54.21 \pm 4.02$      |
| 0.7                          | MAG           | $2.32 \pm 3.26$       |
|                              | US            | $2.62 \pm 0.19$       |
|                              | MECH          | $53.40 \pm 0.25$      |
|                              | MAG           | $1.64 \pm 2.57$       |
| 1.0                          | US            | $2.45\ \pm 0.23$      |
|                              | MECH          | $20.11 \pm 0.63$      |



**Figure SI4** PXRD diffractograms of the CaCO<sub>3</sub> precipitates obtained in the ultrasonicated (US) precipitation systems ( $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol } dm^{-3}$ ) after 5 days of aging: (a) representative pattern of the calcite samples obtained in the systems with initial Li<sup>+</sup> concentration, 0.0 mol dm<sup>-3</sup> <  $c_i < 0.7 \text{ mol } dm^{-3}$  and (b) pattern of the samples obtained in the systems with initial Li<sup>+</sup> concentration,  $c_i = 1.0 \text{ mol } dm^{-3}$ . **v** indicates vaterite and **c** indicates calcite.



**Figure SI5.** PXRD diffractograms of the CaCO<sub>3</sub> precipitates obtained in the mechanically stirred (top) and magnetically stirred (bottom) precipitation systems ( $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol dm}^{-3}$ ) after 5 days of aging. Initial Li<sup>+</sup> concentration were (a) 0.0 mol dm<sup>-3</sup>, (b) 0.1 mol dm<sup>-3</sup>, (c) 0.3 mol dm<sup>-3</sup>, (d) 0.5 mol dm<sup>-3</sup>, (e) 0.7 mol dm<sup>-3</sup> and (f) 1.0 mol dm<sup>-3</sup>. The diffraction patterns were indexed accordingly to the PDF 00-005-0586. In all systems only calcite has been detected.

| 2 <i>θ</i> /°                | (hkl) |  |
|------------------------------|-------|--|
| Calcite                      |       |  |
| 29.4                         | 104   |  |
| 35.9                         | 110   |  |
| 9.4                          | 113   |  |
| 43.1                         | 202   |  |
| 47.5                         | 018   |  |
| 48.5                         | 116   |  |
| Calcite and vaterite mixture |       |  |
| 24.9                         | 020   |  |
| 27.1                         | 021   |  |
| 29.4                         | 104   |  |
| 32.7                         | 022   |  |
| 35.9                         | 110   |  |
| 39.4                         | 113   |  |
| 40.7                         | 023   |  |
| 43.8                         | 130   |  |
| 50.0                         | 114   |  |
| 55.8                         | 222   |  |

**Table SI4**. Assignment of peaks in PXRD patterns of all samples obtained after 5 days of aging and shown in Figures SI4 and SI5.

*PXRD patterns were indexed according to JCPDS card No. 05-0586 (calcite) and JCPDS card No: 33-0268 (vaterite)* 



**Figure SI6.** Particle size distribution of calcium carbonate samples obtained in the magnetically stirred (MAG) precipitation systems ( $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol dm}^{-3}$ ) after 5 days of aging. Different initial Li<sup>+</sup> concentrations have been applied. Inserts show typical morphologies of the samples.



**Figure SI7.** Particle size distribution of calcium carbonate samples obtained in the mechanically stirred (MECH) precipitation systems ( $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol } dm^{-3}$ ) after 5 days of aging. Different initial Li<sup>+</sup> concentrations have been applied. Inserts show typical morphologies of the samples.



**Figure SI8.** Particle size distribution of calcium carbonate samples obtained in the ultrasonicated (US) precipitation systems ( $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol dm}^{-3}$ ) after 5 days of aging. Different initial Li<sup>+</sup> concentrations have been applied. Inserts show typical morphologies of the samples

![](_page_13_Figure_0.jpeg)

**Figure SI9.** Comparison of particle size distribution of calcium carbonate samples in the precipitation systems,  $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol dm}^{-3}$ , no LiCl addition, after 5 days of aging and different agitation modes: distributions obtained by ImageJ software; a); c); e) and Coulter Counter: b); d); f).

![](_page_14_Figure_0.jpeg)

**Figure SI10.** The average particle sizes of calcite crystals obtained after 5 days of aging in the precipitation systems,  $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol } dm^{-3}$ , plotted as a function of different initial LiCl concentrations. Different initial stirring modes have been applied.

![](_page_15_Figure_0.jpeg)

**Figure SI11.** Scanning electron micrographs of calcium carbonate samples obtained in the precipitation systems,  $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol } dm^{-3}$ , no lithium addition and after the initial stirring period of one hour for MECH and MAG and 10 minutes for US (top row), scale bar = 2 µm. Precipitate obtained after 5 days of aging (lower row), scale bar = 30 µm.

![](_page_16_Figure_0.jpeg)

**Figure SI12.** Progress curve, solution concentration vs. time, of the spontaneous precipitation and transformation of calcium carbonate in the precipitation system  $c_i(CaCl_2) = c_i(NaHCO_3) = 0.1 \text{ mol dm}^{-3}$  and no LiCl addition. Insert shows initial 12 minutes of the precipitation process.

![](_page_17_Figure_0.jpeg)

**Figure SI13.** Change of the initial length ( $l_0 = 1 \mu m$ ) of calcite crystal edge (a) and the radius of the vaterite particle (b) vs. time in the crystal growth experiments. The initial crystal size of the seed used in crystal growth experiments was  $l_0 = 1 \mu m$ . The mass concentrations or calcite and vaterite were,  $\gamma$ (calcite) = 125 mg L<sup>-1</sup> and  $\gamma$ (vaterite) = 125 mg L<sup>-1</sup> respectively.

![](_page_18_Figure_0.jpeg)

**Figure SI14.** Plot of growth rates (dl/dt) as a function of time for the calcite (a) and vaterite (b) crystal growth experiments. The mass concentrations or calcite and vaterite were,  $\gamma$ (calcite) = 125 mg L<sup>-1</sup> and  $\gamma$ (vaterite) = 125 mg L<sup>-1</sup> respectively.