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Abstract: Alzheimer’s disease (AD) causes dementia and continuous damage to brain cells. Cholines-
terase inhibitors can alleviate the condition by increasing communication between the nerve cells and
reducing the risk of dementia. In an effort to treat Alzheimer’s disease, we synthesized flurbiprofen-
based diamines (1,2 diaminoethane and 1,3 diaminopropane) Zn(II), Cu(II) metal complexes and
characterized them by single-crystal X-ray analysis, NMR, (FT)-IR, UV-Vis, magnetic susceptibil-
ity, elemental analysis and conductivities measurements. Synthesized diamine metal complexes
appeared in ionic forms and have distorted octahedral geometry based on conductivity studies,
magnetic susceptibility and electronic studies. Single crystal X-ray diffraction analysis confirmed
(2b) Cu(H2O)2(L1)2(L2)2 complex formation. Moreover, we tested all synthesized metal complexes
against the cholinesterase enzyme that showed higher inhibition potential. In general, copper metal
complexes showed higher inhibitory activities than simple metal complexes with flurbiprofen. These
synthesized metal complexes may derive more effective and safe inhibitors for cholinesterases.

Keywords: Alzheimer’s disease; diamines; flurbiprofen; cholinesterases; metal complexes

1. Introduction

Around the globe, 2.5 to 4.0 million elderly people suffer from Alzheimer’s disease
(AD), manifested by long-term neurodegeneration, loss of neural functions and cognitive
abilities that ultimately lead to death [1]. Studies show that numerous disorders, includ-
ing AD, correlate with high cholinesterase activity. Cholinesterase belongs to the serine
hydrolases family, consisting of acetylcholinesterase (AChE) and butyryl-cholinesterase
(BChE) [2,3]. Many physiological processes have been controlled by cholinesterase in either
a direct or indirect way. Cholesterol overexpression may lead to numerous disorders like
ataxia, myasthenia gravis and Parkinson’s disease [4,5]. To combat and treat these disor-
ders, researchers have been looking for synthetic and natural inhibitors of cholinesterase.
Physostigmine existed as the first cholinesterase inhibitor (ChEI) explored for the cure of
AD [6]. Tacrine was the first approved drug for treating AD. Donepezil was permitted in
1996 for the treatment of mild-to-moderate AD. All these compounds, rivastigmine, galan-
tamine, metrifonate, phenserine, physostigmine and tacrine, showed effective inhibition
of human AChE and BuChE [7–13]. To target neuroinflammation and vesicant-induced
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inflammation, studies have focused on NSAID-AChEI complexes [14–17]. Current “second-
generation” AChEIs also demonstrate some side effects such as diarrhoea, nausea, anorexia
and vomiting [18]. So far, no proper treatment exists for these neurodegenerative disorders
like Alzheimer’s disease; hence, researchers have been avidly seeking a proper cure for
these neurodegenerative problems.

Currently, several potent inhibitors for cholinesterase exist in the market as first-line
treatment for these neurodegenerative problems. However, effective treatment requires
more effective inhibitors with safe and extraordinary potential for cholinesterase control,
which demands further exploration of anticholinesterase compounds. Recently, organic
metal complexes have shown positive effects on these neurodegenerative disorders [19]. For
example, Pt(II) complexes with 1,10-phenanthroline ligands can inhibit cholinesterase and
reduce Aβ aggregation and Aβ-induced synaptotoxicity [20]. Similarly, previous studies
have prepared and analyzed metal complexes of bis (thiosemicarbazone) for cholinesterase
inhibition along with a reduction in levels of Aβ aggregations [21].

Some studies showed that Cu or Zn complexes with 8-hydroxyquinoline ligands could
induce metal-dependent metalloprotease activity, which degrades Aβ aggregations and
ultimately reduces the risk of AD [22–24]. Mono-, bis- and tris-diamine conjugated ligands
have been found more water-soluble with an enhanced H-bonding network. By using this
property, various ligand-metal complexes have been designed with anti-cancer proper-
ties [25–28]. Flurbiprofen-tacrine conjugates and tris-diamine conjugates of flurbiprofen
have been reported as cholinesterase inhibitors, where flurbiprofen backbone was found to
augment the inhibitory activity [17,29]. Here, we present synthesis and characterization
of a relatively new class of flurbiprofen (a propionic acid carboxylate) and its transition
metal complexes with diamines (1,2-diaminoethane and 1,3-diaminopropane) as effective
cholinesterase inhibitors.

2. Materials and Methods

Analytical grade reagents and chemicals including metal salts (copper acetate, zinc
acetate), 1,2-diaminoethane, 1,3-diaminopropane, flurbiprofen acid and solvents were pur-
chased from Merck Millipore and Sigma Aldrich, England. Reagent for cholinesterase assay
including electric eel acetyl cholinesterase (AChE), equine serum autyrylcholinesterase
(BChE), 5,5-dithio-bis-(2-nitrobenzoic acid), acetylthiocholine iodide (ATChI), butyryl thio-
choline Iodide (BChI), galantamine hydrobromide and donepezil were obtained from
Sigma Aldrich, England, while a µQuant microplate spectrophotometer (MQX200, BioTek,
Winooski, VT, USA) was used for assay monitoring. Aluminum-backed TLC plates were
used to analyse the products. UV/visible, infrared spectra and 1H-/13C-NMR spectra
were obtained using Jenway 6505 (Keison Products, Chelmsford, UK), Shimadzu (FT)IR-
8400S (Shimadzu Scientific Instruments Inc. Kyoto, Japan), and Bruker AM 300/400
(Bruker’s AVANCE Tech, Billerica, MA, USA) spectrometers, respectively, as described
in [30]. Stanton SM12/S Gouy’s balance was used to to determine magnetic susceptibility.
The Elemental Analyzer (Perkin Elmer, USA) and Inolab Conductivity Bridge 720 were
used to determine the percentage of C, H, N, M and molar conductance.

2.1. Synthesis of Flurbiprofen Metal Complexes (1a-b)

The potassium salt of flurbiprofen (FLP-K) was prepared by adding 20 mL of 0.01 mol
flurbiprofen acid (2.44 g) solution in de-ionized water to 0.01 mol KOH (0.56 g). A dropwise
addition of 0.005 mol metal acetate solution (10 mL) to the FLP-K solution with continuous
stirring for 20 min in a round bottom flask at room temperature resulted in the formation
of the metal-flurbiprofen complex (1a-b) with the characteristic colored precipitates. The
precipitates were filtered, followed by subsequent washings with de-ionized water and
ethanol. After washing, precipitates were dried at the room temperature.
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2.1.1. Zn(H2O)2(L)2 (1a)

C30H28F2O6Zn (1a) was synthesized by the method given in Section 2.1 using 0.005
moles zinc acetate (0.971 g). A white solid product with 83%, yield was obtained showing a
melting point of 183 ◦C. Analytical calculations for C30H28F2O6Zn (%) was found to be: C,
61.29; H, 4.80, found: C, 61.22; H, 4.82. Selected FT-IR data (KBr, cm−1) show: v(M←H2O)
3653 cm−1, v(M←O) 484 cm−1, v (CO)1650–1730 cm−1

, v (Ar C = C)1500–1590 cm−1,
v(C-H) 2700–2900 cm−1 and disappearance of the broad v (OH) peak at 3200–3400, λmax
(cm−1) = 29543, Ω−1cm2mol−1 = 18, µeff = diamagnetic, 1H NMR (400.13 MHz, [d6]DMSO,
25 ◦C): δ = 6.64 (d, 3J = 8 Hz, 4H, H-9, H-13, H-9′, H-13′), 6.58 (t, 3J = 7 Hz, 4H, H-10, H-12,
H-10′, H-12′), 6.55–6.51 (m, 4H, H-5, H-11, H-5′, H-11′), 6.36 (d, 3J = 8 Hz, 2H, H-4, H-4′),
6.33 (s, 2H, H-8, H-8′), 2.78–2.71 (m, 2H, H-2, H-2′), 0.49 (d, 3J = 8 Hz, 6H, H-1, H-1′) ppm.
13C NMR (100.61 MHz, [d6] DMSO, 25 ◦C): δ = 178.7, 160.0, 157.6, 135.2, 130, 128.7, 128.6,
127.6, 125.8, 124.2, 115.1, 45.8, 19.7.

2.1.2. Cu(H2O)2(L)2 (1b)

Copper acetate 0.908 g (0.005 moles) was used to synthesize Cu(H2O)2(C15H12FO2)2
(1b) using the method given in Section 2.1. A light green solid product with a yield of 76%
was obtained showing a melting point of 174–176 ◦C. Analytical calculations show (%):
C, 61.48; H, 4.82, found: C, 61.44; H, 4.82. Selected FT-IR data (KBr, cm−1): v(M←H2O)
3690 cm−1, v(M←O) 453 cm−1, v (CO)1650–1730 cm−1

, v (Ar C = C)1500–1590 cm−1, v(C-
H) 2700–2900 cm−1 and disappearance of the broad v(OH) peak near 3200–3400, λmax
(cm−1) = 15,219–15,412, Ω−1cm2mol−1 = 21, µeff = 1.7.

2.2. Synthesis of Bis (1,2-diaminoethane) Metal Flurbiprofen Complexes (2a-b)

Diaminoethane and flurbiprofen-metal complex conjugates were obtained by adding
1.42 mL of 0.02 moles 1,2-diaminoethane in flurbiprofen-metal complex (1a-b) solutions in
10 mL of ethanol/water (1:1). The mixture was stirred at room temperature for 25 min to
obtain a clear blue solution. Crystals for diaminoethane and flurbiprofen-metal complexes
were obtained by slow evaporation (2a-b).

2.2.1. Zn(H2O)2 (C2H8N2)2 (C15H12FO2)2 (2a)

A white solid product, C34H44F2N4O6Zn (2a), with a yield of 88% was obtained using
the method given in Section 2.2. The melting point was found to be 222–224 ◦C. Analytical
calculations for C34H44F2N4O6Zn (%): C, 57.67; H, 6.26; N, 7.91, found: C, 57.60; H, 6.29;
N, 7.90. Selected FT-IR data (KBr, cm−1): v(M←H2O) 3623 cm−1, v(M←N) 509 cm−1,
v (CO)1650–1730 cm−1

, v(Ar C=C)1500–1590 cm−1, v(CH) 2700–2900 cm−1 and disap-
pearance of the broad v(OH) peak at 3200–3400 and v(M←O)peak, λmax (cm−1) = 30,816,
Ω−1 cm2mol−1 = 164, µeff = diamagnetic, 1H NMR (400.13 MHz, [d6]DMSO, 25 ◦C): δ = 7.51
(d, 3J = 8 Hz, 4H, ArH), 7.45 (t, 3J = 7 Hz, 4H, ArH), 7.40–7.35 (m, 4H, ArH), 7.21–7.17 (m,
4H, ArH), 3.59–3.53 (m, 2H, 2 × CH), 3.24–3.19 (m, 8H, 4×NH2), 3.12–3.09 (m, 8H, 4×CH2),
1.35 (d, 3J = 8 Hz, 6H, 2×CH3) ppm. 13C NMR (100.61 MHz, [d6] DMSO, 25 ◦C): δ = 177.8,
159.6, 157.3, 135.0, 129.9, 128.4, 128.2, 127.4, 125.2, 124.1, 114.9, 46.7, 46.2, 19.6.

2.2.2. Cu(H2O)2 (L1)2 (L)2 (2b)

C34H44F2N4O6Cu (2b) was synthesized as mentioned in Section 2.2 using 1.42 mL
1,2-diaminoethane (0.02 moles). Blue crystals with a yield of 84(%) were obtained. A
melting point of 215–217 oC was observed. Analytical calculations for C34H44F2N4O6Cu
(%): C, 57.82; H, 6.28; N, 7.93, found: C, 57.79; H, 6.24; N, 7.95. Selected FT-IR data
(KBr, cm−1): v(M←H2O) 3598 cm−1, v(M←N) 516 cm−1, v (CO)1650–1730 cm−1

, v(Ar
C = C)1500–1590 cm−1, v(CH) 2700–2900 cm−1 and disappearance of the broad v(O-H)
peak at 3200–3400 and v(M←O) peak, λmax (cm−1) = 16,749–16,810, Ω−1cm2mol−1 = 158,
µeff = 1.9.
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2.3. Synthesis of Bis (1,3-diaminopropane) Metal Flurbiprofen Complexes (3a-b)

To the ethanol/water (1:1) solution (10 mL) of flurbiprofen metal complexes (1a-
b), 1.68 mL of 1,3-diaminopropane (0.02 mol) was added to obtain 1,3-diaminopropane
diamines and flurbiprofen mixed ligand complexes. After 25 min stirring at room tempera-
ture, a clear blue solution was obtained that crystalized upon slow evaporation to give bis
(1,3-diaminopropane) metal flurbiprofen complex crystals (3a-b).

2.3.1. Zn(H2O)2 (L1)2 (L)2 (3a)

A white solid product, C36H48F2N4O6Zn (3a), with a yield of 80%, was synthesized
using the method mentioned in Section 2.3. The melting point was observed as 218–220 ◦C.
Analytical calculations show (%): C, 58.73; H, 6.57; N, 7.61, found: C, 57.64; H, 6.55; N, 7.96.
Selected FT-IR data (KBr, cm−1): v(M←H2O) 3623 cm−1, v(M←N) 509 cm−1, v (CO)1650–
1730 cm−1

, v(Ar C = C)1500–1590 cm−1, v(CH) 2700–2900 cm−1 and disappearance of broad
v(O-H) at 3200–3400 cm−1 and v(M←O) peak, λmax (cm−1) = 20,842, ε cm2mol−1 = 160,
µeff = diamagnetic, 1H NMR (400.13 MHz, [d6]DMSO, 25 ◦C): δ = 7.50 (d, 3J = 8 Hz, 4H,
ArH), 7.45 (t, 3J = 7 Hz, 4H, ArH), 7.40–7.35 (m, 4H, ArH), 7.22 (d, 3J = 8 Hz, 2H, ArH),
7.20 (s, 2H, ArH), 3.59–3.53 (m, 2H, 2 × CH), 3.47–3.42 (m, 8H, 4×NH2), 2.68–2.64 (m, 8H,
4×CH2), 2.01–1.95 (m, 4H, 2×CH2), 1.35 (d, 3J = 8 Hz, 6H, 2×CH3) ppm. 13C NMR (100.61
MHz, [d6] DMSO, 25 ◦C): δ = 177.8, 159.6, 157.3, 135.0, 129.9, 128.4, 128.2, 127.4, 125.2, 124.1,
114.9, 46.2, 39.2, 38.6, 19.6.

2.3.2. Cu(H2O)2 (L1)2 (CL)2 (3b)

The general method given in Section 2.3 was used to obtain the compound
C36H48F2N4O6Zn (3b) with a yield of 80(%); melting point of 210–212 ◦C; analytical cal-
culations (%) of C, 58.88; H, 6.59; N, 7.63, found: C, 58.80; H, 6.49; N, 7.79. Selected FT-IR
data (KBr, cm−1): v(M←H2O) 3598 cm−1, v(M←N) 516 cm−1, v (CO)1650–1730 cm−1

, v(Ar
C = C)1500–1590 cm−1, v(CH) 2700–2900 cm−1 and disappearance v(M←O) peak and
broad v(O-H) peak at 3200–3400 cm−1, λmax (cm−1) = 16,735–16,788, Ω−1cm2mol−1 = 150,
µeff = 1.9.

2.4. Molecular Docking Simulations

The Three-dimensional structures of human AChE and BChE were obtained from
the Protein Data Bank (PDB) with PDB IDs of 4EY4 (X-ray structure with 2.15 Å res-
olution) and 6ESY (X-ray structure with 2.80 Å resolution), respectively, and attached
ligands/water molecules were removed. The Cu-bisdiamine-flurbiprofen complex, 2b
(C34H44F2N4O6Cu), was docked against the human AChE and BChE enzymes to map
the protein–ligand interactions and binding energies. Cu-bisdiamines and flurbiprofen
were also docked individually to calculate the efficacy of 2b. The crystal structure of 2b
was used in the docking where the AMBER03 force field and a modified AutoDock-LGA
algorithm module were used in YASARA software [31] to perform molecular docking
simulations. Binding energies and dissociation constants were obtained by running the
100 simulations for each ligand, where the seed value was set to 1000 [32]. Protein–
ligand interactions were extracted and mapped using PyMol (The PyMOL Molecular
Graphics System, Version 2.0 Schrödinger, LLC. New York, NY, USA) and LigPlus
http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/).

2.5. Determination of AChE and BChE Inhibitory Activity

A modified Ellman’s method [33] was used to determine the AChE and BChE in-
hibitory activity of metal complexes [34]. Phosphate buffer (0.1 M KH2PO4/K2HPO4,
pH 8.0) was used to prepare metal complex samples, enzymes and standard solutions.
0.03 U/mL of AChE and BChE were added to a 10 µL metal complex solution (0–50 µM),
and the mixture was incubated for 10 min at room temperature. Then, 25 µL of 1 mM of
either ATChI or BTChI was added, and the sample mixture was incubated for the next
15 min followed by the addition of 25 µL of 3 mM DTNB before taking absorbance at

http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
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412 nm using a µQuant microplate spectrophotometer. Microwells with DTNB were used
as blank. All reactions were made in triplicate, and the IC50 values were calculated for
each sample. Galantamine and donepezil are well-known cholinesterase inhibitors and
were used as reference drugs.

3. Results
3.1. Synthesis

In this study, we synthesized transition metal complexes of flurbiprofen with propane-
diamine (1,3-diaminopropane) and ethylene-diamine (1,2-diaminoethane). Next, we evalu-
ated these metal complexes using magnetic susceptibility, elemental analysis and FT-IR,
UV-VIS spectroscopy, conductivity measurements and X-ray analysis, 1H-NMR, 13C-NMR.
These metal complexes are ionic based on conductivity rearmaments and have distorted
octahedral geometry based on electronic studies and magnetic susceptibility studies. Syn-
thesis of these metal complexes caused little to no pollution (green synthesis) because
we used harmless solvents like water and ethanol. These metal complexes can only be
obtained in water, but for precise crystals, ethanol was also used. Figure 1 illustrates the
scheme of synthesis for these metal complexes.
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Figure 1. Scheme for the synthesis of bis (1,2-diaminoethan and 1,3-diaminoprpane) metal flurbipro-
fen complexes. (Flurbiprofen (C15H12FO2) = L, 1,2-diaminoethane (C2H8N2) = L1, 1,3-diaminpropane
(C3H10N2) = L2.).

3.2. X-ray Crystallography

Among all the simple and bis (1,2-diaminoethan and 1,3-diaminoprpane)-derived
metal complexes of flurbiprofen, only Cu(H2O)2(L1)2 (L)2 (2b) yielded blue crystals which
were suitable for X-ray analysis. The coordination sphere appears octahedral with a basal
plane A (N1/N2/N1i/N2i i = 1 − x, − y, 1 − z) around the copper cation in (2b) with two
apical O-atoms from two water and four nitrogen atoms from two 1,2-diaminoethane. In
the equatorial plane, the copper atom appears in the centre. The Cu-N bonds fall within the
experimental error [1.998(4)-2.011(4) Å], and the Cu-O bond is 2.605(5) Å. Two symmetry
operations relate flurbiprofen anions. In the flurbiprofen anion, the terminal benzene ring
(C10-C15) is planar with r.m.s deviations of 0.0032, 0.0084 and 0.0023 Å with acetyl moiety
(O1/O2/C1/C2) and the fluorophenyl ring (C4-C9/F1).
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The crystal contains an infinite polymeric network due to hydrogen bonding of N-
H···O, O-H···O and C-H···F with two-dimensional crystallographic base vectors [100],
[1] in the plane (0 1 0). The ORTEP diagram of 2b with a 50% probability level and the
two-dimensional polymeric network are displayed in Figure 2.
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3.3. NMR Analysis

Next, we characterize zinc complexes of flurbiprofen by 1H NMR and 13C NMR
in d6DMSO. The 1H NMR of zinc complex of flurbiprofen (1a) indicates the complex
formation. Singlet, duplet and multiplet with chemical shift values of 6.64, 6.58, 6.55–6.51,
6.36 and 6.33 ppm indicate aromatic protons. A shielded signal for the methyl group at
0.49 ppm is observed, and a multiplet near 2.78–2.71 ppm reflects tertiary carbon attached
to the aromatic ring. A characteristic downfield signal in 13C-NMR at 178.5 ppm indicates
that aromatic carbon is directly attached with a tertiary carbon. Up-field signals at 160.0,
157.6, 135.2, 130.2, 128.7, 128.6, 127.6, 125.8, 124.2 ppm show other aromatic carbons. A
chemical shift value at 45.8 ppm indicates a tertiary carbon.

The zinc flurbiprofen complex (2a) complex was synthesized showing the 1H NMR
peak shifting at 7.51, 7.45, 7.40–7.35, 7.21–7.17 ppm for aromatic protons and multiplet
(3.59–3.53) ppm for hydrogen of tertiary methyl groups shift downfield. This indicates
a decrease in (M-O) interaction and an increase in (M-N) interaction, which reflects the
formation of (2a).

Chemical shifts at 3.12–3.09 ppm (4×CH2) and 3.24–3.19 ppm (4×NH2) confirm the
synthesis of (2a). Two new peaks at 46.7 ppm (2×CH2) and 46.2 ppm (2×CH2) in 13C
NMR of (2a) indicate that 4×CH2 of 1,2-diaminoethane are interacting with zinc metal,
which suggest a synthesis of (2a). Similarly, for the synthesis of bis (1,3-diaminopropane)
zinc flurbiprofen complex (3a), 1,3-diaminopropane was added to (1a). The 1H NMR and
13C NMR chemical shifts values of 1H NMR at (7.50, 7.45, 7.40–7.35, 7.22, 7.20 ppm) for
aromatic protons and multiplet (3.59–3.53) ppm for tertiary methyl groups shift towards
the downfield region. New signals of multiplet at 3.47–3.42 ppm (4×NH2), 2.68–2.64 ppm
(4×CH2) and 2.01–1.95 ppm (2×CH2) confirm the formation of (3a). The 13C NMR of (3a)
shows three new peaks at 46.2 ppm (2×CH2), 39.2 ppm (2×CH2) and 38.6 ppm (2×CH2),
indicating the (6×CH2) of (1,3-diaminopropane) are interacting with zinc metal, which
suggests a synthesis of (3a).

3.4. FT-IR Analysis

We also performed an FT-IR analysis of metal complexes for the structural confirma-
tion of metal complexes. IR peaks near 1419–1476 cm−1 suggest that these peaks belong to
(aromatic–CH) functional groups. The peaks appearing near the 461–479 cm−1 range reflect
(M←O) metal–oxygen bonds formation and peaks near 523–572 cm−1 show the formation
of (M←N) metal–nitrogen bonds. IR analysis of the complexes does not show the (M-N)
metal–nitrogen peaks for (1a-b) due to synthesis from transition metals and flurbiprofen
acid. However, if the addition of (1,3-diaminopropane) and (1,2-diaminoethane) to simple
flurbiprofen complexes (1a-b) leads to the formation of (2a-b) and (3a-b), the (M-N) metal
peaks appear near 514–580 cm−1, suggesting the formation of a metal–ligand chelating
bond between the nitrogen of 1,2-diaminoethane and 1,3-diaminopropane and metal.

3.5. UV/vis and Magnetic Susceptibility

In addition to other spectroscopic techniques, UV-visible analysis was performed
to support the complex formation and confirm the symmetry of metal complexes. The
symmetry of transition metal complexes was deduced from several peaks observed. For
each metal complex, the electronic spectra of 3d-transition metals were recorded in 10−3

to 10−5 M solutions in the range of 200–800 nm in DMSO. Only one peak at 29,543 cm−1

in Zn(II) complexes appears for (1a), 30,816 cm−1 in (2a) and 30,842 cm−1 in (3a), for
metal to ligand charge transfer. The B.M. values were recorded as zero, suggesting the
diamagnetic nature of these complexes. Only a single low-intensity broadband in the range
of 15,219–15,412 cm−1 was observed for Cu(II) complexes for (1b), 16,749–16,810 cm−1 for
(2b) and 16,735–16,788 cm−1 in (3b). The spectrum of these metal complexes indicates that
the 2Eg→2T2g transition leads to distorted octahedral geometry of the metal complexes.
The difference in the position of peaks is due to the difference in the size of ligands in (1b),
(2b) and (3b) for copper complexes. Because different ligands possess different splitting in
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d-orbitals of metal, B.M. values for copper complexes are measured near 1.7, 1.9 and 1.9,
which suggests distorted octahedral geometry of copper complexes.

3.6. Elemental Analysis

Percentage analysis of C, H, N and all synthesized transition metal (II) complexes
of flurbiprofen agreed with the calculated percentage values of their suggested molec-
ular structures (Supplementary Materials). Both values fall under acceptable ranges
(±0.03–0.95), which confirms the formation of suggested diamine-based transition metal
(II) complexes.

3.7. Conductivity Measurements

Synthesized metal complexes were subjected to molar conductivities at room tem-
perature. Conductivity measurements were performed to check the ionic and non-ionic
nature of the metal complexes. All the metal complex solutions were prepared with
a molar concentration of (1 × 10−3 M). Molar conductivities of synthesized flurbipro-
fen metal complexes (1a-b) measure 18 and 21 Ω−1cm2mol−1, indicating their non-ionic
nature. However, as ethylene-diamine (1,2-diaminoethane) and propane-diamine (1,3-
diaminopropane) were added to (1a-b) for the formation of bis (1,2-diaminoethane) metal
flurbiprofen complexes (2a-b) and bis (1,3-diaminopropane) metal flurbiprofen complexes
(3a-b), the conductance increased one order of magnitude to 164 and 158 Ω−1cm2mol−1

for (2a-b) and 160 and 150 Ω−1cm2mol−1 for (3a-b). This increase in conductivity of these
bis (1,3-diaminopropane and 1,3-diaminopropane) flurbiprofen transition metal complexes
indicates their electrolytic or ionic character.

3.8. Anticholinesterase Activity

Anti-cholinesterase activities of transition metal complexes of diamines (1,2-dia-
minoethane, 1,3-diaminopropane) with flurbiprofen (1a-b, 2a-b and 3a-b) are shown in
Table 1. We observed that metal complexes of flurbiprofen derived from 1,2-diaminoethane
(2a-b) show most potency as a cholinesterase inhibitor, with the lowest IC50 values compare
to other series (1a-b and 3a-b). In general, the trend in cholinesterase inhibition follows
the order 2a-b >3a-b >1a-b. This sequence indicates that nitrogen-containing transition
metal complexes possess more cholinesterase inhibitory potency as compared to simple
transition metal complexes. Table 2 shows the inhibitory activities of diamine-based metal
in vitro.

Moreover, copper complexes exhibit higher activity and have the lowest IC50 values
in our study. Among all the metal complexes, Cu(H2O)2 (L1)2 (L)2 (2b) showed inhibitory
activities against AChE and BChE, with the lowest IC50 values, 3.0 ± 0.24 and 12.3 ± 0.21.

Table 1. Crystal data and structure refinement for 2b.

Identification Code Shelx

Empirical formula C34 H44 Cu F2 N4 O6
Formula weight 706.27

Temperature 296(2) K

Wavelength 0.71073 Å
Crystal system Monoclinic

Space group P 21/n
Unit cell dimensions

a = 6.6291(8) Å α = 90◦

b = 40.392(5) Å β = 112.243(6)◦

c = 6.8061(9) Å γ = 90◦

Volume 1686.8(4) Å3

Z 2
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Table 1. Cont.

Identification Code Shelx

Density (calculated) 1.391 Mg/m3

Absorption coefficient 0.708 mm−1

F(000) 742
Crystal size 0.420 × 0.280 × 0.200 mm3

Theta range for data collection 1.008 to 27.356◦.
Index ranges −8 ≤ h≤ 7, −51 ≤ k ≤ 49, −5 ≤ l ≤ 8

Reflections collected 10,124
Independent reflections 3611 [R(int) = 0.0400]

Completeness to theta = 25.242◦ 98.4%
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 3611/0/221
Goodness-of-fit on F2 1.172

Final R indices [I > 2sigma(I)] R1 = 0.0884, wR2 = 0.2301
R indices (all data) R1 = 0.1181, wR2 = 0.2532

Extinction coefficient n/a
Largest diff. peak and hole 1.684 and −0.713 e.Å−3

Table 2. In vitro AChE and BChE inhibitory activities of compounds.

(1a-b, 2a-b and 3a-b)

Sample Code Compounds
Anticholinesterase Activity * (IC50 µM)

eeAChE eqBChE SI

1a Zn(H2O)2(L)2 32.3 ± 1.4 43.2 ± 1.23 1.3
2a Zn(H2O)2(L1)2(L)2 3.5 ± 0.14 13.6 ± 0.38 5.4
3a Zn(H2O)2(L2)2(L)2 9.3 ± 0.22 21.3 ± 2.31 2.2

1b Cu(H2O)2(L)2 22.5 ± 0.62 45.4 ± 1.45 2.0
2b Cu(H2O)2(L1)2(L)2 3.0 ± 0.24 12.3 ± 0.21 4.1
3b Cu(H2O)2(L2)2(L)2 3.4 ± 0.17 14.5 ± 0.27 4.2

A * Galantamine 4.0 ± 0.10 15.0 ± 0.67 3.7

L Flurbiprofen 45 ± 0.13 443 ± 30.73 9.5

* Experiments were performed thrice at 0.5 mM substrates.

3.9. Molecular Docking Studies

Molecular docking results are in agreement with in vitro choline esterase activities for
the metal complex Cu(H2O)2 (C2H8N2)2 (C15H12FO2)2. FLP docking with hAChE shows
π–π stacking with Trp86 and Tyr124, while Tyr337 forms a hydrogen bond (Figure 3a). These
interactions look similar to donepezil binding to the PAS (Peripheral Anionic Site), but
interestingly Trp286 does not seem to be involved in FLP binding. Tyr337 is considered
an entry point for the CAS (Catalytic Binding Site) [35,36] and it seems here FLP-Tyr337

interactions hinder the FLP entry deep into the CAS. The bis-diamine metal complex was
found to interact with Glu81, Trp86 and Asp131. Bound water molecules were found to
interact with Glu81 and Trp86. Met85 interacts with metal ion, while one of the amines from
each bis-diamine complex forms H-bonds with Asp131 (Figure 3b).
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The FLP-bis-diamine complex reached the entrance at the gorge of CAS while inter-
acting with Tyr341. Non-polar interactions to Tyr337, Phe338 and Phe295 in the CAS gorge
stabilize the complex interactions within the active site (Figure 3c). The complex cannot
enter entirely into the CAS gorge; it also loses the interactions with Trp286. The bis-diamine
metal complex interacts with Glu392 viz bound water molecule. The interactions within
the CAS gorge account for high binding energy and stabilized ligand binding. The Phe295

interactions, seen here, are also responsible for donepezil inhibition towards hAChE [35,37].
Zephycandidine A and galanthamine have been shown to interact with AChE via Tyr337

and Trp286.
In the case of hBChE, the bis-diamine metal complex shows backbone interactions

with Gln119, Ser287, Leu286 and Val288 (Figure 4b). The metal complex is stabilized by
Gly116, Gly117, Gln119, Phe329 and Tyr332. FLP interacts with hBChE via π–π stacking to
Trp82 and Phe329, while Asp70, Ser79, Gly115, Gly116, Ser198, Ala328, Tyr332, Trp430 and His438

stabilize the ligand binding (Figure 4a). Here it seems that a highly electronegative fluorine
atom in FLP was the reason for its strong interactions with Gly115 and Gly116. Tarcine, an
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inhibitor of hBChE, has also been found to share the same binding site [38] and its binding
is stabilized by π–π stacking with Trp82.
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Figure 4. Binding mode of FLP (a), bis-diamine metal complex (b), FLP-bis-diamine metal complex (c) in the catalytic and
peripheral pocket of hBChE. The figures on the left show electrostatic potential surface (generated with PyMol) and ligand
binding cavities (gorge).

The FLP-bis-diamine complex was found to perfectly occupy the position in the
hBChE PAS and CAS gorge. The metal ion was found to coordinate with Glu238. Here,
interactions with hBChE show that FLP-bis-diamine complex enters the gorge fully, where
Phe357, Phe358 and Tyr396 are involved in π–π stacking. While FLP loses the π–π stacking
to Trp82, its binding is stabilized by Leu286, Val293 and Asn396 (Figure 4c). The results
suggest that the FLP-bis-diamine complex may be an ideal hAChE and hBuChE inhibitor
due to the presence of extensive π–π stacking and hydrogen and hydrophobic interactions.
The metal-bound FLP-bis-diamine complex shows stable interactions in comparison to
individual the FLP or bis-diamine metal complex.
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4. Conclusions

Since no proper cure for AD exists, cholinesterase inhibitors such as Donepezil have
delayed the progression of AD therapeutically. Second-generation cholinesterase inhibitors,
such as rivastigmine and galantamine, have entered the treatment of AD. This study aims
to develop novel inhibitors to further advance AD treatment by utilizing the fascinating
properties of transition metal complexes [39–41]. We have synthesized and characterized
Zn(II) and Cu(II) transition metal complexes with flurbiprofen and diamines. All the metal
complexes demonstrated distorted octahedral geometry on the basis of electronic spectra
and B.M values. Metal complexes, along with 1,2-diaminoethane, 1,3-diaminopropane,
and flurbiprofen, show an electrolytic nature, while simple metal flurbiprofen complexes
are non-electrolytic. Among all synthesized metal complexes, most of the synthesized
metal complexes exhibited elevated cholinesterase inhibitory activity. Copper complexes
exhibit the highest activity against the cholinesterase enzyme as compared to zinc metal
complexes. Furthermore, bis (1,2-diaminoethane) metal flurbiprofen complexes and bis (1,3-
diaminopropane) metal flurbiprofen complexes show better cholinesterase inhibition as
compared to simple metal flurbiprofen complexes. In conclusion, the diamines synthesized
in this study show potential in AD treatment as novel cholinesterase inhibitors.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-435
2/11/2/208/s1, Figure S1: ORTEP diagram of 2b with thermal ellipsoids drawn at 100% probability
level. The H-atoms are shown as small circles of arbitrary radii. Symmetry code i = 1 − x, − y, 1 − z,
Table S1: UV/VIS, IR and Molar conductivities of the metal complexes, Table S2: Elemental analysis
and magnetic susceptibility data of the complexes, Table S3: Bond lengths [Å] and angles [◦] for 2b.
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