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Abstract: The instabilities of perovskite solar cells hinder their commercialisation. To resolve this
problem, a one-dimensional (1D) perovskitoid, PyPbI3, was fabricated, and its structure and photo-
voltaic performance were investigated in this work. XPS and FTIR results suggest hydrogen bonds
existed in the 1D hexagonal PyPbI3. Stability measurements indicate that 1D perovskitoid is much
more stable than the commonly employed FA-based perovskite. In addition, solar cells adopting
PyPbI3 as an absorbing layer led to a device lifetime of one month. Our results suggest that 1D
perovskitoid has great potential to be employed in solar cells.
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1. Introduction

The growing demand for renewable energy in the 21st century has made photovoltaics
(PV) a popular research area [1,2]. Among all PV cells, perovskite solar cells (PSC) have
attracted lots of interest. The power conversion efficiency of PSC has achieved a maximum
of 25.5% within only one decade since its original report in 2009 [3]. The rapid development
of PSC can be attributed to its long diffusion length [4], high absorption coefficient [5],
tunable bandgap [6] and so forth.

However, the commonly employed perovskite is not stable when exposed to moisture
or thermal stress [7,8], which leads to a short lifetime of the fabricated solar cell devices,
thereby limiting their commercialisation. Various attempts have been made to overcome
these instability problems, such as interface engineering [9–11], strain engineering [12,13],
encapsulation [14,15], etc., yet the PSC lifetime is still far from satisfactory; i.e., most
PSCs would lose most of their initial efficiency within only hundreds of hours under
ambient conditions. In this regard, replacing the hydrophilic methylammonium (MA) and
formamidinium (FA) cations seems imperative and inevitable.

Most recently, the employment of carbocyclic cations with strong hydrophobic na-
ture to form a perovskite structure has attracted lots of interest. For instance, Pering
et al. (2017) [16] employed four-membered carbocyclic ring azetidine as cation to form
perovskite (AztPbI3). Despite the enhanced moisture resistance, the AztPbI3 is found to
be thermodynamically unstable and exhibits low crystallinity [16]. To resolve this, Zheng
et al. (2018) [17] proposed a new perovskite material, aziridinium lead iodide (AzrPbI3),
which possesses three-membered carbocyclic rings. According to the authors’ simulation
results, the AzrPbI3 exhibits good thermodynamic stability as well as a low bandgap of
1.49 eV, which is comparable to that of MAPbI3 [18]. However, fabricating such materials
seems impractical, as aziridine molecules are highly toxic [19]. In addition, recent reports
on low-dimensional Bi and Sb-based halide semiconductors have also attracted lots of
interest [20–25], due presumably to their good environmental stability as an absorber layer
in solar cells.
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Based on previous attempts, a five-membered ring-based pyrrolidinium lead iodide
(PyPbI3) was first introduced by our group in 2019 [26], which exhibited a 1D “perovski-
toid” structure [27], and immediately attracted lots of interest [28–33]. Although promising
results have been achieved in solar cell applications employing PyPbI3 as interfacial mod-
ification agents to either improve device stability and efficiency [28,30,31] or to control
the crystallization process of the 3D MA-based perovskite [32], the application of PyPbI3
as a single absorbing layer has not been reported so far. Therefore, it will be of great
significance to explore the potential of such perovskitoid as absorbing material for solar
cell applications. Moreover, the structure of PyPbI3 film remains ambiguous [32], which
hinders its practical applications.

It is, therefore, the purpose of the current report to evaluate the feasibility of 1D
perovskitoids, such as PyPbI3, as a single absorbing layer in PSCs, as well as to investigate
its structural properties. Based on the results of XRD, X-ray photoelectron spectroscopy
(XPS) and FTIR, we were able to confirm the hexagonal structure of PyPbI3, as well as
the interatomic force between Py cation and PbI2 lattice. The stability of 1D perovskitoid
film is much more stable than commonly employed FA-based perovskite, as revealed by
stability measurements. Lastly, we employed PyPbI3 as absorbing material to fabricate
solar cells, yielding a device lifetime of more than one month. In addition, the outlook of
1D perovskitoid in photovoltaics is briefly discussed in the summary part.

2. Materials and Methods
2.1. Materials

Pyrrolidinium hydroiodide (98%, TCI America, Portland, Oregon, USA), PbI2 (99.999%,
Sigma-Aldrich, St. Louis, MO, USA), isopropanol (IPA, 99.99%, Sigma-Aldrich, St. Louis, MO,
USA), N,N-dimethylformamide (DMF, 99.99%, Sigma-Aldrich, St. Louis, MO, USA), Dimethyl
sulfoxide (DMSO, 99.9%, Sigma-Aldrich, St. Louis, MO, USA), Spiro-OMeTAD (Xi’an Polymer
Light Technology Corp., Xi’an, Shaanxi, China), bis(trifluoromethane)sulfonimide lithium salt
(99.95%, Aldrich, St. Louis, MO, USA), 4-tertbutylpyridine (99.9%, Sigma-Aldrich, St. Louis,
MO, USA) and ITO substrates.

2.2. Device Fabrication

To fabricate perovskite solar cell devices, the ITO substrate was first washed with
distilled water and ethanol, two times each. After 20 min of UV–O3 treatments, the
SnO2 electron transport layers (ETLs) were spin-coated on ITO substrates from the SnO2
colloidal solutions and annealed on a hot plate at the displayed temperature of 150 ◦C for
30 min in ambient air. For the PyPbI3 layer, sequential deposition method was adopted.
Thirty microlitres of lead iodide solutions were first spin-coated at 2300 rpm for 30 s and
annealed at 70 ◦C for 1 min. Then, 80 µL of PyI solutions were spin-coated at 2000 rpm for
30 s. The as-fabricated films were then annealed at 150 ◦C for 30 min in air. Next, 30 µL
Spiro-OMeTAD solution doped with LiTFSI and tBP was deposited at 3000 rpm for 30 s.
Finally, 100 nm Ag was thermally evaporated as a counter electrode under a pressure of
5 × 10−5 Pa on top of the hole transport layer to form the metal contact.

2.3. Characterizations

The absorption spectra were recorded by Hitachi UH4150 spectrophotometer. X-ray
diffraction (XRD) patterns were obtained using a Rigaku D/Max 2200 with Cu Kα as the
X-ray source. X-ray photoelectron spectroscopy (XPS) measurement was carried out on PHI
Quantera-II SXM. The FTIR spectra were measured by a Nicolet 6700 FT-IR spectrometer.
The current density–voltage characteristics of photovoltaic devices were obtained using a
Keithley 2400 source-measure system. The photocurrent was measured under AM 1.5 G
illumination at 100 mW/cm2 using a Newport Thermal Oriel 91192 1000 W solar simulator.
The light intensity was calibrated using a KG-5 Si diode. The thin film morphology was
measured using a scanning electron microscope (SEM) (S4800).
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The calculated XRD data were obtained from our previous report [26]. In short
details, the calculations were performed using SHELXTL crystallographic software package.
Symmetry analysis of the model using PLATON revealed that no obvious space group
change was needed. In the refinement, the commands EDAP and EXYZ were used to
restrain some of the related bond lengths and bond angles.

3. Results
3.1. Fabrication and Characterizations of 1D Perovskitoid Films

The PyPbI3 films were fabricated via a simple sequential deposition method [34], as
schematically illustrated in Figure 1. The details are shown in the experimental section.
Previous reports suggest that PyPbI3 may exhibit two different crystal structures, such as
hexagonal [26] and orthorhombic [32] phases. However, during our fabrication, all obtained
PyPbI3 were crystallized following the same hexagonal space group P63/mmc, which
was confirmed by powder XRD measurements. As shown in Figure 2a, the diffraction
peaks of the experimental PyPbI3 film correspond well with its single-crystal XRD data,
suggesting the formation of hexagonal PyPbI3 in the film. In general, 1D perovskitoid
may exhibit diffraction peaks below 10◦ [35]. However, all peaks of 1D PyPbI3 are above
10◦, with the lowest peak located at around 11◦ (Figure 2a), which is consistent with other
perovskitoid [27]. This might be attributed to their various lattice parameters.
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previous work [26]. Adapted from Ref [26] with permission from The Royal Society of Chemistry.

The microscopic crystal structures of PyPbI3 viewed from different directions are
illustrated in Figure 2b; as can be observed, lead iodide octahedrons were arranged in a face
sharing method, with Py+ cations located in between them, indicating the 1D characteristics
of PyPbI3 [36]. However, the positions and interactions between pyrrolidinium rings and
lead iodide lattice remain unresolved (a large cluster of atoms lies in between each chain,
Figure 2b), as it is not easy to precisely detect low mass elements such as carbon, nitrogen
and hydrogen with XRD measurements. This may result in uncertainty in determining the
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exact role of Py+ cations; i.e., the C and N atoms may have interactions with iodides, or
they may only maintain the charge balance in crystal lattices [37,38].

X-ray photoelectron spectroscopy (XPS) has been widely employed as a powerful tool
to evaluate the interactive forces between atoms in the molecule [39]. Therefore, to further
understand the role of organic cations, we conducted XPS measurements to PyI and PyPbI3
crystals, respectively. The results were illustrated in Figure 3a–c. The total XPS spectrum is
shown in Figure 3a. Compared to PyI, an extra binding peak for Pb element was found
in PyPbI3, indicating the reaction between PyI molecules and PbI2 chains. In addition,
the N1s and I3d spectrums exhibit an energy blue shift of more than 3 eV, suggesting a
higher binding energy in 1D PyPbI3 than that in PyI powder. This indicates that there is a
strong interaction force between Py+ cations and [PbI3]− octahedra cages, i.e., the hydrogen
bonding between N-H and I, bonding them together [37,38]. The existence of hydrogen
bonds was further confirmed by FTIR [40] (Figure 3d). The interaction forces between the
Py cations and inorganic chains may help to keep the perovskitoid phase unchanged when
exposed to external stress such as moisture, since more energy is required to break the
hydrogen bonds [38]. The enhanced stability of PyPbI3 observed in the next section could
thus be attributed to not only the hydrophobic nature [19] of Py molecule but also their
hydrogen bonds.
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Moreover, the surface morphology of the film was evaluated via SEM technique, which
exhibited many small grains (Figure 3f), indicating the formation of 1D perovskitoid [27].

3.2. Stability Measurements of 1D Perovskitoid Films

Next, we investigated the stability of PyPbI3 perovskite films. To make a comparison,
two different perovskites, PyPbI3 and FA-based perovskite, were both prepared and evalu-
ated via XRD and UV absorption spectra. All prepared films were stored under ambient
conditions with a relative humidity (RH) of 50 ± 5%. The XRD results of PyPbI3 before and
after one week are shown in Figure 4a, which show the same patterns, indicating the good
environmental stability of PyPbI3. In contrast, the FA-based perovskite film degraded into
photoinactive δ-phase after 1 week in air, as is demonstrated in Figure 4b.
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Figure 4c illustrates the UV absorption spectra for these films. As can be observed,
the FAPbI3 film exhibited a drastic decrease in light absorbance over the whole visible
range after 7 days. In contrast, the absorption onset of PyPbI3 film exhibited no obvious
change after one week. The photographs of PyPbI3 film before and after one week were
presented in the inset of Figure 4c. The color of the film remained unchanged, which is
consistent with the XRD and UV results. The above results indicate that PyPbI3 is much
stable than FAPbI3.

3.3. Photovoltaic Performance of 1D Perovskitoid Solar Cells

To evaluate the photovoltaic performance of PyPbI3 solar cells, we fabricated PSCs
employing ITO/SnO2/PyPbI3/Spiro-OMeTAD/Ag configuration. The J–V curve of the
best device is shown in Figure 5a. The photovoltaic parameters were also summarized in
the figure, with Voc of 0.74 V, Jsc of 0.94 mA/cm2, FF of 28.05, PCE of 0.3%. The series and
shunt resistance of the device were measured to be 6245 and 9483 Ω, respectively, via a
Keithley 2400 source-measure system. Based on the literature [16] and absorption results
(Figure 4c), the onset of PyPbI3 light absorption was inferred to be around 520 nm. The
non-absorption loss may significantly reduce the device photocurrent. While the Voc is
comparable to that of AzPbI3 [16] and CsPbI3 [41], the Jsc is as low as 1.0 mA/cm2. The
low Jsc might be attributed to the relatively large bandgap of PyPbI3, resulting in its low
FF and PCE [31,42]. Apart from the bandgap, we also investigated interfacial properties
between perovskitoid and CTLs by presenting the energy band diagram of PyPbI3 solar
cell [31,39]. As demonstrated in Figure 5b, such energy alignment prevents the back
diffusion of electrons and holes toward HTL and ETL, respectively, which is favorable
for PV applications. However, the relatively large energy offset (1.31 eV and 0.49 eV for
electrons and holes, respectively) may also induce severe voltage and current loss [43],
thereby deteriorating device performance. Future work on device modification may be
focused on these two aspects. It should be noted that the dark J–V curves can also reveal
important cell parameters such as leakage current [44,45]. We expect future investigation
on device physics employing this powerful method to gain more insights.

The device stability of PyPbI3 PSCs was also evaluated. Ten solar cell devices were
prepared and measured for reliability analysis. All devices were stored in ambient condi-
tions with RH of 65 ± 5% and temperature of 22 ± 3 ◦C. As illustrated in Figure 5c, even
after one month in air, the PCE of PyPbI3 PSCs still did not exhibit any drop, while for
other 3D PSCs such as FAPbI3, their efficiency may decay to nil after only several days [30].
This further indicates the excellent stability of the PyPbI3 PSCs.
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eters such as leakage current [44,45]. We expect future investigation on device physics 
employing this powerful method to gain more insights. 

The device stability of PyPbI3 PSCs was also evaluated. Ten solar cell devices were 
prepared and measured for reliability analysis. All devices were stored in ambient condi-
tions with RH of 65 ± 5% and temperature of 22 ± 3 °C. As illustrated in Figure 5c, even 
after one month in air, the PCE of PyPbI3 PSCs still did not exhibit any drop, while for 
other 3D PSCs such as FAPbI3, their efficiency may decay to nil after only several days 
[30]. This further indicates the excellent stability of the PyPbI3 PSCs. 
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4. Discussion

In summary, for the first attempt, a 1D perovskitoid, PyPbI3, was employed as an
absorbing material in solar cells. The PyPbI3 obtained in this work exhibits a hexagonal
crystal structure, instead of the orthorhombic phase reported elsewhere [32], as confirmed
by XRD results. More importantly, XPS and FTIR results reveal that there are strong
interatomic forces between Py+ cations and inorganic cages, which may help to stabilize its
phase. The PyPbI3 exhibited excellent environmental stability compared to 3D FA-based
perovskite, as revealed by our stability measurements. Last, PSCs with a lifetime of more
than one month employing PyPbI3 as a single absorbing layer was fabricated.

Although the efficiency is not ideal, the kinetically and thermodynamically sTable
1D perovskitoid may play an important role in obtaining long-term stability of PSCs by
forming 1D/3D heterojunctions. Moreover, the environmentally sTable 1D perovskitoid,
as well as its broadband emission properties [46], have shown great potential in other
semiconductor applicationsm including LED, photodetector and memory device. We
anticipate that there will be more related 1D perovskitoid work coming in the near future.
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