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Abstract: An IrIII-PtII heterodimetallic complex [(ppy)2Ir(dapz)PtCl2]Cl (4), together with the corre-
sponding monometallic complexes [(dapz)PtCl2] (2) and [(ppy)2Ir(dapz)]Cl (3) was designed and
prepared, where dapz is 2,5-di(N-methyl-N′-(pyrid-2-yl)amino)pyrazine and ppy is 2-phenylpyridine,
respectively. Single-crystal X-ray analysis was carried out for complex 4, displaying the intermolecu-
lar Pt···Pt and aromatic plane···plane distances of 3.839 and 3.886 Å, respectively. The monometallic
complex 2 exhibits a single emission maximum at 432 nm with a shorter excited-state lifetime (τ)
of 6 ns, while complex 3 exhibits an emission band at 454 nm with a longer excited-state lifetime of
135 ns in CH3CN (N2-saturated) under ambient conditions. In contrast, the heterodimetallic complex
4 displays intriguing excitation wavelength-dependent dual singlet and triplet emissions. Theoretical
calculations of the electronic structures and absorption spectra of these complexes were carried out
to assist the interpretation of these experimental findings.

Keywords: bridging ligands; transition metal complexes; dual emissions; iridium; platinum

1. Introduction

Emissive transition metal complexes (TMCs) with dual or multiband emissions have
attracted much attention because of their intriguing luminescence properties [1,2]. A num-
ber of dual-emissive mononuclear TMCs have been developed including ruthenium [3–7],
iridium [8–10], platinum [11], and other metal complexes [12–14]. Due to the presence of
two or multiple distinct emission bands, these kinds of materials have been widely used in
the ratiometric sensing and imaging of metal ions [15], O2 [16–20], and biomacromolecules
(protein and DNA) [21–23], with improved sensing accuracy and reliability.

One strategy to construct dual-emissive TMCs is by tuning the ligand electronic
structures of mononuclear complexes such as introducing additional organic
luminophores [17,18,24,25] or new ligand-localized charge-transfer excited states [19,26,27].
Another strategy is the synthesis of dinuclear or multinuclear bridged complexes with
the same or different metal ions, which may exhibit interesting photophysical properties
by tuning the electron/energy transfer among individual metal components [28–30]. Ex-
amples of dual-emissive dinuclear TMCs based on ruthenium [31] and platinum [32,33]
complexes have been documented recently, stimulating the design and synthesis of new
bridged complexes with intriguing emission properties.

In a previous work, we reported a bis-bidentate ligand dapz (dapz = 2,5-di(N-methyl-
N′-(pyrid-2-yl)amino)pyrazine; Figure 1) with a larger bite angle and its application in
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the synthesis of a dual-emissive mononuclear ruthenium complex [34]. To extend our
research interest in the development of dual-emissive TMCs, an IrIII-PtII heterodimetal-
lic complex [(ppy)2Ir(dapz)PtCl2]Cl (4) and the corresponding monometallic complexes
[(ppy)2Ir(dapz)]Cl (3) and [(dapz)PtCl2] (2) were designed and prepared. The photophysi-
cal properties of these complexes are presented herein. Moreover, density functional theory
(DFT) and time-dependent DFT (TDDFT) calculations were performed and are discussed.
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Figure 1. Synthesis of complexes 2–4.

2. Experimental Section
2.1. Spectroscopic Analysis

A TU-1810DSPC spectrometer of Beijing Purkinje General Instrument Co. Ltd. (Bei-
jing, China) was used to measure the absorption spectra at ambient conditions. A F-380
spectrofluorometer of Tianjin Gangdong Sci. & Tech. Development Co. Ltd. (Tianjin,
China) was used to measure the emission spectra. Samples for absorption and emission
measurements were prepared within quartz cuvettes of a 1 cm path length. Luminescence
quantum yields were calculated by using quinine sulfate in 1.0 M aq H2SO4 (Φ = 55%)
as the standard. The uncertainty was about ±10% or better. A Bruker Advance 300 or
400 MHz spectrometer (Bruker, Billerica, MA, USA) was used to obtain the 1H and 13C
NMR spectra. A Waters MALDI micro MX mass spectrometer (Bruker, Karlsruhe, BW,
Germany) was used to record the MALDI-TOF positive ion data in a reflection mode.
A Flash EA 1112 or Carlo Erba 1106 analyzer (Thermo Fisher Scientific, Waltham, MA,
USA) was used to record elemental analysis results. Thermal analysis was carried out
using a PerkinElmer TGA 8000 under nitrogen (PerkinElmer Inc., Waltham, MA, USA).

2.2. Emission Lifetime Analysis

The luminescence decays were analyzed on a Hamamatsu Quantaurus-Tau Fluores-
cence lifetime spectrometer C11367 (Hamamatsu Photonics K.K., Shizuoka, Japan) and
a nanosecond flash photolysis setup (Edinburgh FLS920 spectrometer) equipped with a
picosecond pulsed diode laser (Edinburgh Instruments, Edinburgh, UK).

2.3. DFT and TDDFT Calculations

Gaussian 09 package (revision 09, Gaussian Inc., Wallingford, CT, USA) and the B3LYP
exchange correlation functional were used to carry out the DFT calculations. The electronic
structures were optimized with the LANL2DZ basis set for Ir, Pt, and 6-31G* for other
atoms. All calculations were performed taking into account the solvation effects in CH3CN.
No symmetry constraints were used for all of the calculations. In order to ensure the
optimized geometries to be local minima, frequency calculations were carried out at the
same level of theory. All orbitals were computed by setting an isovalue of 0.02 e bohr−3.
With the same level of theory, the DFT-optimized structures were used for the subsequent
TDDFT calculations.

2.4. X-ray Crystallography

A Rigaku Saturn 724 diffractometer on a rotating anode (Mo Kα radiation, 0.71073
Å) was used to collect the X-ray diffraction data at 173 K. The structure solution and
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refinement were performed on SHELXS-97 and Olex2 software (version Olex2.refine,
Durham University, UK). Olex2 software was used to generate the structure graphics
shown in Figure 2.
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Figure 2. (a) ORTEP diagram of the single-crystal X-ray structure and (b) crystal packing of complex 4 with 50% probability
of the thermal ellipsoids. For the reason of clarity, H atoms and solvents were omitted. The intermolecular aromatic
plane···plane, Pt···Pt and Cl···Cl distances are indicated in (b).

2.5. Synthesis

All reagents were purchased from commercial resources and used as received. Stan-
dard Schlenk techniques were employed to run all reactions under N2.

2.5.1. [(dapz)PtCl2] (2)

A suspension of K2PtCl4 (41.5 mg, 0.1 mmol) and dapz (1) (29.2 mg, 0.1 mmol) [34]
in MeOH/H2O (5 mL/5 mL) was refluxed for 12 h. After cooling to room temperature,
the solvent was evaporated under reduced pressure. Silica gel chromatography (eluent:
CH2Cl2/MeOH = 100/5) was used to purify the crude product to provide 15 mg of complex
2 as a yellow solid in 27% yield. 1H NMR (400 MHz, CD2Cl2): δ 3.59 (s, 3H), 3.66 (s, 3H),
7.04 (t, J = 6.4 Hz, 1H), 7.09 (t, J = 6.8 Hz, 1H), 7.16 (t, J = 7.6 Hz, 2H), 7.72 (t, J = 8.4 Hz, 1H),
7.91 (t, J = 8.0 Hz, 1H), 8.16 (s, 1H), 8.35 (d, J = 4.8 Hz, 1H), 9.00 (d, J = 6.0 Hz, 1H), 9.25
(s, 1H). MALDI-MS (m/z): 523.2 for [M–Cl]+, 486.2 for [M – 2Cl – 1]2+. Anal. Calcd. for
C16H16Cl2N6Pt·H2O: C, 33.34; H, 3.15; N, 14.58. Found: C, 33.57; H, 3.01; N, 14.18.

2.5.2. [(. ppy)2Ir(dapz)]Cl (3)

A mixture of dapz (21 mg, 0.07 mmol) and [(ppy)2IrCl]2 (32 mg, 0.03 mmol) was added
to the mixed solvent of 5 mL of CH2Cl2 and 5 mL of MeOH. The mixture was heated under
reflux for 18 h. The solvent was then removed under reduced pressure. The crude product
was purified by flash chromatography using silica gel (eluent: CH2Cl2/MeOH = 100/8) to
give 45 mg of complex 3 as a yellow solid in 91% yield. 1H NMR (400 MHz, CD2Cl2): δ
3.41 (s, 3H), 3.65 (s, 3H), 6.12 (d, J = 7.6 Hz, 1H), 6.16 (d, J = 7.6 Hz, 1H), 6.71 (t, J = 7.6 Hz,
1H), 6.80–7.00 (m, 6H), 7.18–7.24 (m, 2H), 7.54–7.59 (m, 3H), 7.64 (d, J = 7.6 Hz, 1H), 7.74
(d, J = 5.2 Hz, 1H), 7.87–7.97 (m, 7H), 8.09 (d, J = 6.0 Hz, 1H), 8.26 (d, J = 6.0 Hz, 1H), 8.59
(s, 1H). 13C NMR (75 MHz, CD3CN): δ 35.6, 40.7, 114.3, 116.6, 119.4, 120.3, 120.7, 121.0,
123.0, 123.1, 123.3, 123.6, 125.2, 125.5, 130.5, 130.7, 132.1, 132.2, 135.2, 137.4, 139.2, 140.9,
144.5, 144.6, 144.8, 148.6, 149.7, 150.3, 150.7, 151.0, 151.5, 156.4, 157.6, 167.9. MALDI-MS
(m/z): 793.5 for [M – Cl]+. MALDI-HRMS (m/z) calcd. for C38H32N8Ir: 793.2375. Found:
793.2371. Anal. Calcd. for C38H32ClN8Ir·2H2O: C, 52.80; H, 4.20; N, 12.96. Found: C, 52.75;
H, 4.24; N, 12.63.

2.5.3. [(. ppy)2Ir(dapz)PtCl2]Cl (4)

A suspension of complex 3 (149 mg, 0.18 mmol) and K2PtCl4 (83 mg, 0.2 mmol) in
MeOH/H2O (10 mL/10 mL) was refluxed under N2 for 1 h. After removing the solvent
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under reduced pressure, the crude product was purified by silica gel chromatography
(eluent: CH2Cl2/MeOH = 100/15) to afford 140 mg of complex 4 as an orange solid in 71%
yield. 1H NMR (400 MHz, CD3CN): δ 2.94 (s, 3H), 3.56 (s, 3H), 6.16 (d, J = 7.6 Hz, 1H), 6.22
(d, J = 7.6 Hz, 1H), 6.86 (t, J = 7.2 Hz, 1H), 6.94 (t, J = 8.0 Hz, 2H), 7.02 (q, J = 8.4 Hz, 2H),
7.09–7.17 (m, 3H), 7.22 (t, J = 6.4 Hz, 1H), 7.54–7.60 (m, 2H), 7.68 (s, 1H), 7.74 (d, J = 7.6 Hz,
1H), 7.81 (d, J = 7.6 Hz, 1H), 7.93–7.98 (m, 4H), 8.05 (d, J = 7.6 Hz, 1H), 8.12–8.16 (m, 2H),
8.20 (d, J = 5.6 Hz, 1H), 8.82 (d, J = 5.6 Hz, 1H), 9.22 (s, 1H). MALDI-MS (m/z): 1058.1 for
[M – Cl]+. MALDI-HRMS (m/z) calcd. for C38H32Cl2IrN8Pt: 1058.1390. Found: 1058.1406.
Anal. Calcd. for C38H32Cl3IrN8Pt·3H2O: C, 39.74; H, 3.34; N, 9.76. Found: C, 39.45; H, 3.16;
N, 9.83.

3. Results and Discussion
3.1. Synthesis and Single Crystal X-ray Analysis

The compounds that were studied in this work are displayed in Figure 1. The bridg-
ing ligand dapz (1) was prepared according to the previously reported procedure [34].
The treatment of K2PtCl4 with 1 in a mixture of methanol and water afforded the mononu-
clear PtII complex 2 in 27% yield. The yield of this reaction was not optimized. However,
when this reaction was performed in acetic acid [35,36] or a mixture of water and acetoni-
trile [37,38], no desired product could be isolated, and the reason is not clear at this stage.
By the treatment of ligand 1 with the IrIII dimer [(ppy)2IrCl]2 (ppy = 2-phenylpyridine)
in a mixture of methanol and dichloromethane [39], the mononuclear IrIII complex 3 was
isolated in a high yield of 91% after purification by flash column chromatography. When
complex 3 was further treated with one equiv of K2PtCl4 in a mixture of methanol and
water, the IrIII-PtII heterodimetallic complex 4 was obtained in 71% yield after flash column
chromatography. All new compounds were thoroughly characterized by mass and NMR
spectrometry, as well as elemental analysis. The comparison of 1H NMR spectra of 1–4 is
shown in Figure S1. After coordination with a [PtCl2] or [(ppy)2Ir] unit, the methyl protons
of ligand 1 were split into two peaks with some degree of shifts in complexes 2–4, sugges-
tive of the asymmetric structures of these compounds. In addition, compared to those of
ligand 1, one singlet pyrazine proton and one doublet α-pyridine proton of the platinum
complexes 2 and 4 shift distinctly to the low field. HPLC analysis shows high purity of over
99% for both dapz and 4 (Figure S2). The 1H and 13C NMR spectra of new complexes are
provided in the Supporting Information (Figures S3–S6). The thermogravimetric analysis
indicated that complexes 3 and 4 show thermal decomposition temperatures of 178 and
281 ◦C at a 5% weight loss, respectively (Figure S7).

The structure of complex 4 was also confirmed by single-crystal X-ray analysis.
The ORTEP and crystal packing of 4 are shown in Figure 2. Corresponding crystallo-
graphic data are summarized in Tables S1 and S2. The single crystal of 4 was obtained by
the slow diffusion of diethyl ether into a solution of 4 in acetonitrile. The Ir atom adopts a
distorted octahedral configuration surrounded by dapz and two ppy ligands, whereas the
Pt atom possesses a square planar coordination geometry. The N-Ir-N bite angle with the
dapz ligand (85.94(14)◦) is slightly larger with respect to the C-Ir-N bite angles associated
with two ppy ligands (80.44(15) and 80.63(16)◦ respectively). The N-Pt-N bite angle with
the dapz ligand (87.95(16)◦) is also larger than those of most platinum complexes with
N∧N bidentate ligands, which fall in the range of 77.5(2)–79.02(14)◦ [40–42]. The Ir-N bond
lengths with dapz (2.167(4) and 2.174(3) Å) are slightly longer than the Ir-C bond lengths
with ppy (2.063(3) and 2.055(3) Å). The Pt-N bond lengths with dapz (2.007(4) and 2.032(5)
Å) are similar to those of known platinum complexes [38,40–42]. As suggested by Figure 2b,
the intermolecular Cl···Cl distance is 4.248 Å, indicating the absence of Cl···Cl interaction.
The intermolecular aromatic plane···plane and Pt···Pt distances of complex 4 are 3.886 and
3.839 Å, respectively. The distance is slightly larger than, but close to, the Pt···Pt interaction
distance [43,44] and conventional π–π stacking [45]. This suggests that the intermolecular
π–π and Pt···Pt interactions, if present, are rather weak in the crystal of complex 4.
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3.2. DFT Calculations

In order to understand the electronic structure of these complexes, DFT calcula-
tions were performed on 2, 3+, and 4+ (counteranions were not considered) with the
B3LYP/LANL2DZ/6-31G*/CPCM method. Figure 3a shows the calculated energy dia-
gram of these complexes. The frontier energy gaps of 2 and 3+ were calculated to be 3.73
and 3.65 eV, respectively. Complex 4+ has a calculated energy gap of 2.9 eV, which is much
narrower than those of 2 and 3+. This is mainly ascribed to the stabilization of the lowest
unoccupied molecular orbital (LUMO) level of 4+. The isodensity plots of some representa-
tive orbitals of these complexes are shown in Figure S8 (2), Figure S9 (3+), and Figure 3b
(4+). The highest occupied molecular orbital (HOMO) of complex 2 is dominated by the
ligand dapz, while the HOMO–1, HOMO–2, and HOMO–3 of 2 are associated with the
platinum component (Figure S8). The LUMO of 2 has a major contribution from the central
pyrazine unit of dapz and the [PtCl2] unit and the pyridine segments of dapz make bigger
contributions to the higher unoccupied orbitals. The HOMO and HOMO–1 of complex
3 are associated with the iridium component and ligand dapz, while its HOMO–2 and
HOMO–3 are dominated by the iridium component (Figure S9). The LUMO of 3+ is also
dominated by the central pyrazine unit of dapz and its higher unoccupied orbitals are
associated with ppy ligands. The HOMO, HOMO–1, and HOMO–3 of 4+ are dominated by
the iridium component, while its HOMO–2 has significant contributions from the ligand
dapz, with little contributions from the platinum component (Figure 3b). The LUMO of
4+ has the same character as those of 2 and 3+, associated with the central pyrazine unit
of dapz. The LUMO+1 of 4+ is dominated by the [PtCl2] unit. Other higher unoccupied
orbitals of 4+ are associated with the dapz and ppy ligands.
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3.3. Absorption Studies and TDDFT Calculations

The electronic absorption spectra of compounds 1–4 are displayed in Figure 4a. Cor-
responding data, including absorption maxima and molar absorption coefficients, are
delineated in Table 1. Transitions in the UV region are largely caused by intraligand π–
π* excitations, while the absorption bands in the visible region are attributed to charge
transfer (CT) transitions. The lower-energy side of the visible absorptions of the dimetallic
complex 4 extends to the region with wavelengths longer than 500 nm, which are distinctly
red-shifted with respect to that of 1–3. This is in agreement with the above DFT calculations
showing that complex 4 has the narrowest energy gap.
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Figure 4. (a) UV/vis absorption spectra of 1–4 in acetonitrile at a concentration of 5.0 × 10−6 M. (b) Time-dependent DFT
(TDDFT) results of complex 4+.

Table 1. Absorption and emission data of complexes 2–4 and dapz a.

Compound λabs(max)/nm (ε/105

M−1cm−1) λem(max)
b/nm τ (N2) c/ns Φd

1 309 (0.13), 369 (0.07) 460 10 43%

2 284 (0.24), 305 (0.22),
402 (0.07) 432 6 (at 410 nm) 3.2%

3 252 (1.13), 303 (0.62),
370 (0.15) 454 135 (at 480 nm) 5.8%

4 264 (0.96), 317 (0.43),
377 (0.21), 491 (0.02) 420/520 8/99 1.5%

a All spectra were measured in a 1.0 cm quartz cell (5 × 10−6 M in CH3CN). b The excitation wavelength is 340 nm for 1 and 2 and 360 nm
for 3 and 4, respectively. c The data were simulated by a mono- (1, 2), bi- (3), and triexponential (4) decay. Recorded as the average lifetime
τ in the case of multiexponential decay by τ = [A1(τ1)2 + A2(τ2)2 + ··· + An(τn)2]/(A1τ1 + A2τ2+ ··· + Anτn). d Relative quantum yield
compared to that of quinine sulfate in 1.0 M aq H2SO4 (55%).

In order to assist in the assignment of the electronic absorptions, the nature of the low
energy transitions was investigated by TDDFT calculations. The predicted transitions of
complexes 2, 3+, and 4+ are shown in Figure S10 (2 and 3+) and Figure 4b (4+). Table 2 col-
lects major predicted transitions with the excitation energy, oscillator strength (f ), dominant
configuration contribution and assignment. The mononuclear platinum complex 2 shows a
broad band centered at 402 nm. The TDDFT results indicate that the S1 state (f = 0.0648) is
responsible for this band. This state is mainly assigned to the HOMO→ LUMO excitation,
with a character of intraligand charge transfer (ILCT) from the aminopyridine units to the
central pyrazine unit of dapz. The mononuclear iridium complex 3 displays an absorption
band centered at 370 nm. According to the TDDFT results, this band is ascribed to the
metal to ligand charge transfer (MLCT) from the Ir component to ligand dapz.

Compared to those of the Ir complex 3, the absorptions of the Ir-Pt complex 4 are slightly
red shifted, showing a broad band centered at 377 nm and some weak absorptions in the
region 450–550 nm. The TDDFT results of 4 suggest that the Pt based MLCT transition (S12
excitation, f = 0.0408) may contribute to the relatively higher-energy absorptions of the com-
pound. The lower-energy absorptions in the region 450–550 nm are more likely attributed to
an admixture of the iridium-based MLCT, ILCT and ligand to ligand charge transfer (LLCT)
transitions (S1, S2, and S4 states with f of 0.011, 0.057, and 0.0301, respectively).
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Table 2. TDDFT results of complex 2–4 a.

Compound Sn E (ev) λ (nm) f Dominant Transition(s)
(Percentage Contribution b) Assignment c

2

1 3.10 399 0.0648 HOMO→ LUMO (77%) ILdapzCT

2 3.15 394 0.0245 HOMO–1→ LUMO + 1 (34%)
HOMO–2→ LUMO + 1 (28%) MC

7 3.61 343 0.033 HOMO→ LUMO + 2 (50%) ILdapzCT
8 3.68 337 0.0217 HOMO→ LUMO + 2 (35%) ILdapzCT

10 3.90 318 0.122 HOMO–3→ LUMO (70%) MPtLdapzCT

3

1 2.99 415 0.0244 HOMO→ LUMO (97%) MIrLdapzCT
2 3.14 395 0.052 HOMO→ LUMO + 1 (89%) MIrLppyCT/LdapzLppyCT
4 3.26 381 0.0565 HOMO–1→ LUMO (87%) MIrLdapzCT/LppyLdapzCT
5 3.52 353 0.0369 HOMO→ LUMO + 3 (85%) MIrLdapzCT/LppyLdapzCT

11 3.83 324 0.1018 HOMO–1→ LUMO + 3 (84%) MIrLdapzCT/LppyLdapzCT

4

1 2.25 551 0.011 HOMO→ LUMO (99%) MIrLdapzCT/LppyLdapzCT

2 2.88 430 0.057 HOMO–2→ LUMO (58%)
HOMO–1→ LUMO (32%) MIrLdapzCT/ILdapzCT

4 3.04 408 0.0301 HOMO–3→ LUMO (61%) MIrLdapzCT/LppyLdapzCT
9 3.20 388 0.062 HOMO→ LUMO+2 (91%) MC

12 3.30 375 0.0408 HOMO–5→ LUMO (17%)
HOMO–5→ LUMO + 1 (19%) MIrLdapzCT/MPtLdapzCT

14 3.40 364 0.0322 HOMO–9→ LUMO (50%) MPtLdapzCT
a Computed at the B3LYP/LANL2DZ/6-31G*/CPCM level of theory. b Actual contributions [%] = (configuration coefficient)2 × 2 × 100.
c ppy = phenylpyridine, dapz = 2,5-di(N-methyl-N′-(pyrid-2-yl)amino)pyrazine.

3.4. Emission Spectroscopic Studies

The above complexes were further investigated regarding their emission properties.
Their emission spectra are shown in Figure 5; Figure 6, and the luminescence data are pro-
vided in Table 1. The ligand dapz 1 exhibited an emission band at 460 nm with a quantum
yield of 43% and a lifetime of 10 ns in nitrogen-saturated CH3CN (Figure 5a) [34]. The
mononuclear platinum complex 2 shows an emission band at 432 nm with a quantum yield
of 3.2%, and a lifetime of 6 ns in nitrogen-saturated CH3CN. The shape of the emission spec-
trum is independent of the excitation wavelength and the emission lifetime is independent
of the emission wavelength (Figure 5b,c). These data suggest that the emission of 2 has a
Pt-perturbed 1ILCT character. The incorporation of the [PtCl2] component into ligand dapz
leads to the significant decrease of the emission quantum yield by the heavy atom effect.
The mononuclear iridium complex 3 displays an emission band at 454 nm, with a quantum
yield of 5.8% in CH3CN under nitrogen-saturated conditions. As suggested by TDDFT
calculations, we believe that the dapz-targeted 3MLCT transition is responsible for the
observed emission at 454 nm. The excited-state lifetime was determined as 19 and 135 ns
in air-equilibrated and nitrogen-saturated conditions, respectively. This is in accordance
with the excited-state lifetime of the most reported mononuclear cyclometalated iridium
complexes [46–48]. In addition, the emission lifetime of 3 is also basically independent of
the decay wavelength (Figure 5e). These results suggest that the emissions of 2 and 3 were
originated from a single singlet and triplet excited state, respectively.

In contrast, the heterodimetallic complex 4 exhibits dual emissive behavior dependent
on the excitation wavelength (Figure 6). Upon excitation at 350 nm, complex 4 shows a
major emission band at about 420 nm and a shoulder emission band at around 520 nm with
a total Φ of 1.5% in dilute solution (5 × 10−6 M). The latter longer-wavelength emission
becomes more distinct when a longer excitation wavelength is used. The emissions at
420 and 520 nm have a distinctly different excited-state lifetime (8 and 99 ns for 420 and
520 nm, respectively) (Figure 6b). As suggested by TDDFT calculations, the vertical S1
excitation with an admixture of MLCT and LLCT transitions may be responsible for the
observed lower-energy emission. This suggests that the lower-energy emission at 520 of 4
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has a similar 3MLCT character as that of the mono-Ir complex 3, while the higher-energy
emission at 420 nm of 4 may have a similar Pt-perturbed 1ILCT character as that of the
mono-Pt complex 2. This assignment is also in accordance with the excitation spectrum of
the emission at 420 nm and 520 nm, displaying an excitation maximum at 348 and 380 nm,
respectively (Figure 6c). The presence of dual emissions is likely a result of an inefficient
intramolecular energy transfer process between the 1ILCT and 3MLCT state. A similar
mechanism has been proposed for other heterodimetallic ReI-PtII complexes bridged by a
nonconjugated aminopyridine ligand [49]. Concentration-dependent studies show that
an emission band centered at 670 nm appears as the concentration was increased from
2.5 × 10−7 to 1.7 × 10−4 M (Figure 6d). This band is possibly caused by an excimeric
emission due to weak intermolecular π–π stackings as suggested by the above single-
crystal X-ray analysis [45].
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Figure 5. (a,b,d) Emission spectra of (a) 1, (b) 2, and (d) 3 excited at different wavelengths indi-
cated (5 × 10−6 M in CH3CN). (c,e) Emission decay profiles of (c) 2 and (e) 3 at different emission
wavelengths indicated (5 × 10−6 M in CH3CN). Excited at 360 nm.
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Figure 6. (a) Emission spectra of 4 excited at different wavelengths indicated (5× 10−6 M in CH3CN).
(b) Emission decay profiles of 4 at different emission wavelengths indicated. Excited at 350 nm.
(c) Excitation spectra of the emission at 400 and 520 nm of 4. (d) Emission spectra of 4 in CH3CN
upon increasing the concentration from 2.5 × 10−7 to 1.7 × 10−4 M.
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4. Conclusions

In summary, three dapz-containing monometallic and heterodimetallic complexes
were designed and prepared. The two monometallic complexes 2 and 3 display a single
emission band in the visible region. Interestingly, the heterodimetallic complex 4 exhibits
excitation wavelength-dependent dual emissions, which are assigned to the Pt-perturbed
1ILCT and Ir-based 3MLCT character, respectively. The inefficient energy transfer is be-
lieved for the observation of dual emissions. In contrast, most of the previously reported
homo- or heterodinuclear complexes only exhibit a single emission band [50,51],consistent
with Kasha’s rule [52]. This suggests the unique photophysical property of metal complexes
with ligand dapz. It provides important information for the future design and synthesis of
dual emission photofunctional materials, which are potentially useful in the time-gated or
dual-wavelength ratiometric sensing and imaging of chemical or biological systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-435
2/11/3/236/s1, Tables S1 and S2: crystallographic data of complex 4. Figure S1: The comparison of
1H NMR spectra of 1–4. Figure S2: Analytical HPLC of dapz and complex 4. Figures S3–S6: 1H- and
13C-NMR spectra of complex 2–4. Figure S7: Thermogravimetric traces of complexes 3–4. Figures
S8–S9: Isodensity plots of selected frontier molecular orbitals of complex 2 and 3. Figure S10: TDDFT
results of complex 2 and 3.
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