Cocrystals based on 4,4'-bipyridine: Influence of Crystal Packing on Melting Point

Daniel Ejarque¹, Teresa Calvet², Mercè Font-Bardia³ and Josefina Pons^{1,*}

- ¹ Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain;
- daniel.ejarque@uab.cat
 ² Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; mtcalvet@ub.edu
- ³ Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain; mercef@ccit.ub.edu
- * Correspondence: josefina.pons@uab.es; Tel.: +34-935-812-895

List of Figures

Figure S1. XRD patterns from single crystals collected data of (a) 4,4'-bipy at 200 K, (b) HPip at 298 K (c), cocrystal **1** at 100 K and (d) powder XRD pattern at 298 K of cocrystal **1**. XRD patterns from single crystals collected data at 100 K of (e) HCinn, (f) cocrystal **2** and (g) powder XRD pattern at 298 K of cocrystal **2**......S3

Figure S10. (a) Intermolecular interactions which assemble the 3D network of HCinn crystal structure. Energy frameworks representing (b) E_{ele} (c) E_{dis} and (d) E_{tot} contribution energies for HCinn crystal structure. All the frameworks use the same energy cylinder scale factor of 150 and an energy cut-off of 6.00 KJ/mol within a 2×2×2 unit cell. Cg1 = C4 C5 C6 C7 C8 C9.....S10

List of tables

Elemental Analysis (EA), FTIR-ATR and ¹H NMR Spectroscopies

The phase purity of the bulk samples of the two cocrystals was confirmed by PXRD (Figure S1). The EA of cocrystals **1** and **2** agree with the proposed formula. In the FTIR-ATR spectra of **1** and **2**, the v(O-H) bands were shifted to lower wavenumber values (2597-2165 (1) and 2583-2166 (2) cm⁻¹) respect to the free carboxylic acids, probably due to the formation of the strong acid-pyridine heterosynthon. The broad bands present in both spectra between 1980-1771 (**1**) and 2029-1787 (**2**) cm⁻¹ are attributed to the acid-pyridine H-bond, supporting the presence of the heterosynthon [1,2]. Furthermore, the C=O stretching band at 1699 (**1**) and 1688 (**2**) cm⁻¹ also remarks that the proton is bonded to the carboxylate moiety and consequently supports the cocrystal formation [2]. The specific assignation of other signals is provided in the Experimental Section and the Supporting Information (Figures S2-S3).

The ¹H NMR spectra of **1** and **2** have been recorded in dmso- d_6 solution. Both show two signals attributed to the aromatic protons from the 4,4'-bipy molecules between 8.73 and 7.82 ppm, while each cocrystal presents the signals of their corresponding carboxylic acids (**1**: HPip; **2**: HCinn). The molar relation between the carboxylic acids and the 4,4'-bipy ligand indicates the presence of binary multicomponent solids with different acid:4,4'-bipy (1:1 (**1**) and 2:1 (**2**)) molar ratios. Further ¹H NMR details are provided in the Experimental Section and the Supporting Information (Figures S4-S5).

Figure S2. XRD patterns from single crystals collected data of (a) 4,4'-bipy at 200 K, (b) HPip at 298 K (c), cocrystal **1** at 100 K and (d) powder XRD pattern at 298 K of cocrystal **1**. XRD patterns from single crystals collected data at 100 K of (e) HCinn, (f) cocrystal **2** and (g) powder XRD pattern at 298 K of cocrystal **2**.

Figure 2. FTIR-ATR spectrum of cocrystal (HPip)(4,4'-bipy) (1).

Figure S3. FTIR-ATR spectrum of cocrystal (HCinn)₂(4,4'-bipy) (2).

Figure S5. ¹H NMR spectrum of cocrystal (HCinn)₂(4,4'-bipy) (2).

References

- 1. Mukherjee, A.; Tothadi, S.; Chakraborty, S.; Ganguly, S.; Desiraju, G.R. Synthon identification in cocrystals and polymorphs with IR spectroscopy. Primary amides as a case study. *CrystEngComm* **2013**, *15*, 4640–4654, doi:10.1039/c3ce40286j.
- Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. *Pharmaceutics* 2018, 10, 1–30, doi:10.3390/pharmaceutics10010018.

Hirshfeld Surface Analysis

Figure S6. Hirshfeld surfaces mapped with d_{norm} of (**a**) HPip and (**b**) 4,4'-bipy molecules highlighting the intermolecular interactions present in the crystal packing of cocrystal **1**. (**c**) Curvedness representation of **1** showing the planar regions of both molecules which are attributed to the presence of π ... π interactions.

Figure S7. Hirshfeld surfaces mapped with d_{norm} of (a) HCinn and (b) 4,4'-bipy molecules highlighting the intermolecular interactions present in the crystal packing of cocrystal **2**. (c) Curvedness representation of **2** showing the planar region of HCinn attributable to a C-H… π interaction.

Figure S8. Percentage contribution to the Hirshfeld surface for the different molecules of cocrystals 1 and 2.

Energy Frameworks

Table S4. Associated total energy values of the individual intermolecular interactions of cocrystal **1** and **2**. It should be noted that for some interactions, the energy value encompasses two interactions of the same type.

Interaction	Total energy (KJ/mol)	Number of interactions encompassed in each associated total energy value				
Cocrystal 1						
O1-H1N003	-46.1	1				
C13-H13-O2	(Heterosynthon)					
C4-H4…O3	-10.8	2				
C6-H6AB…N2	-13.5	1				
C12-H12-O2	-16.2	1				
C14-H14…O2	-15.1	1				
C10-H10-O4	-13.1	1				
C6-H6A…N2	-8.8	1				
Cg1…Cg1	-25.8	1				
Cg2…Cg2	-23.4	1				
Cg3···Cg3						
Cocrystal 2						
O1-H1…N003	-48.9	1				
C10-H10-O2	(Heterosynthon)					
C2-H2…O2	-26.1	2				
C9-H9-01	-11.8	1				
C7-H7···Cg1	-10.8	1				

Table 2. Contribution energies (electrostatic, E_{ele} ; polarization, E_{pol} ; dispersion, E_{dis} ; repulsion, E_{rep}), total energies (E_{tot}) and lattice energies (E_{lat}) of the crystal structures of the starting materials and cocrystals **1** and **2**. All the values have been obtained using CrystalExplorer 17.5 from the corresponding .cif files.

Structure	Mologuloo	Eele	Epol	Edis	Erep	Etot	Elatt
(CCDC)	Molecules	(KJ/mol)	(KJ/mol)	(KJ/mol)	(KJ/mol)	(KJ/mol)	(KJ/mol)
4.4'-bipy	4.4'-bipy1	-82.8	-16.2	-178.2	87.8	-189.4	02.0
(131130)	4.4'-bipy2	-80.1	-16.3	-183.0	93.5	-185.9	-93.0
HPip (608427)	HPip ₁	-189.6	-39.6	-176.8	163.7	-242.3	-121.2
HCinn (1547787)	HCinn	-187.1	-37.2	-179.2	172.3	-231.2	-115.6
1	HPip	-163.8	-27.2	-198.9	171.5	-218.2	225.4
(2058460)	4.4'-bipy	-164.2	-28.4	-201.8	161.9	-232.5	-223.4
2	HCinn	-156.2	-27.8	-172.1	145.3	-210.8	222.7
(2058461)	4.4'-bipy	-224.5	-41.6	-202.8	223.1	-245.8	-333.7

Table S5. Associated total energy values of the individual intermolecular interactions of the crystal structures of HPip, HCinn and 4,4'-bipy ligands. It should be noted that for some interactions, the energy value encompasses two interactions of the same type.

Interaction	Total energy (KJ/mol)	Number of interactions encompassed				
		in each associated total energy value				
HPip (CCDC 608427)						
O3-H3B…O4	-84.5 2					
C3-H3A…O3	-6.3	1				
C4-H4A…O4	-11.6	2				
Cg1…Cg1	-35.6	1				
Cg1 = C2 C3 C4 C5 C7 C8						
HCinn (CCDC 1547787)						
O1-H1…O2	-79.7	2				
C5-H5…O2	-20.7	1				
C6-H6…O1	-3.6	1				
C7-H7…Cg1	-9.5	1				
Cg1 = C4 C5 C6 C7 C8 C9						
4,4'-bipy (CCDC 131130)						
C12-H12…N21	10 1	1				
C16-H16A…N21	-10.1	1				
C12-H12A…N21A	20.1	1				
C16-H16…N21A	-20.1	1				
C22-H22…N11	_17.0	1				
C22A-H22A…N11A	-17.2	1				
C26-H26…N11A	_17.0	1				
C26A-H26A…N11	-17.2	1				
Cg1…Cg1	-18.0	1				
Cg2···Cg2	-16.7	1				
Cg1 = N11 C11 C12 C13 C15 C16; Cg2 = N21A C21A C22A C25A C26A						

Figure S9. (a) Intermolecular interactions which assemble the HPip crystal structure. Energy frameworks representing (b) E_{ele} (c) E_{dis} and (d) E_{tot} contribution energies for HPip crystal structure. All the frameworks use the same energy cylinder scale factor of 150 and an energy cutoff of 6.00 KJ/mol within a 3×3×3 unit cell. Cg1 = C2 C3 C4 C5 C7 C8.

Figure S10. (a) Intermolecular interactions which assemble the HCinn crystal structure. Energy frameworks representing (b) E_{ele} (c) E_{dis} and (d) E_{tot} contribution energies for HCinn crystal structure. All the frameworks use the same energy cylinder scale factor of 150 and an energy cutoff of 6.00 KJ/mol within a 2×2×2 unit cell. Cg1 = C4 C5 C6 C7 C8 C9.

Figure S11. (a) Intermolecular interactions which assemble the 4,4'-bipy crystal structure. Energy frameworks representing (b) E_{ele} (c) E_{dis} and (d) E_{tot} contribution energies for 4,4'-bipy crystal structure. All the frameworks use the same energy cylinder scale factor of 150 and an energy cutoff of 6.00 KJ/mol within a 2×2×2 unit cell. Cg1 = N11 C11 C12 C13 C15 C16; Cg2 = N21A C21A C22A C25A C26A