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Abstract: This study reports for the first time the geologic occurrence of natural zeolite A and
associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the
municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite,
pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite,
with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and
millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite
fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral
phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube
molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to
processes of high diagenesis, temperatures up to 80–100 ◦C, with weathering contributions, which
increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the
geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite
minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral
composition of the mudstones and scanning electron micrographs show the typical cubic morphology
of Na–A zeolite of approximately 0.45 mµ in particle size. Our data show that the sequence of the
transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A
literature review shows that this is an unusual example of the occurrence of natural zeolites in
sedimentary marine rocks recognized around the world.

Keywords: natural zeolite A; mineralogy; mudstones; crystal; sedimentary environment

1. Introduction

The Swedish mineralogist Axel Fredrick Cronstedt discovered in 1756 the stilbite in
allusion to their visibly lost water when heated and named the group of zeolites (from the
Greek words “zeo” meaning “to boil” and “lithos” meaning “stone”). Nearly 250 years
have passed since this discovery, and geologists traditionally have considered that natural
zeolites are formed during aqueous fluids reaction with rocks in a variety of geological
environments [1–6]. Several occurrences of natural zeolites have been reported worldwide
as accessory minerals in the vugs and cavities of basalts and other basic igneous rocks,
as major constituents of many bedded pyroclastic deposits and are thought to be among
the most widespread and abundant authigenic silicate minerals in sedimentary rocks [1,4].
Most natural zeolites form during diagenetic processes in sedimentary rocks [7–9]. Zeolites
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occurring in volcanic lava flow cavities are formed either during lava pile burial metamor-
phism [10–12], continental basalts' hydrothermal alteration [11,13] or diagenesis in areas
of high heat flow caused by active geothermal systems [12,14,15]. Zeolites, as products of
hydrothermal crystallization, are generally known from active volcanic rock-associated
geothermal systems. Very little work has been published on zeolite occurrences related
to late stage pegmatite crystallization [16] in hydrothermal ore veins [17] as alteration
products along fault planes [18] and in hydrothermal fractures and veins in granites and
gneisses [19]. Zeolites are crystalline, microporous, hydrated aluminosilicates of alkaline or
alkaline earth metals. The framework consists of [SiO4]4− and [AlO4]5− tetrahedra, which
corner-share to form open structures; such tetrahedra are linked to each other by sharing
all of the oxygen to form interconnected cages and channels containing mobile water
molecules and alkali and/or alkaline earth cations [2,3,20,21]. Zeolites have been widely
used as catalysts, adsorbents, and ion exchangers in many technical applications due to
their exceptional properties such as extremely high adsorption capacity, catalyzing action,
thermal stability, and resistance in different chemical environments [2,22–31]. Zeolites have
been extensively used in various technological applications, which include oil refining
processes such as catalytic cracking [32,33], as molecular sieves for separating and sorting
molecules [34], as adsorbents for water, soil, and air purification [27,35–39] for removing
radioactive contaminants [40], for harvesting waste heat and solar heat energy [41], as deter-
gents [42], as antibacterial [43], as drug delivery for oral and topical administration [44,45]
or feeding additives for farm animals [46]. They have become worthy of being called the
mineral of the future of several countries around the world that have made significant
progress in exploring and exploiting this mineral. However, only a few of the natural
zeolites in the world are found in sufficient quantities and have the purity required by the
industry. The US Geological Survey has reported natural zeolites' worldwide occurrence
in the USA, Japan, Korea, Bulgaria, Czechoslovakia, Romania, Hungary, Russia, Croatia,
Serbia, South Africa, Italy, Germany, Turkey, and China, the latter having the greatest
worldwide production clinoptilolite, mordenite, heulandite, chabazite, phillipsite, and
laumontite. At least 60 species of natural zeolites are known to exist, occurring naturally in
soils, sediments, and rocks [47], predominantly concentrated in those rocks and soils of
volcanic origin. The aim of this study is to report for the first time the geologic occurrence
of natural zeolite A and associated minerals in the urban area of Vélez (Santander), Eastern
Cordillera, Colombia (Figure 1).
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2. Materials and Methods

The investigated samples correspond to mudstones and regoliths, of road cuts and
excavations for houses, from the La Paja Formation, in the Eastern Cordillera, over the
Northern Andes. A preliminary visual inspection of the samples was performed by
conventional petrography (results not shown). More detailed analyses were performed by
means of X-ray powder diffraction (XRPD), field emission gun-environmental scanning
electron microscopy/energy dispersive X-ray spectroscopy (FEG-ESEM/EDS), and Fourier
transform infrared with attenuated total reflection (FTIR-ATR) spectroscopy. The bulk
mineralogical composition was determined via XRPD using a BRUKER D8 ADVANCE
X-ray diffractometer equipped with operating in Da Vinci geometry and equipped with an
X-ray tube (Cu-Kα1 radiation: λ = 1.5406 Å), a one-dimensional LynxEye detector (with
aperture angle of 2.93◦), a divergent slit of 0.6 mm, two soller axials (primary and secondary)
of 2.5◦, and a nickel filter. All samples were milled in an agate mortar to a particle size of
less than 50 µm and then mounted on a sample holder of polymethylmethacrylate (PMMA)
using the filling front technique prior to the XRPD analysis. Data collection was carried
out at 40 kV and 30 mA in the 2θ range of 3.5–70◦, with a step size of 0.01526◦ (2θ) and
counting time of 1 s/step. Phase identification was performed using the crystallographic
database Powder Diffraction File (PDF-2) from the International Centre for Diffraction
Data (ICDD) and the Crystallographica Search-Match program. The microstructure and
chemical composition were examined using the back-scattered electron (BSE) imaging and
EDS analysis on a FEI QUANTA 650 FEG-ESEM, under the following analytical conditions:
Magnification = 100–20000×, WD = 9.0–11.0 mm, HV = 20 kV, signal = BSE in ZCONT
mode, detector = BSED, EDS Detector EDAX APOLO X with a resolution of 126.1 eV
(in. Mn Kα). Structural characterization from the functional groups was performed by
FTIR-ATR, using a computer model THERMO SCIENTIFIC IS50, with diamond crystal in
the spectral range 400–4000 cm−1.

3. Results
3.1. Field Occurrence

The urban area of Vélez (Santander), Colombia, is sitting on mudstones (Figure 2a,b)
of the Paja Formation of the Barremian to Lower Aptian age, which is petrographic and
biostratigraphically divided into four segments (Kip1, Kip2, Kip3, and Kip4) and has a
large detrital contribution (<40%, primary quartz and muscovite and few microcline), with
aluminum-silicates of Na, K, Fe, Ti, Ca, Mg, and P (in crystalline and other amorphous
phases = 30%, and biogenic particles (approximately 25%), in an open sea (not of platform),
and of low energy level [49]. According to Lazar et al. [50], they can also be classified
as ar-fMs-Cs and ca-cMs-Zs shales. Macquaker and Adams [51] considered that they
range from sand and silt-bearing clay-rich mudstone to clay-dominated mudstone. Reyes-
Mendoza [49] indicated dark gray and carbonaceous mudstones, rather than shales for the
absence of fissility, with important microfabric features, such as massive facies dominant,
thinly microbial laminae, wavy micro-lamination, not parallel and discontinuous, curled
to silty lenticular lamination, massive fossiliferous, locally micro-tempestites, as well as
nodules and/or concretions, towards the top grain-growing slightly, beds (sandy facies),
and thin layers of fine sandstone. Meanwhile, in the bottom near muddy sequence no
evaporitic facies (gypsum) happens. Other abundant minerals are kaolinite and pyrophyl-
lite, iron sulfides (primary framboidal or euxinic pyrite, <5 mµ; autigenic cubic pyrite, and
amorphous or anhedral marcasite), organic matter (laminated, amorphous, discrete or in
organo-mineralogical aggregates, OMA) with high TOC (>4.64%), sulfur (4.80%), sulphates
and inorganic phosphates, amines and aliphatic hydrocarbons. They are not considered
calcareous (Ca < 4.30%), with dolomite-ankerite, scarce calcite and some irregular lenses
or hollow nodules of several oxides-oxyhydroxides and sodalite, hydrosodalite, as well
as crystoballite [49]. Other phyllosilicates are clinocloro, berlinite, chamosite, nacrite (as-
sembly that could indicate a low-grade regional metamorphism or high diagenesis with
pyrophyllite, up to 21%), dickite, illite, gibbsite, halloysite, kaolinite, phlogopite, vermi-
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culite, phengite and zeolite as products of weathering, the last of them described in detail in
this study. Abundant millimetric fragments of phaeophyta and punctually gyrogonites of
karophites occur, which indicate a bloom of algae in the superior column of the water. Other
allochemicals are ammonites (in molds <5 cm), consolidated intraclasts (<500 µm), few
foraminiferous, agglutinated and bilobulates, pyritized radiolarians, calcareous filaments,
as well as bone remains in the lower and middle part. Primary intragranular, intergranular,
intercrystalline, and low porosity (<5%) was identified compared with secondary porosity,
associated with structural discontinuities: Stratification, lamination, jointing, irregular
fractures, and probably regional foliation [52]. Reyes-Mendoza [49] evaluated and mapped
eight colluviums units (Figure 2c,e) based on their sedimentology, morphological position,
and paleosoils of beige-orange colors, as well as thicknesses of 1.5–2.2 m under the old
houses of the municipality of Vélez (historical center itself), protected by the hard surfaces
of the urban development.
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3.2. Framework of Zeolite LTA

As shown in Figure 3, zeolite Lynde type A (LTA) displays a three-dimensional
framework obtained when periodic building units (PerBUs) (which are built using the
sodalite cage (or β-cage) consisting of 24 T atoms (six 4-rings, four 6-rings, three 6-2 units
or four 1-4-1 units)), related by pure translations along the cube axes, are linked through
double 4-rings (D4Rs) for one cube face. It is made of secondary building units 8 or 4-4
or 6-2 or 6 or 1-4-1 or 4 and composite building units D4R, SOD (or β-cage), and LTA (or
α-cage) [53]. The pore diameter is defined by an eight-member oxygen ring and is small at
4.2 Å, which leads into a larger cavity of minimum free diameter 0.41 Å [54]. It contains
cages and channels in their negatively charged frameworks due to the substitution of Si4+

by Al3+ and cations that can enter its porous structure to balance the charge of its structural
framework. The general chemical formula of zeolite LTA is [Na12(Al12Si12O48]27H2O],
which shows that it has 12 tetrahedra in every cell unit, occupied by 12 Na atoms and 27
H2O molecules [55], with a cubic unit cell (a = 11.9Å), space group Pm-3m [53], and Si/Al
ratio of 1 [56].

Crystals 2021, 11, x FOR PEER REVIEW 6 of 18 
 

 

H2O molecules [55], with a cubic unit cell (a = 11.9Å ), space group Pm-3m [53], and Si/Al 

ratio of 1 [56]. 

 

Figure 3. The structural framework of zeolite Lynde type A (LTA), showing its characteristic cages 

and channels. The vertices mark the positions of the T atoms, the lines symbolize the oxygen 

bridges between them. Diamond Crystal Structure Software Version 2.1 (structural data published 

by the International Zeolite Association). 

3.3. X-Ray Diffraction 

Figure 4 illustrates the characteristic X-ray diffraction pattern of the analyzed mud-

stone, which reveals high intensity peaks associated with the presence of dickite, illite, 

and pyrophyllite. Na–A zeolite and sodalite show low intensity peaks. Low intensity 

peaks correspond to quartz, goethite, and lepidocrocite. Experimental work by Heller-

Kallai and Lapides [57] showed that the transformation of kaolinite and metakaolinite 

with aqueous sodium hydroxide under hydrothermal conditions, with sodalite as the pri-

mary product was obtained from kaolinite, whereas the use of metakaolinite promoted 

the formation of mainly Na–A zeolite, in some cases associated with minor amounts of 

faujasite. The XRD patterns show the occurrence of a mixture of different mineral phases, 

including Na–A zeolite and sodalite: Quartz (12.1–19.1 wt%); muscovite (1.5 wt%); pyro-

phyllite (4.0–19.6 wt%); lepidocrocite (2.8 wt%); kaolinite (1.0 wt%); dickite (13.2 wt%); 

illite (7.0–11.1 wt%); goethite (10.1 wt%); titanomagnetite (1.0 wt%); zeolite A (2.5 wt%); 

zeolite X (0.1–4.1 wt%); zeolite SSZ-35 (8.6 wt%). Crystalline phases (55.4–62.9 wt%); 

amorphous, etc. (37.1–44.6 wt%).  

Figure 3. The structural framework of zeolite Lynde type A (LTA), showing its characteristic cages
and channels. The vertices mark the positions of the T atoms, the lines symbolize the oxygen bridges
between them. Diamond Crystal Structure Software Version 2.1 (structural data published by the
International Zeolite Association).

3.3. X-Ray Diffraction

Figure 4 illustrates the characteristic X-ray diffraction pattern of the analyzed mud-
stone, which reveals high intensity peaks associated with the presence of dickite, illite,
and pyrophyllite. Na–A zeolite and sodalite show low intensity peaks. Low intensity
peaks correspond to quartz, goethite, and lepidocrocite. Experimental work by Heller-
Kallai and Lapides [57] showed that the transformation of kaolinite and metakaolinite
with aqueous sodium hydroxide under hydrothermal conditions, with sodalite as the
primary product was obtained from kaolinite, whereas the use of metakaolinite promoted
the formation of mainly Na–A zeolite, in some cases associated with minor amounts of
faujasite. The XRD patterns show the occurrence of a mixture of different mineral phases,
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including Na–A zeolite and sodalite: Quartz (12.1–19.1 wt%); muscovite (1.5 wt%); pyro-
phyllite (4.0–19.6 wt%); lepidocrocite (2.8 wt%); kaolinite (1.0 wt%); dickite (13.2 wt%); illite
(7.0–11.1 wt%); goethite (10.1 wt%); titanomagnetite (1.0 wt%); zeolite A (2.5 wt%); zeolite
X (0.1–4.1 wt%); zeolite SSZ-35 (8.6 wt%). Crystalline phases (55.4–62.9 wt%); amorphous,
etc. (37.1–44.6 wt%).
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Figure 4. XRD pattern of the analyzed (a) mudstone and (b) regolith. Qtz: Quartz; Ms: Muscovite; Pyr: Pyrophyllite; Lpd:
Lepidocrocite; Kao: Kaolinite; Dck: Dickite; Ill: Illite; Goe: Goethite; TiMag: Titanomagnetite; LTA: Na–A zeolite; FAU:
Faujasite; SSZ: Zeolite SSZ-35.

3.4. Scanning Electron Microscopy

SEM micrographs (Figure 5) illustrate the occurrence of the mudstone of the Kip3
segment of the Paja Formation. The morphological features of this rock show randomly
interstratified clay minerals with developed sheet structures, bedding planes, and crystal
morphology, as well as migration pathways and microporosity (Figure 5a). The bed-
ding planes are broken by rounded and cubic micropores associated to framboidal and
cubic pyrite, respectively (Figure 5b). Figure 5c shows the occurrence of aggregates of
Na–A zeolite and sodalite. Na–A zeolite displays a typical cubic morphology, whereas
sodalite develops aggregates of randomly oriented and intersecting blade-shaped crystals.
Ríos et al. [58] described spherical agglomerates of sodalite growing out onto the surface of
well-developed cubes of Na–A zeolite displaying fluorite-type interpenetration twinning,
which indicates that it is a thermodynamically metastable phase which was successively
replaced by a more stable phase as sodalite. Figure 5d,f illustrates the typical appearance
of kaolinite occurring as aggregates composed of pseudohexagonal plates, which also
constitutes the rock matrix.
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Figure 5. Secondary electron (SE) images of the (a) morphological features of the wavy micro-lamination, not parallel and
discontinuous, fabric of the analyzed mudstone, (b) microporosity, (c) aggregates of Na–A zeolite and sodalite and clays,
and (d–f) aggregates of clays of kaolinite-type in the matrix. LTA: Na–A zeolite; SOD: Sodalite; Kao: Kaolinite.

Figure 6 illustrates SE images of the occurrence of aggregates of cubic Na–A zeolite
and honeycomb sodalite in the pore space left by the oxidation of cubic and framboidal
pyrite (upper part), and the typical EDS spectra of Na–A zeolite and associated mineral
phases (lower part). Clay minerals occurring in the matrix of the mudstone reveal the
presence of high concentrations of Al (16.51 wt%), Si (29.01 wt%), and O (24.78 wt%). Na–A
zeolite shows high concentrations of Al (17.97 wt%), Si (27.14 wt%), and O (9.63 wt%).
Sodalite shows high concentrations of Al (17.65 wt%), Si (35.30 wt%), and O (16.38 wt%).
The peaks of Fe, Mg, Na, K, S, and Ti (results not shown) represent the contribution of
associated mineral phases such as pyrite, Ti-oxides, and feldspars. The peak of Au in the
spectra is attributed to the gold coating.

The SE image and EDS spectrum of the analyzed Na–A zeolite are shown in Figure 7.
Na–A zeolite displays a typical cubic morphology, which is broken by the presence of
aggregates of sodalite, which develops from randomly oriented and intersecting blade-
shaped crystals growing at expenses of Na–A zeolite. It shows high concentrations of
Al (17.97 wt%), Si (27.14 wt%), and O (9.63 wt%). The peaks of Fe, Mg, Na, K, S, and Ti
(results not shown) represent the contribution of associated mineral phases such as pyrite,
Ti-oxides, and feldspars. The peak of Au in the spectra is attributed to the gold coating.
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3.5. Fourier Transform Infrared with Attenuated Total Reflection Spectroscopy

FTIR spectra in Figure 8 show the typical vibration bands of the analyzed mud-
stone and regolith. We recognize the characteristic OH-stretching vibrations of kaolinite
at 3698 cm−1 (surface OH stretching) and 3620–3629 cm−1 (inner OH stretching). How-
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ever, the vibration band at 3620 cm−1 can also be attributed to gibbsite. The vibration
bands at 1621 cm−1 (kaolinite), 1630 cm−1 (goethite or calcite), 1420–1423 cm−1 (calcite
or siderite), 979 cm−1 (gibbsite), 987 cm−1 (chlorite), 929 and 907 cm−1 (margarite or
kaolinite), 820–822 cm−1 (phlogopite or margarite), 792–796 cm−1 (quartz or goethite),
746 cm−1 (muscovite or dickite), 693 cm−1 (quartz, kaolinite, phlogopite or margarite),
687 cm−1 (kaolinite), 518 cm−1 (phlogopite), 512 cm−1 (margarite), 441–443 cm−1 (potas-
sium feldspar, chlorite or margarite), 415 cm−1 (margarite), 411 cm−1 (muscovite), and
401 cm−1 (margarite) were also observed. The major structural groups present in zeolites
can be detected from their FTIR patterns. The band at 1621–1630 cm−1 can be attributed to
zeolitic water. However, the region of 1500–400 cm−1 is a fingerprint indicating structural
features of zeolite frameworks. On the other hand, characteristic bands of zeolitic materials
appeared, including the asymmetric Al–O stretch located in the region of 1250–950 cm−1

(with the bands at 979 and 987 cm−1 assigned to sodalite) and their symmetric Al–O
stretch located in the region of 660–770 cm−1. Similar results have been reported by sev-
eral studies [37,59–63]. There is a well-defined peak at 693 cm−1 assigned to symmetric
T–O–T vibrations of the sodalite framework in good agreement with the results reported
by Flaningen et al. [59]. The peak at 687 cm−1 can be attributed to the Na–A zeolite. The
bands in the region of 500–650cm−1 are related to the presence of the double rings (D4R
and D6R) in the framework structure of sodalite. The bands in the region of 420–500 cm−1

are related to internal tetrahedron vibrations of Si–O and Al–O of sodalite. The bands at
441–443 cm−1 are related to internal tetrahedron vibrations of Si–O and Al–O of sodalite
(T–O–T) bending modes of the sodalite framework. The detailed FTIR assignments for
sodalite have been summarized by Barnes et al. [60] and later revised by Zhao et al. [64].
The bands in the region of 400–420 cm−1 are related to the pore opening or motion of the
tetrahedral rings, which form the pore opening of zeolites [2].
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3.6. Discussion on the Mechanism of Formation of the Na–A Zeolite in Mudstone and Regolith

One of the main challenges facing geosciences is to reconstruct the environments in
which minerals are formed. Several research groups have performed experimental work
to successfully bridge the gap between the general formation mechanisms of crystalline
phases and the crystallization of complex structures, such as those of zeolites [21]. We
evaluate the geological characteristics of mudstone and regolith systems, taking in con-
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sideration not only their mineralogy but also the environmental conditions, which can be
strongly affected by several factors, revealing a complex history of chemical reactions in
the origin of zeolitic materials. The Cretaceous Paja Formation formed in closed basin envi-
ronments with low water circulation and small oscillations in the relative sea-level [65,66].
For dissolution of mudstone grains and precipitation of authigenic minerals to occur on
the weathered horizon of the La Paja Formation are circulating fluids for the transport of
nutrients (ions), geochemical processes, and biogenic activity, which modifies porosity and
permeability that will allow fluid migration. According to Passaglia et al. [67], the main
factors that control the species and precipitation of diagenetic zeolites are the texture and
composition of the host rock, composition of the fluids, and temperature. Na-enriched
zeolites, such as the Na–A zeolite, tend to form through the rock-strongly alkaline (pH > 10)
fluid interaction which are in a hydrologically closed system [22,67]. The SiO2 and Al2O3
sources for the formation of Na–A zeolite is speculative, taking into account that volcanic
glass, the source for many diagenetic zeolites, is not present in La Paja Formation rocks.
However, the Na–A zeolite may form where the supply of mobile ions nearly equals the
supply of Si and Al [68]. The chemical weathering of mudstones can be characterized
by a sequence of chemical reactions between percolating groundwater and rock-forming
minerals, with pyrite probably playing a very important role. Pyrite and other sulphides
were affected by oxidation (by oxygen coming from the ground surface) to form sulfuric
acid (H2SO4), sulfate minerals (e.g., gypsum), and several iron oxides such as goethite and
hematite, developing an oxidation zone. Framboidal (raspberry-like) pyrite is found repre-
senting the most problematic form in terms of the effects of pyrite oxidation. Taking into
account the fact that the oxidation of pyrite is primarily surface controlled, the reactivity of
pyrite increases as the grain size decreases and the relative surface area increases [69]. The
H2SO4, along with atmospheric agents, salts, inorganic and biogenic acids, dissolves rock-
forming minerals, developing a dissolved zone. The few carbonates (mainly dolomite),
which are buffering minerals (the acidity of the medium was neutralized) were dissolved
in rhombohedral molds. However, it is probably that this did not occur in the analyzed
samples where framboidal (raspberry-like) pyrite suffered oxidation. Taking into account
the fact that alkaline pH tends to inhibit pyrite dissolution by blocking the access of the
oxidizing agent (O2) to pyrite surfaces [70,71]. Nanobacteria were observed, which possibly
degrade amino acids and produce sulphites that nourish plants. Therefore, the weathering
is strongly conditioned by physical, chemical, and biological processes. Consequently,
the acidity of the system is neutralized and other elements silicon, aluminum, sodium,
potassium, calcium, iron, magnesium, titanium, and phosphorus are released, which enter
into the solution or precipitate within the mudstone or regolith (originally composed of
clay minerals (about 50–60 wt%) and other minerals, especially quartz and carbonates),
originating secondary minerals, such as new clays, zeolites, iron oxides, and hydroxides,
etc. The clay minerals in mudstone are largely kaolinite and illite, which are excellent
indicators of the environment due to their sensitivity to slight changes in the composition,
temperature, and pH of their surroundings [72]. Different clay minerals have been used
as starting materials with an appropriate SiO2/A12O3 ratio for studying the formation
of zeolites at the laboratory scale [2–64,73–90]. However, kaolinite has been of interest in
several studies. It varies in terms of the structural make up from one deposit to another,
consists of dioctahedral 1:1 layer structures with a composition of AI2Si2O5[OH]4. This
variation affects the ordering of the kaolinite structure and their subsequent chemical
reactivity. Previous studies reveal that the improvement of the properties of the kaolinite
by chemical methods is difficult due to its low reactivity, taking into account the fact that it
is not significantly affected under acid or alkaline conditions [63,91–93]. Therefore, kaolin-
ite is usually used after calcination at temperatures between 550–950 ◦C [37,91,92,94–96]
to obtain a more reactive phase (metakaolinite). However, this clay mineral is not sta-
ble under highly alkaline conditions and different zeolitic materials can form. Several
authors have reported the synthesis of kaolinite-based zeolites, including LTA [96–98],
FAU [85,91,96,98,99], GIS [96,100], CAN [64,101], SOD [64,101,102], and JBW [37,103,104].
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According to Zhao et al. [64], there are two major chemical processes involved in the
reaction between kaolinite and alkaline solutions: Dissolution of kaolinite, releasing Si
and Al, followed by the formation of zeolitic materials. In this study, we suggest that the
Na–A zeolite clearly formed by precipitation from relatively low temperature fluids in
pores of the analyzed samples, which is supported by the experimental work performed
by Ríos [37], who obtained the Na–A zeolite along with sodalite and cancrinite under
hydrothermal alkaline conditions at 100 ◦C during a period of reaction time of 6–120 h.
It is seen that a higher alkali concentration during the synthesis process leads to a faster
dissolution of the original kaolinite, accompanied by more crystalline zeolitic materials.
The Na and Mg-enriched geochemistry of the analyzed mudstone and regolith provides
additional evidence for alteration, reflecting the low temperature hydrothermal growth of
zeolitic materials, which, therefore, are not related to the original sedimentary mineralogy.
The genesis of sodic zeolites, such as the Na–A zeolite along with sodalite and cancrinite,
was affected by parameters as the reaction temperature and time between the starting
materials (mudstone or regolith) and low temperature fluids, the alkalinity (alkaline condi-
tions or high Na content) of the fluids, and the very high Na/K ratio and the necessary
SiO2/Al2O3 ratio of the starting materials. Ríos and co-workers [37,58,63,105–109] per-
formed the experimental work in order to simulate the geological conditions and chemical
reactions expected during the formation of zeolites. The results of these studies reveal
the hydrothermal transformation of kaolinite, with the production of several zeotypes,
including sodalite, cancrinite, and Na–A zeolites in agreement with the previous studies.
However, Ríos et al. [58] considered that sodalite and cancrinite represent a metastable
phase via the Na–A zeolite forming reaction. In the case of a mudstone or regolith system as
that reported in the present study, we consider that the chemistry of evolution of the Na–A
zeolite was affected by several factors. The reaction history of the formation of the Na–A
zeolite reported in this study can be summarized by the following stages: (1) Dissolution
of aluminosilicate minerals (clays) in the mudstone or regolith releasing SiO2 and Al2O3,
(2) formation of intermediate metastable phases (sodalite), (3) occurrence of simultaneous
reactions of precipitation and dissolution of a gel phase, nucleation, and growth of Na–A
zeolite that reached chemical equilibrium. The Na–A zeolite is typically crystallized from
amorphous aluminosilicate precursors in aqueous in the presence of alkali metals. A simple
scheme of the crystallization of an amorphous aluminosilicate hydrogel to the Na–A zeolite
is given in Figure 9. At the beginning, a dissolution of the aluminosilicate minerals (clays)
in the mudstone or regolith occurred, releasing SiO2 and Al2O3, with the production of an
amorphous gel characterized by the presence of small olygomers. A dissolution process
promotes the formation of the nutrients (ionic species), which then are transported to the
nucleation sites, indicating that the ionic species are not static, since they necessarily need
to move (transportation) to the nucleation sites. A nucleation process produced an equili-
brated gel. During nucleation, the hydrogel composition and structure are significantly
affected by thermodynamic and kinetic parameters. A polymerization of SiO4 tetrahedra
proceeds, which is represented by TO4 primary tetrahedral building units that have been
joined, revealing how they link together to form larger structures. A polymerization is
the process that forms the Na–A zeolite precursors, which contains tetrahedral of Si and
Al randomly distributed along the polymeric chains which are cross-linked to provide
cavities large enough to accommodate the charge balancing alkali ions. During crystal
growth, the TO4 units were linked, with the formation of 4-ring and 6-ring, composed by 4
and 6 tetrahedral atoms, respectively, to create a large structure (secondary building unit)
such as the SOD β-cage. The crystallization of Na–A zeolite occurred by linking the same
secondary building units together. A phase transformation occurred as represented by the
sequence of reaction: Poorly crystalline aluminosilicate→ sodalite→ Na–A zeolite.
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4. Conclusions

In this study, an unusual example of the occurrence of natural zeolites in sedimentary
marine rocks was recognized. Na–A zeolite and sodalite occur in mudstones and regoliths
of the weathering zone of the Cretaceous La Paja Formation, Vélez (Santander), Colombia.

These rocks consist of quartz, muscovite, abundant pyrophyllite, kaolinite, and chlorite
group minerals, pyrite, marcasite, minor feldspar, sulphates, and phosphates, with a
high content of TOC, TS, and algae, as well as subordinated ammonite fossils and other
allochemical components. High diagenesis (temperatures up to 80–100 ◦C), weathering,
and fluid flow allowed the geochemistry remobilization and/or recrystallization of pre-
existing mineral phases.

Our model suggests that the genesis of sodic zeolites, such as Na–A zeolite and
sodalite, was affected by parameters as the reaction temperature and time between the
starting materials (mudstone or regolith) and low temperature fluids, the alkalinity (alkaline
conditions or high Na content) of the fluids, as well as the very high Na/K ratio and the
necessary SiO2/Al2O3 ratio of the starting materials. With time, the nucleation and growth
process of zeolitic phases involved the dissolution of early metastable phases (Na–A zeolite)
and the crystallization of sodalite separated in the same media. However, additional work
is necessary to determine their environmental conditions of formation.
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