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Abstract: A crack-free GaN film grown on 4-inch Si (111) substrate is proposed using two-step growth
methods simply controlled by both III/V ratio and pressure. Two-step growth process is found to
be effective in compensating the strong tensile stress in the GaN layer grown on Si substrate. The
high-resolution X-ray diffraction (XRD) rocking curves of (002) and (102) planes for the GaN epitaxial
layer with two-step growth method are 317 and 432 arcsec, while the corresponding values for the
reference sample without two-step growth method are 550 and 1207 arcsec, respectively. The reduced
threading dislocation of GaN film with two-step growth method is obtained to be ~2 × 108/cm2,
which is attributed to effectively annihilate and bend threading dislocation.

Keywords: GaN; Si substrate; two-step growth method; III-V ratio; pressure; threading dislocation;
growth stop; crack-free; compressive stress

1. Introduction

III–nitride semiconductors and related alloys are very promising materials for not only
short wavelength optoelectronics (blue and green light-emitting diodes (LEDs), laser diodes
(LDs)), but also high-power devices [1–3]. Because of several advantages of materials,
such as wide band gap, high breakdown voltage, and high electron peak velocity, the
AlGaN/GaN high electron mobility transistors (HEMTs) have an excellent potential for
high-power and high-frequency devices application [4]. In order to grow a GaN epitaxial
layer, silicon (Si) can be considered to a promising substrate due to its low cost and large
wafer size compared to sapphire (Al2O3), silicon carbide (SiC), and GaN substrate [5].
However, the huge differences in lattice constant, crystal structure, and thermal expansion
coefficient between GaN and Si are believed to be responsible for the difficulties in growing
good quality GaN films on Si substrate. Especially, an amount of thermal (~56%) and lattice
(~17%) mismatch make a large threading dislocation density (TDD) of 109~1010/cm2 in
GaN grown on Si [6,7]. For successfully performing the growth of GaN on Si substrates,
the AlN and AlGaN layers are typically used to mitigate the thermal and lattice mismatch
at heterointerface of between GaN layer and Si wafer [6–8].

Another issue of the growth of GaN on Si substrate is hard to fabricate GaN vertical
devices because the insulating property of AlN layer makes it challenging to realize the
vertical current conduction, which results in significantly increasing the series resistance
in GaN vertical devices. A thin AlN nucleation layer can be used for vertical conduction
layer through tunneling mechanism [9]. Thus, to effectively obtain a vertical conduction, it
is imperative to directly grow high quality GaN on a thin AlN nucleation layer and reduce
dislocation densities [6].

In this work, we propose and grow a crack-free GaN film grown on Si substrate by
using AIN buffer layer and two-step growth method, which consists of two growth steps;
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(1) first step is low growth rate with high III-V ratio/pressure and (2) second step is high
growth rate with low III-V ratio/pressure in order to control stress and reduce dislocation
density. The proposed growth method can be easily achieved to the GaN vertical device
structure on Si substrates without the additional fabrication process, such as quasi-vertical
structures, wafer bonding, and substrate removal techniques [10–13].

2. Experiments

The GaN films were grown on 4-inch (111) p-type Si substrates by metal organic chem-
ical vapor deposition (MOCVD). Trimethylgallium (TMGa), trimetahylaluminum (TMAl),
and ammonia (NH3), were used for the precursors for Ga, Al, and N, respectively [14].
The Si substrate was baked in an H2 ambient at 1100 ◦C for 10 min to remove the native
oxide prior to the growth of AlN buffer layer. Then, the Si surface was treated with Al
pre-surface coverage during 60 seconds to suppress the formation of amorphous SiNx layer
on the Si surface at the initial stage of growth [15]. The total layer structure with total thick-
ness of approximate 1.7 µm consists of 100 nm-thick high temperature (HT)-AlN buffer
layer, 400 nm-thick GaN seed layer, and 1.2 µm-thick GaN layer in growth sequence. The
growth temperatures were set to be 1200 and 1150 ◦C for AlN and GaN layer, respectively.
High quality GaN layer with reduced stress and dislocation density can be achieved by
controlling the various growth conditions such as V-III ratio, pressure, and temperature.
The detailed layer structure and growth conditions for samples are displayed in Figure 1
and the following processes. The GaN seed layer was grown on AIN buffer layer at the
high V-III ratio of 15,000 and high pressure of 500 torr with low growth rate. To change
both pressure and V-III ratio, the next stage is to stop the GaN growth for 3 min. Finally,
the 1.2 µm-thick GaN was grown on GaN seed layer under low V-III ratio of 5000 and low
pressure of 200 torr with high growth rate [16]. For comparison, the GaN with continuous
V-III ratio of 5000 and pressure of 200 torr was also grown.
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Figure 1. Schematic cross-sectional view of structure for GaN grown on Si substrate (a) with and
(b) without two-step growth method.

3. Results and Discussion

Figure 2 shows the optical microscopy images of GaN grown on Si substrate with
and without two-step growth method to observe the surface morphology of the samples.
The sample with two-step growth method exhibits the crack-free surface while the sample
without two-step growth method presents many cracks on the surface. This explains that
the two-step growth method is effective in compensating the tensile stress in the GaN layer
grown on Si substrate, as discussed later.
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 Figure 2. Optical microscopy images (1 mm × 1 mm) of GaN grown on Si substrate (a) with and
(b) without the two-step growth method.

Raman scattering spectroscopy was investigated to elucidate the stress state of the
grown GaN samples. As shown in Figure 3, the Raman scattering spectra exhibit peak shift
at frequencies of 568.39 and 565.93 cm−1 for the grown films with and without the two-step
growth method, corresponding to the calculated biaxial stresses of −0.201 and 0.397 GPa,
respectively [17]. This indicates that the biaxial stress in the GaN grown on Si substrate with
the two-step growth method is compressive while that without the two-step growth method
still remains tensile, considering the reference value of 567.5 cm−1 for the freestanding GaN.
It is believed that the two-step growth method gives rise to strong compressive stress in the
GaN film grown on Si substrate during the high temperature growth, which sufficiently
overcomes the tensile stress caused by cooling down and remains compressive even after
completing the growth. On the other hand, the films without the two-step growth method
were not able to significantly overwhelm the tensile stress, which results in the generation
of crack on GaN surface due to different thermal expansion coefficient after cooling down.
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Figure 3. Raman spectra of GaN grown on Si substrate with and without the two-step growth method.

Figure 4 shows the photoluminescence (PL) mapping of GaN films grown on with
and without the two-step growth method. The average PL spectral peak wavelength of
the GaN film negatively shifts to 3 nm for the GaN film with the two-step growth method
(361 nm) compared to the corresponding value for the GaN film without the two-step
growth method (364 nm). This could be considered as direct evident that the GaN films
with the two-step growth method well overcomes the tensile stress and hence exhibits the
compressive strain, which is consistent with the Raman analysis in Figure 3.
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Figure 4. PL mapping of GaN grown on Si substrate (a) with and (b) without the two-step
growth method.

To further study the crystalline quality of the GaN layers, the crystal quality of 1.7 µm
GaN epilayers was analyzed by high-resolution X-ray diffraction (HRXRD) measurements.
The XRD rocking curves of symmetric (002) and asymmetric (102) planes are shown in
Figure 5. The full width at half-maximum (FWHMs) of the (002) and (102) planes for the
GaN epilayer with the two-step growth method are 317 and 432 arcsec, while those for
GaN epilayer without the two-step growth method are 550 and 1207 arcsec, respectively.
It is interesting that the value of FWHM (102) plane for the GaN epilayer with two-step
growth is about three times lower than that of the (102) planes without two-step growth.
Generally, the FWHMs are associated with TDD in GaN epilayer. This significant reduction
of FWHMs means that the TDD of GaN epilayer with the two-step growth method is
remarkably decreased.
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Figure 5. (a) Symmetric (002) and (b) asymmetric (102) rocking curves GaN grown on Si substrate
with and without the two-step growth method.
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The cross-sectional transmission electron microscopy (TEM) image of the proposed
sample in Figure 6a clearly exhibits the 100 nm-thick AIN buffer layer, 400 nm-thick GaN
seed layer, and 1.2 µm-thick GaN layer, which are depicted in Figure 1a. This TEM image
is taken along g = 000crystallographic direction in order to find the propagation behavior
of the threading dislocation for GaN on Si. It also clearly observed that a lot of threading
dislocation has been occurred in the GaN seed layer, which has been grown at low grow rate
and high V-III ratio/pressure to obtain 2-dimensional (2-D) growth. However, the density
of threading dislocation dramatically reduces in GaN layer grown at condition of low V-III
ratio and low pressure. On the other hand, it is known that many threading dislocations
generate in the GaN seed layer and propagate to the whole thick GaN buffer layer in the
literatures [9,18]. The TDD can be obtained to calculate by counting the pits on the TEM
and/or AFM images and then averaging them. The estimated TDD is ~8 × 108/cm2 and
~2 × 108/cm2 for the seed GaN and the thick GaN layer, respectively. The root mean square
(RMS) roughness of GaN with two-step growth obtained by atomic force microscopy (AFM)
is 0.12 nm, as shown in Figure 6b. From the dark points in GaN surface observed in AFM
image, the TDD is also extracted to 2 × 108/cm2, which value is well matched with that of
the threading dislocation indicated by the cross-section TEM image. The two-step growth
method seems to be effective in reducing threading dislocation. The dislocation density
is related to the grain size and stress relaxation [6]. The initial GaN seed layer with low
growth rate (grown at the high V-III ratio/pressure) makes the small grain size and large
nuclei densities, which leads to the high dislocations formed at the grain boundary. The
following step under low V-III ratio/pressure with high growth rate introduce large size of
grain with high compressive stress, which results in annihilating and bending threading
dislocation [16,19]. The interval of stop-growth, which change the pressure and growth
rate, is also helpful to reduce and minimize threading dislocations.
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Figure 6. (a) TEM and (b) AFM images of GaN grown on Si substrate with the two-step growth method.

4. Conclusions

We propose a crack-free GaN film on Si substrate by using the two-step growth
method. This method occurs a compressive stress in total GaN epitaxial layer, which
compensates the strong tensile stress in the underlaying GaN seed layer and hence results
in crack-free film growth. Especially, the interval of stop-growth (changing pressure and
growth rate) results in annihilating and bending threading dislocation, which leads to the
effectively reduced the dislocation density of ~2 × 108/cm2 for GaN film with the two-step
growth method. This technique would have great application potential for the growth and
fabrication of fully vertical GaN device on Si substrates.
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